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Methods of data assimilation are established in physical sciences and engineering for the merging
of observed data with dynamical models. When the model is nonlinear, methods such as the
ensemble Kalman filter have been developed for this purpose. At the other end of the spectrum,
when a model is not known, the delay coordinate method introduced by Takens has been used to
reconstruct nonlinear dynamics. In this article, we merge these two important lines of research.
A model-free filter is introduced based on the filtering equations of Kalman and the data-driven
modeling of Takens. This procedure replaces the model with dynamics reconstructed from delay
coordinates, while using the Kalman update formulation to reconcile new observations. We find that
this combination of approaches results in comparable efficiency to parametric methods in identifying
underlying dynamics, and may actually be superior in cases of model error.

PACS numbers: 05.45.Tp, 92.60.Aa, 05.45.Jn

I. INTRODUCTION

Data assimilation plays an increasingly important role
in nonlinear science, as a means of inferring unobserved
model variables and constraining unknown parameters.
Use of the Extended Kalman Filter (EKF) and Ensemble
Kalman Filter (EnKF) is now standard in a wide range of
geophysical problems [1–5] and several areas of physical
and biological sciences where spatiotemporal dynamics is
involved [6–9].

When a physically motivated model is available, para-
metric forecasting methods can be used in a variety of
applications in noise filtering, prediction and control of
systems. Nonlinear approaches to filtering [1, 2, 10, 11]
allow forecasting models to use the model equations to
develop close to optimal predictions. Even if some vari-
ables are not observable, they may be reconstructed, pro-
vided that their model equations are known.

In other cases, a model may not be available, or avail-
able models may be poor. In geophysical processes, ba-
sic principles may constrain a variable in terms of other
driving variables in a way that is well understood, but
the driving variables may be unmodeled or modeled with
large error [12–15]. In numerical weather prediction
codes, physics on the large scale is typically sparsely mod-
eled [16, 17]. Some recent work has considered the case
where only a partial model is known [18, 19].

When a physical model is completely unavailable, Tak-
ens’ method of attractor reconstruction [20–23] has be-
come the foundation of nonparametric time series predic-
tion methods. Under suitable genericity hypotheses, the
dynamical attractor may be represented by delay coordi-
nate vectors built from the time series observations, and
methods of prediction, control, and other applications
from chaotic time series have been developed [24–26]. In
particular, time series prediction algorithms locate the
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current position in the delay coordinate representation
and use analogues from previously recorded data to es-
tablish a predictive statistical model, which can be ac-
complished in several ways [27–40].

In this article we propose a “Kalman-Takens” method
of data analysis which is able to filter a noisy time se-
ries without access to a model. We replace the model
equations governing the evolution of the system, which
are assumed to be known in standard data assimilation
methods, with advancement of the dynamics nonpara-
metrically using delay-coordinate vectors. We find that
the Kalman-Takens algorithm as proposed in this article
is able in many cases to filter noisy data at a rate compa-
rable to parametric filtering methods that have full ac-
cess to the exact model. In one sense, this is no surprise:
The content of Takens’ theorem is that in the large data
limit, the equations can be replaced by the data. But
particularly surprising is the fact that by implementing
the Kalman update, the nonparametric representation of
the dynamics is able to handle substantial noise in the
observed data. Moreover, in cases where the paramet-
ric filter is subject to model error, we will see that the
Kalman-Takens approach may exhibit superior results.

Throughout this paper we will assume availability of a
noisy set of historical data for which there is no model.
The goal is to use this historical data set to predict future
values using one of the many established nonparametric
prediction methods. Our objective is to first filter these
noisy observations using Kalman-Takens and reconstruct
the underlying signal, which will allow for increased pre-
dictive capability. We will compare this novel approach
to filtering, which does not use any model, to the ideal
scenario which assumes that the perfect model is known,
as well as to scenarios which include model error.

Nonparametric forecasting has received renewed inter-
est recently [18, 19, 41, 42], however, all these methods
have impractically large data requirements for intrinsi-
cally high-dimensional dynamics. Indeed, the approaches
of [18, 19] are based on combining a partially known or
imperfect model with nonparametric methods in order
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FIG. 1. Results of filtering the full 40-dimensional Lorenz-96 system. (a) Spatiotemporal plot of the system dynamics.
The horizontal axis represents time, and the vertical axis represents the spatial position. From top to bottom, (1) the true
system trajectory, (2) observations perturbed by 100% noise, (3) Kalman-Takens output and (4) parametric filter output. (b)
Spatiotemporal plot of the resulting absolute errors. For readability, only absolute errors greater than 5 are shown. From top
to bottom, error in (1) the observed signals, (2) Kalman-Takens output and (3) parametric filter output.

to overcome the high dimensionality which is present in
many practical problems. While solving the forecasting
problem requires representing the entire dynamical sys-
tem, the filtering problem only requires the ability to
perform a short term forecast (until the next observation
becomes available).

