Remark. (a) Note that it is not necessarily true that the forward image of an open set by a continuous function is open.

\[f: \mathbb{R} \to \mathbb{R}^2 \]

\[f(x) = \sin x \]

(b) Nor is it necessarily true that the forward image of a closed set by a continuous function is closed.

\[f(x) = \frac{1}{x} \]

\[f(x) = \arctan(x) \]

\[[1, \infty) \to (0, 1] \]

\[\mathbb{R} \to (\frac{-\pi}{2}, \frac{\pi}{2}) \]

Closed \hspace{1cm} Not open

\[\mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2}) \]

Closed \hspace{1cm} Open and not closed.
Theorem (9.3.1). Let \(f \in C(D), f : D \to \mathbb{E}^m \). If \(D \) is compact, then \(f(D) = \{ f(x) : x \in D \} \) is compact.

\[
\text{In fact, if } f : [a, b] \to \mathbb{R} \text{ is continuous, } f([a, b]) = [c, d].
\]

Proof: Suppose \(D \) compact. Show \(f(D) \) is compact.

Let \(\{ \Theta \} \) be an open cover of \(f(D) \). We want to extract a finite subcover. Consider the collection \(\{ f^{-1}(\Theta) \} \). Since \(f \in C(D) \), each \(f^{-1}(\Theta) \) is relatively open in \(D \).

Hence there are open subsets of \(\mathbb{E}^n \), call them \(\{ U_\alpha \} \) such that \(f^{-1}(\Theta) = U_\alpha \cap D \). Claim: \(\{ U_\alpha \} \) is an open cover of \(D \), i.e., \(D = \bigcup_\alpha U_\alpha \). Let \(x \in D \) then \(f(x) \in f(D) \) so \(\exists \Theta_\alpha \) such that \(f(x) \in \Theta_\alpha \) so \(x \in f^{-1}(\Theta_\alpha) \subseteq U_\alpha \subseteq U \cup U_\alpha \). Since \(D \) is compact there exist \(\alpha_1, \ldots, \alpha_N \) such that \(D \subseteq \bigcup_{i=1}^N U_{\alpha_i} \).

Claim: \(f(D) \subseteq \bigcup_{i=1}^N \Theta_{\alpha_i} \). Let \(y \in f(D) \). Then for some \(x \in D, f(x) = y \). Also there is an \(\alpha_i \) such that \(x \in U_{\alpha_i} \).

Hence \(x \in \bigcup_{i=1}^N U_{\alpha_i} \cap D = f^{-1}(\Theta_{\alpha_i}) \), and so \(f(x) \in \Theta_{\alpha_i} \subseteq \bigcup_{i=1}^N \Theta_{\alpha_i} \).

So \(y \in \bigcup_{i=1}^N \Theta_{\alpha_i} \). Hence \(f(D) \) is compact.
Theorem (Extreme Value Theorem). If \(D \subseteq \mathbb{E}^n \) is compact and if \(f \in C(D) \), is a real-valued function, then \(f \) achieves its maximum and minimum values on \(D \). In other words, there exist points \(x_M \) and \(x_m \in D \) such that \(f(x) \leq f(x_M) \) and \(f(x) \geq f(x_m) \) for all \(x \in D \).

Remark: Book uses fact that a compact set is closed and bounded \(\Rightarrow f(D) \) compact \(\Rightarrow f(D) \) bounded.

\[\exists M = \sup f(D), m = \inf f(D). f(D) \text{ closed } \Rightarrow M \text{ and } m \text{ are achieved.} \]

Proof: (1) B-W property: Since \(D \) is compact, so is \(f(D) \) hence it is bounded. Therefore \(m = \inf f(D) \) and \(M = \sup f(D) \) both exist. Will show that for some \(\tilde{x}_M \in D \), \(f(\tilde{x}_M) = M \). Since \(M = \sup f(D) \) there is a sequence \(\{y_n\} \subseteq f(D) \) such that \(y_n \to M \).

