Looking at $\mathbb{R}^n = \{ x_1, ..., x_n : x_j \in \mathbb{R} \}$.

\mathbb{R}^n is a normed linear space.

$$
\| x \| = \left(\sum_{j=1}^{n} |x_j|^2 \right)^{1/2} = \langle x, x \rangle^{1/2}.
$$

\mathbb{R}^n inherits many of the topological properties of \mathbb{R}.

(a) \mathbb{R}^n is complete. (Cauchy \Rightarrow convergent)
(b) Compactness - Heine-Borel property
(c) Bolzano-Weierstrass
(d) compactness \iff H-B \iff B-W \iff closed + bounded
(e) \mathbb{R}^n has a countable dense subset, \mathbb{Q}^n.

Important fact: $x^k \to x$ in \mathbb{R}^n \iff

$$
x_j^k \to x_j \text{ for all } 1 \leq j \leq n.
$$
8.2. Open Sets and Closed Sets.

A. Open Sets.

1. Definition. The open ball centered at \(a \in \mathbb{R}^n \) with radius \(r > 0 \), denoted \(B(a, r) \) is the set
\[
B(a, r) = \{ x \in \mathbb{R}^n : \| x - a \| < r \}.
\]
A set \(\mathcal{O} \subseteq \mathbb{R}^n \) is open if for each \(x \in \mathcal{O} \), there is an \(r > 0 \) such that
\[
B(x, r) \subseteq \mathcal{O}
\]

2. Examples.
 a. The empty set \(\emptyset \) is open, and \(\mathbb{R}^n \) is open.
 b. Any open ball is an open set.
 c. Any open set can be written as the union of a collection of open balls.

\[\phi \text{ is open: } \forall x \in \emptyset, \text{ anything holds.}\]

\[\mathbb{R}^n \text{ is open: Let } x \in \mathbb{R}^n, \text{ let } r = 1, B(x, 1) \subseteq \mathbb{R}^n.\]

b. Let \(B(\hat{a}, r) \) be given. Let \(\hat{x} \in B(\hat{a}, r) \). Find \(\varepsilon > 0 \) such that \(B(\hat{x}, \varepsilon) \subseteq B(\hat{a}, r) \).

 Let \(\varepsilon = r - \| \hat{x} - \hat{a} \| \), and let \(\hat{y} \in B(\hat{x}, \varepsilon) \).

 Then \(\| \hat{y} - \hat{a} \| \leq \| \hat{y} - \hat{x} \| + \| \hat{x} - \hat{a} \| < \varepsilon + \| \hat{x} - \hat{a} \| = r \)

 c. Idea: \(\mathcal{O} \subseteq \mathbb{R}^n \text{ open. } \forall x \in \mathcal{O}, \exists \varepsilon > 0 \text{ s.t. } B(x, \varepsilon) \subseteq \mathcal{O}. \) i.e. fact \(\mathcal{O} = \bigcup_{x \in \mathcal{O}} B(x, \varepsilon_x). \)
3. **Theorem.** The union of any collection of open sets is open.

Proof. Let $\mathcal{O} = \{ O_x \}_{x \in A}$, a family of open sets. Show $\Theta = \bigcup O_x$ is open. Let $x \in \Theta$. Then $x \in O_x$ for some $x \in A$ so there is a $x_0 \in A$ such that $x \in O_{x_0}$. Since O_{x_0} is open there is an $r > 0$ such that $B(x, r) \subseteq O_{x_0} \subseteq \Theta$. Hence Θ is open.

4. **Theorem.** The intersection of a finite number of open sets is open. The infinite intersection of open sets need not be open.

Proof. Let $\mathcal{O}_1, O_2 \ldots, O_n$ be open sets. Let $\Theta = \bigcap_{j=1}^{n} O_j$. Show Θ is open. Let $x \in \Theta$. Then $x \in O_j$ for all j. Then there are $r_j > 0$ such that $B(x, r_j) \subseteq O_j$ for all j. Let $r = \min_{1 \leq j \leq n} r_j$.