We demonstrate this fact in Figure 1 by filtering the
Lorenz-96 spatiotemporal dynamical system without any
knowledge of the underlying model. The Lorenz-96 sys-

tem represents a simplified weather system on a mid-
latitude and is a common benchmark for spatiotemporal
filtering methods due to its chaotic dynamics and moder-
ate dimensionality. Notice that the Kalman-Takens filter
does not equal the performance of the parametric filter,
however, this should be expected since the parametric
method is given full knowledge of the true model whereas
the Kalman-Takens filter has only the short noisy train-
ing data set from which to learn the dynamics.



3

One key application of the Kalman-Takens filter is to
datasets where one has no knowledge of the underlying
dynamics. However, we will also show that the proposed
approach has significant advantages when the true model
is known, but imperfectly. In Sections III and IV we
will show that the filter has only a small loss of perfor-
mance compared to parametric methods which have the
perfect model. In exchange for this small loss of per-
formance compared to perfect knowledge, the Kalman-
Takens method offers extreme robustness to model error.
Since we make no model assumption at all, the results are
free from the biases these strong assumptions introduce.
In Section V we demonstrate the advantage of the new
approach by showing that introducing a small amount of
model error (by simply perturbing parameters) leads to
the parametric filtering methods being outperformed by
the Kalman-Takens filter. We will return to the Lorenz-
96 example at the end of Section IV.

As a precursor to this article, we note that Kalman
filtering was used in [43] to fit parameters of a global
radial basis function model based at unstable fixed points
in delay coordinates, which were in turn estimated by
another method. In contrast, our approach is in the spirit
of fully nonparametric statistics.

II. KALMAN-TAKENS FILTER

The standard Kalman filtering context assumes a non-
linear system with n-dimensional state vector x and m-
dimensional observation vector y defined by

xk+1 = f(xk, tk) + wk (1)

yk = g(xk, tk) + vk

where f and g are known, and where wk and vk are white
noise processes with covariance matrices Q and R, re-
spectively. The ensemble Kalman filter (EnKF) approx-
imates a nonlinear system by forming an ensemble, such
as through the unscented transformation (see for exam-
ple [44]). Here we initialize the filter with state vector
x+0 = 0n×1 and covariance matrix P+

0 = In×n. At the
kth step of the filter there is an estimate of the state x+k−1
and the covariance matrix P+

k−1. In the unscented ver-
sion of EnKF, the singular value decomposition is used
to find the symmetric positive definite square root S+

k−1
of the matrix P+

k−1, allowing us to form an ensemble of E

state vectors where the ith ensemble member is denoted
x+i,k−1.

The model f is applied to the ensemble, advancing it
one time step, and then observed with function g. The
mean of the resulting state ensemble gives the prior state
estimate x−k and the mean of the observed ensemble is

the predicted observation y−k . Denoting the covariance

matrices P−k and P yk of the resulting state and observed
ensemble, and the cross-covariance matrix P xyk between

the state and observed ensembles, we define

P−k =

E∑
i=1

(
x−ik − x

−
k

) (
x−ik − x

−
k

)T
+Q

P yk =

E∑
i=1

(
y−ik − y

−
k

) (
y−ik − y

−
k

)T
+R

P xyk =

E∑
i=1

(
x−ik − x

−
k

) (
y−ik − y

−
k

)T
(2)

and use the equations

Kk = P xyk (P yk )−1

P+
k = P−k − P

xy
k (P yk )−1P yxk

x+k = x−k +Kk

(
yk − y−k

)
. (3)

to update the state and covariance estimates with the ob-
servation yk. We refer to this throughout as the paramet-
ric filter, since a full set of model equations are assumed
to be known. In some cases Q and R are not known; an
algorithm was developed in [9] for adaptive estimation of
Q and R. A brief description of this algorithm is included
in the Appendix.