Let \(\tilde{x}_n \in D \) satisfy \(f(\tilde{x}_n) = y_n \). Since \(\tilde{x}_n \in D \), by B-W there is an \(\tilde{x}_0 \in D \) such that \(\tilde{x}_n \to \tilde{x}_0 \). For some subsequence \(\tilde{x}_{n_j} \), claim: \(f(\tilde{x}_0) = M \). Since \(f \) is continuous, \(\tilde{x}_{n_j} \to \tilde{x}_0 \) implies that \(f(\tilde{x}_{n_j}) \to f(\tilde{x}_0) \) but \(f(\tilde{x}_{n_j}) = y_{n_j} \) and \(y_{n_j} \to M \). Hence \(f(\tilde{x}_0) = M \).
(2): H-B property: Again since \(f(D) \) is bounded,
\(m = \inf f(D) \) and \(M = \sup f(D) \) exist. Will show
that for some \(x_M \in D \), \(f(x_M) = M \). Suppose that
\[
\begin{array}{c}
\alpha \quad \longrightarrow \quad f \quad \longrightarrow \quad \beta \\
D
\end{array}
\]
for no \(x \in D \), \(f(x) = M \). Then for all \(x \in D \),
\(f(D) \neq f(\vec{x}) \). Consider
the open sets \(\Theta_b = (-\infty, M - \frac{1}{b}) \). Claim 1:
\(f(D) \subseteq \bigcup_{b=1}^{\infty} \Theta_b \). Claim 2: \(\exists \Theta_b \) admits no
finite sub cover of \(f(D) \). Details are an exercise.
Theorem (9.3.3) (Open Mapping Theorem.)
Let \(f \in C(D) \), \(f : D \to \mathbb{E}^m \), \(f \) is one-to-one. If \(D \) is compact then \(f^{-1} \) is continuous.

Rem: (a) \(f \) is one-to-one \(\Rightarrow \) implies \(f^{-1} \) exists as a function.
(b) If \(D \) is not compact, \(f^{-1} \) need not be continuous.

Proof:
An idea: If we can show \(f(\text{open set}) \) is open, then this is \((f^{-1})^{-1} \text{(open)} \) is open, so \(f^{-1} \) continuous.

\[f: D \subseteq \mathbb{E}^n \to \mathbb{E}^m \text{ so } f: D \to f(D) \text{ } f^{-1}: f(D) \subseteq \mathbb{E}^m \to \mathbb{E}^n \]

Let \(\Theta \subseteq \mathbb{E}^n \) be open. Consider \((f^{-1})^{-1}(\Theta) \). Want to show this is relatively open in \(f(D) \). **Claim:** \((f^{-1})^{-1}(\Theta) = f(\Theta) \) (exercise). So must show \(f(\Theta) \) is open in \(f(D) \).

If \(\Theta \subseteq \mathbb{E}^n \) is open. Actually since \(\Theta \) need not be subset of \(D \), we are considering \(f(\Theta \cap D) \).
Actually we will show that \(f(\Omega \cap D)^c \) is relatively closed in \(f(D) \). **Claim:** \(f(\Omega \cap D)^c \) really looking at \(f(\Omega \cap D)^c \cap f(D) \).

\[
\begin{align*}
\text{Claim:} & \quad f(\Omega \cap D)^c = f(\Omega \cap D)^c = f(\Omega^c \cup D^c) \\
& = f(\Omega^c) \cap f(D) = f(\Omega^c) \cap f(D)
\end{align*}
\]

Ugh... A correct proof follows.
Proof: The idea is to show that f^{-1} is continuous by showing that the inverse image under f^{-1} of an open set in E^m is relatively open in $f(D)$, the domain of f^{-1}. We will need several claims whose proofs are exercises.

Claim 1: If $f : D \to f(D)$ is one-to-one then given $A, B \subseteq D$, $f(A \cap B) = f(A) \cap f(B)$.

Claim 2: If $f : D \to f(D)$ is one-to-one then given $A \subseteq D$, $f(D - A) = f(D) - f(A)$.

Claim 3: If $f : D \to f(D)$ is one-to-one then given $A \subseteq E^m$, $(f^{-1})^{-1}(A) = f(A \cap D)$.

Let $O \subseteq E^m$ be open. Then $(f^{-1})^{-1}(O) = f(O \cap D)$. We must show that $f(O \cap D)$ is relatively open in $f(D)$. By a homework exercise it is enough to show that $f(D) - f(O \cap D)$ is relatively closed in $f(D)$. Since $O \cap D$ is relatively open in D, $D - (O \cap D) = O^c \cap D$ is relatively closed in D and since D is compact, $f(O^c \cap D)$ is compact (since $O^c \cap D$ is a closed subset of a compact set) and hence closed in E^m. Since $f(O^c \cap D) \subseteq f(D)$ it is a closed subset of $f(D)$. But applying our claims $f(D) - f(O \cap D) = f(D - (O \cap D)) = f(D - O) = f(O^c \cap D)$ hence $f(D) - f(O \cap D)$ is relatively closed in $f(D)$.