Then if $x \in \Theta$, $B(x, r) \subseteq B(x, r_j) \subseteq O_j$.

Hence $B(x, r) \subseteq \bigcap_{j=1}^{n} O_j = \Theta$.

Let $O_j = B(O, \frac{1}{j})$. Then $\bigcap_{j=1}^{n} O_j = \emptyset$, which is not open.
B. Closed Sets.

1. Definition. Let \(A \subseteq \mathbb{R}^n \). The point \(x \) is a \textit{limit point} of \(A \) if for every \(\varepsilon > 0 \), there is a \(y \in A \) such that \(0 < \|x - y\| < \varepsilon \).

2. Remark.
 a. A limit point of a set \(A \) need not be an element of \(A \). For example, what are the limit points of \(B(0, 1) \)?

 b. Claim. A point \(x \) is a limit point of a set \(A \) if and only if for every \(\varepsilon > 0 \), \(B(x, \varepsilon) \cap A \) contains infinitely many points.

 Proof. \((\implies)\) Suppose \(x \) is a limit pt of \(A \), let \(\varepsilon > 0 \).

 Then there is a \(y \in A \) with \(0 < \|x - y\| < \varepsilon \). Hence \(y \in B(x, \varepsilon) \cap A \). Next let \(r = \min \left\{ \frac{\|x - y\|}{2}, \varepsilon \right\} \). Since \(x \) is a limit pt of \(A \), there is \(y_1 \in A \) with \(0 < \|x - y_1\| < r \). Let \(r_2 = \frac{\|x - y_1\|}{2} \), and continue in this fashion, we obtain a sequence \(y_h \in B(x, r) \cap A \). I claim that \(y_h \rightarrow y \) for \(h \rightarrow \infty \). Look at \(\|x - y_h\| - \|x - y_{h+1}\| \)

 Assume \(h > j \) \(\|x - y_h\| \geq \|y_j - x\| - \|y_h - y_j\| \)
But, \(1 < v_2 < v_3 < v_4 < ... < v_j = \frac{\alpha_j - \bar{x}}{a_j} \)

Hence \(\| \frac{\alpha_j}{v_j} \| = |v_j - x| - \frac{|v_j - x|}{a_j} = \frac{|v_j - x|}{a_j} > 0 \)

(\(\Leftarrow \)) Exercise
c. **Definition.** Let $A \subseteq \mathbb{R}^n$. The point x is an *isolated point* of A if there exists an $r > 0$ such that $B(x, r) \cap A = \emptyset \cup \{x\}$. Note that this implies that $x \notin A$.

d. **Claim.** Every point of a set $A \subseteq \mathbb{R}$ is either an isolated point of A or a limit point of A.

Pl: Exercise

3. **Definition.** A set $F \subseteq \mathbb{R}^n$ is said to be *closed* if it contains all of its limit points.

4. **Examples.**
 a. The empty set \emptyset is closed, and \mathbb{R} is closed. This also shows that it is possible for a set to be both open and closed.
 b. An open ball $B(x, r)$ is not closed.
 c. Any *closed ball* $B(a, r) = \{x \in \mathbb{R}^n: \|x - a\| \leq r\}$ is closed.
 d. Any finite set is closed.

5. **Theorem.** A set is closed if and only if its complement is open.
4. (a) \(x \) is a limit pt of \(\emptyset \) means \\
\(\forall r > 0 \) there is \(y \in \emptyset \) with \(0 < |x - y| < r \). \\
Hence the set of limit pts of \(\emptyset \) is \(\emptyset \).

(b) Look at \(B(x, r) \). Find \(y \) s.t. \\
what are the limit pts of \(B(x, r) \)?

\(\emptyset \) \\
A us: \(\exists y \in B(x, r) \) s.t. \(|x - y| \leq r \) \\
Hence \(B(x, r) \) does not contain all its limit pts.