Contrary to (1), our assumption in this article is that
neither the model f or observation function g are known,
making outright implementation of the EnKF impossi-
ble. Instead, the filter described here requires no model
while still leveraging the Kalman update described in (3).
The idea is to replace the system evolution, tradition-
ally done through application of f , with advancement of
dynamics nonparametrically using delay-coordinate vec-
tors. We describe this method with the assumption that
a single variable is observable, say y, but the algorithm
can be easily generalized to multiple system observables.
In addition, we will assume in our examples that noise
covariances Q and R are unknown and will be updated
adaptively as in [9].

Given the observable yk, consider the delay-coordinate
vector xk = [yk, yk−1, . . . , yk−d] where d is the number of
delays. This delay vector xk represents the state of the
system [20, 22]. At each step of the filter an ensemble of
delay vectors is formed. However, the advancement of the
ensemble one time step forward requires a nonparametric
technique to serve as a local proxy f̃ for the unknown
model f .

The proxy is determined as follows. Given a de-
lay coordinate vector xk = [yk, yk−1, . . . , yk−d], we
locate its N nearest neighbors [yk′ , yk′−1, . . . , yk′−d],
[yk′′ , yk′′−1, . . . , yk′′−d], . . . , [ykN , ykN−1, . . . , ykN−d]
within the set of noisy training data, with respect to
Euclidean distance. Once the neighbors are found, the
known yk′+1, yk′′+1, . . . , ykN+1 values are used with a
local model to predict yk+1. In this article, we use a
locally constant model which in its most basic form is
an average of the nearest neighbors, namely

f̃(xk) =

[
yk′+1 + yk′′+1+, . . . ,+ykN+1

N
, yk, . . . , yk−d+1

]
.
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FIG. 2. Given noisy observations of the Lorenz-63 x variable
(green circles) sampled at rate h = 0.05, the goal is to reduce
the signal error (RMSE = 4.76) using an ensemble Kalman
filter where the true x trajectory (solid black curve) is de-
sired. (a) If we have knowledge of the Lorenz-63 equations,
the standard filtering methodology can be used whereby the
noisy x data are assimilated to the model and using an EnKF
a noise-reduced estimate of the x variable as well as estimates
of the unobserved y and z variables are provided. We refer to
this as the parametric filter (solid blue curve, RMSE = 2.87).
(b) Kalman-Takens is able to significantly filter the noise in
the observed signal (solid red curve, RMSE = 3.04) to a level
comparable to the parametric filter.

This prediction can be further refined by considering
a weighted average of the nearest neighbors where the
weights are assigned as a function of the neighbor’s dis-
tance to the current delay-coordinate vector. Through-
out the following examples, unless otherwise specified, 20
neighbors were used. This process is repeated for each
member of the ensemble. Once the full ensemble is ad-
vanced forward, the remaining EnKF algorithm is then
applied as previously described and our delay-coordinate
vector is updated according to (3). We refer to this
method as the Kalman-Takens filter.

III. IMPROVED FORECASTING

As an introductory example we examine the Lorenz-63
system [45]

ẋ = σ(y − x)

ẏ = x(ρ− z)− y (4)

ż = xy − βz

(a)

(b)

FIG. 3. Filter performance of both the parametric (solid blue
curve) and nonparametric (solid red curves) filters when de-
noising the observed Lorenz-63 x variable at increasing levels
of (a) large and (b) low observation noise (signal error, dot-
ted black curve). Time series sampled at rate h = 0.05 and
error bars denote standard error over 10 realizations. Q and
R noise covariances are estimated adaptively. The nonpara-
metric filter is able to significantly reduce the signal error to
a level comparable to the parametric filter which has full use
of the model. In some instances, the performance of the non-
parametric filter improves by reprocessing the data (dotted
red curve). At higher noise levels, the discrepancy between
parametric and nonparametric filter become negligible.

where σ = 10, ρ = 28, β = 8/3. Assume we have a noisy
set of training data observed from the x variable. Using
this data, we want to develop a nonparametric forecasting
method to predict future x values of the system. How-
ever, due to the presence of noise, outright application
of a prediction method leads to inaccurate forecasts. If
knowledge of (4) were available, the standard parametric
filter could be used to assimilate the noisy x observations
to the model, generate a denoised estimate of the x vari-
able and simultaneously estimate the unobserved y and
z variables.

Without knowledge of (4), we are limited to meth-
ods of nonparametric filtering. Using the Kalman-Takens
method, we can effectively filter the noisy x observations,
reconstructing the underlying signal, without any knowl-
edge of the underlying system.

For this example we assume that 6000 noisy training
points of the Lorenz-63 x variable are available, sampled
at rate h = 0.05. We build a delay coordinate vector
[x(t), x(t − h), . . . , x(t − dh)] where d = 4. Given that
we will be filtering and searching for neighbors within
the same training set, we implement a 600 sample lock-
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FIG. 4. Results of forecasting the Lorenz-63 x variable when
the training data are perturbed by 30% noise. Results av-
eraged over 3000 realizations. Forecast error calculated with
respect to (a) the non-noisy truth and (b) the noisy truth.
When the training data are filtered by Kalman-Takens (solid
red curve) we gain improved forecasting capability as com-
pared to use of the unfiltered training data (dotted black
curve). The forecasting results (using identical forecast algo-
rithms) when the training data is filtered by the parametric
filter (solid blue curve) is included for a point of reference.

out centered around the current delay-coordinate vec-
tor to prevent overfitting (effectively reducing the set
from which to find neighbors to 5400 data points). The
Kalman-Takens method can then be implemented, itera-
tively filtering the training data.

Figure 2 shows a comparison of the parametric and
Kalman-Takens filter in reconstructing the Lorenz-63 x
time series given noisy observations of the variable. The
observed time series is corrupted by 60% noise. The
green circles denote the noisy observations and the black
solid line denotes the true trajectory of the variable (sig-
nal RMSE= 4.76). In Figure 2(a), result of the para-
metric filter (solid blue curve) reconstruction are shown.
The parametric filter, operating with full knowledge of
the underlying dynamical equations, is able to signifi-
cantly reduce the signal error (RMSE =2.87). Figure
2(b) shows the result of the Kalman-Takens filter recon-
struction (solid red curve). Without knowledge of any
model equations, the Kalman-Takens method is able to
significantly reduce the signal error to a level comparable
with the parametric filter (RMSE = 3.04).

The results of reconstructing the observed Lorenz-63 x
variable over a range of noise levels are shown in Figure
3. Error bars denote standard error over 10 realizations.
Estimation of the noise covariances Q and R for both

filter algorithms was done using the methodology of [9].
The Kalman-Takens filter (solid red curve) is able to sub-
stantially reduce the signal error (dotted black curve) to
a level comparable to the parametric filter (solid blue
curve). In some instances, the Kalman-Takens filter can
be used to re-process the filtered data which can lead to
a reduction in error (dotted red curve).

Next we show how Kalman-Takens filtering of the
noisy dataset can enhance forecasting. We utilize a
simple nonparametric prediction method similar to the
local reconstruction of f̃ above. More sophisticated
methods exist, but we want to avoid complicating
the comparison of the filtering methods. Assume
the current time is k, and we want to forecast the
variable y ahead j time units into the future. Using
the delay coordinate vector xk = [yk, yk−1, . . . , yk−d],
the vector’s N nearest neighbors [yk′ , yk′−1, . . . , yk′−d],
[yk′′ , yk′′−1, . . . , yk′′−d], . . . , [ykN , ykN−1, . . . , ykN−d]
within the set of noisy training data are located. Then,
the known yk′+j , yk′′+j , . . . , ykN+j are averaged to
predict yk+j .

Figure 4 shows the error in predicting two time units
of the Lorenz-63 x variable when the training set is influ-
enced by 30% noise. Results are averaged over 3000 real-
izations. Prediction error was calculated with respect to
the non-noisy truth in Figure 4(a) and the noisy truth in
Figure 4(b). When using the noisy training data without
any filtering (dotted black curve) for the nonparametric
forecast, the prediction error is highest as would be ex-
pected. We observe a significant improvement in predic-
tion error when the training data are filtered first by the
Kalman-Takens method (solid red curve). This improve-
ment in predictive capabilities when using the Kalman-
Takens method compares favorably to the improvement
gained when filtering with the full set of model equations
(solid blue curve).

We emphasize that our purpose is to demonstrate the
utility of the Kalman-Takens filter, not to compare dif-
ferent methods of forecasting. As such, all the forecast
methods in this paper are model-free methods; even when
the true model is used to filter the historical data, in
order to focus on the filtering comparison between the
Kalman-Takens and parametric approaches. In practice,
if the correct model were available, the noisy initial con-
ditions could be filtered and the model advanced in time
to calculate the forecasted values.

IV. SPATIOTEMPORAL DYNAMICS

Given the success of the Kalman-Takens method in fil-
tering noisy observations in the low dimensional Lorenz-
63 system, allowing for improved forecasting ability, we
now examine the filter-forecast problem in a higher di-
mensional system. Consider a coupled ring of N Lorenz-
96 nodes [46]

ẋi = (axi+1 − xi−2)xi−1 − xi + F (5)



6

Time

0 2 4 6 8 0 2 4 6

x
1

-10

-8

-6

-4

-2

0

2

4

6

8

10

(a)

Time

0 2 4 6 8 0 2 4 6

x
1

-10

-8

-6

-4

-2

0

2

4

6

8

10

(b)

FIG. 5. The filtering problem in a 40 dimensional Lorenz-
96 system where noisy observations from 3 of the network
nodes are available. Observations are perturbed by 60% noise.
The goal is to filter the noisy observations of the x1 node
(black circles) and reduce the signal error (RMSE = 2.16).
Black solid curve denotes true trajectory of variable. (a) The
parametric filter (solid blue curve) with full knowledge of the
system is able to filter the signal to RMSE = 1.17. This
requires full estimation of the 40 dimensional state. (b) The
nonparametric Kalman-Takens filter (solid red curve), with
no knowledge of the underlying physical system and utilizing
only delay coordinates of the observables, is able to filter the
signal to RMSE = 1.36.

where a = 1 and F = 8. The Lorenz-96 system is a con-
venient demonstrative example since it allows for a range
of higher dimensional complex behavior by adjusting the
number of nodes in the system. We first consider a 40 di-
mensional Lorenz-96 system in which three nodes are ob-
servable, namely x1, x2 and x40. We increase the number
of observables in this example since filtering a 40 dimen-
sional Lorenz-96 with one observation, and the full set of
model equations, is itself a difficult task. Therefore we
introduce the assumption that in this higher dimensional
system we are afforded additional observations. Even
though we have additional observations, our goal is only
to filter and predict the x1 variable.

We assume that 10000 noisy training data points
from each of the three nodes, sampled at rate h
= 0.05, are available. Since three nodes are ob-
servable in this example, our delay-coordinate vector
takes the form [x1(t), . . . , x1(t − dh), x2(t), . . . , x2(t −
dh), x40(t), . . . , x40(t − dh)], where we set d = 3. Figure
5 shows the results of filtering the x1 node in this system

(a)

(b)

FIG. 6. Filter performance of the parametric (solid blue
curve) and Kalman-Takens filter (solid red curve) when de-
noising the observed Lorenz-96 x1 variable at increasing levels
of observation noise (signal error, dotted black curve). The
variable was sampled at rate h = 0.05 and the error bars
denote standard error over 10 realizations. Q and R noise
covariances were tuned offline for optimal performance of the
filters. Results presented for both a (a) 5 dimensional Lorenz-
96 system with only x1 observable and a (b) 40 dimensional
Lorenz-96 system where x1, x2 and x40 are observable. We
assume additional nodes are observable in the 40 dimensional
case due to the high dimensionality of the system which in-
hibits both the parametric and Kalman-Takens filter. In both
systems, the Kalman-Takens filter is able to significantly re-
duce the signal error to a level comparable to the parametric
filter that has full knowledge of the system.

when the observations are perturbed by 60% noise (green
circles). With knowledge of the full 40 dimensional sys-
tem a parametric filter can be implemented, solid blue
curve in Figure 5(a), to reduce the signal error (RMSE
= 1.17). With no model available the Kalman-Takens
method can be utilized, solid red curve in Figure 5(b),
and even in this high dimensional example is able to re-
duce signal error to a level comparable to the parametric
filter (RMSE = 1.36).

Figure 6 shows the results of filtering the x1 node at
various noise levels. Figure 6(a) shows the results in a 5
dimensional Lorenz-96 network where only x1 is observ-
able and Figure 6(b) shows the results in a 40 dimensional
network where x1, x2 and x40 are observable. In this ex-
ample, Q and R noise covariances were tuned offline for
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FIG. 7. Results of forecasting the x1 node in a 5 dimensional
Lorenz-96 system when the training data are affected by 60%
noise. Results averaged over 2500 realizations. Forecast error
calculated with respect to (a) the non-noisy truth and (b) the
noisy truth. Even in this higher dimensional system, we see
that use of Kalman-Takens to filter the training data results
in improved forecasting capability (solid red curve) as com-
pared to forecasting without filtering (dotted black curve).
The forecast based on Kalman-Takens initial conditions com-
pares well to the same Takens based forecast method using
initial conditions from the parametric filter (solid blue curve).

each filter to ensure optimal performance. In both net-
work sizes, the Kalman-Takens method (solid red curve)
is able to significantly reduce the signal error (dotted
black curve) to a level comparable with the parametric
filter (solid blue curve) which operates with knowledge
of the full system equations.

Figure 7 shows the results of forecasting x1 in a 5 di-
mensional Lorenz-96 network, when the training data is
corrupted by 60% noise, with respect to the non-noisy
truth in Figure 7(a) and the noisy truth in Figure 7(b).
Prediction with the unfiltered training data (dotted black
curve) results in large errors. Once again, application of
the Kalman-Takens method results in predictions with
smaller error (solid red curve) and is comparable if a
parametric filter is used (solid blue curve). The success
of the Kalman-Takens filter in these higher dimensional
systems is encouraging for its use in real-world physical
systems where the system is complex, high dimensional
and a model is most likely unknown.

We emphasize that we do not expect to obtain long

term forecasts of intrinsically high-dimensional dynam-
ics from a nonparametric technique (due to the curse
of dimensionality). However, we now return to the ex-
ample in Figure 1 which shows that filtering such sys-
tems without a model is sometimes possible. Indeed,
having shown that we can filter a single spatial location,
we can easily filter the entire spatiotemporal system one
location at a time. At each spatial node, xi, of the 40-
dimensional Lorenz-96 network, we build the short-term
forecast model used by the Kalman-Takens filter from xi
along with its two spatial neighbors xi+1 and xi−1.

The full spatiotemporal filtering results are shown in
Fig. 1 of Section I. The Kalman-Takens filter is applied
to the full 40-dimensional Lorenz-96 system when the
observations are corrupted by 100% noise, i.e. additive
Gaussian noise with mean zero and variance equal to the
variance of the signal. Figure 1(a) shows the spatiotem-
poral plot of the system dynamics along with the noisy
signal and the filter outputs. Note that the Kalman-
Takens filter output (third panel from the top) is able
to filter a significant amount of noise and reconstruct
the underlying system dynamics at level comparable to
the parametric filter (fourth from the top). Figure 1(b)
shows the spatiotemporal plot of absolute errors that
are greater than 5 for the (top) noisy signal, (middle)
Kalman-Takens output, and (bottom) parametric filter
output.

The key to this application of the Kalman-Takens fil-
ter is that the dynamical system is spatially localized
on short time scales. This allows us to learn short-term
forecasting models for each spatial location using only
its two spatial neighbors. These short-term forecasting
models appear to be low dimensional enough that they
can be learned from small training data sets with Tak-
ens based methods. Of course, not all dynamical systems
will have this localization property, in particular systems
with an infinite speed of propagation of information may
be problematic.

V. MODEL ERROR

So far, we have been working under the assumption
that while a set of noisy data exists from a system we
have no knowledge of the dynamical equations. To that
extent, we have shown the power of the Kalman-Takens
method in filtering the noisy observations allowing for
better predictions. Next, we ask an even more provoca-
tive question: Are there circumstances in which a system
with noisy observations can be predicted better without
a model than with a model?

This may not be possible if a perfect model is available.
However, in any typical filtering problem, the question
of model error becomes relevant: How accurately do the
dynamics of the model describe those of the observed
system? Moreover, if the model is slightly imperfect, how
is the filtering affected? Of course, model error is not
relevant to the Kalman-Takens method as it relies solely
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(a)

(b)

FIG. 8. Under situations of model error, the performance of
the parametric filter can degrade rapidly. In our examples,
this model error was simulated by perturbing the system pa-
rameters. Even under this relatively mild form of model er-
ror, it is evident that the parametric filter can have difficulty
in filtering a noisy observation. Error bars denote standard
error over 10 realizations. (a) Results for filtering the Lorenz-
63 x variable when the observations are perturbed by 60%
noise (dotted black curve indicates signal error). The perfor-
mance of the parametric filter (solid blue curve) under slight
model error becomes much worse than the Kalman-Takens
filter (solid red curve) which is completely robust to any form
of model error. (b) Results for filtering the x1 node in a
40 dimensional Lorenz-96 system when observations are per-
turbed by 60% noise. Only three data points shown for the
parametric filter because starting at 30% parameter pertur-
bation the filter diverges, once again showing the crippling
effect of model error on the performance of the parametric
filter.

on the observed data to nonparametrically advance the
dynamics.

We examined this question of model error when filter-
ing the x variable from Lorenz-63 and the x1 node from
a 40 dimensional Lorenz-96 system, each corrupted by
60% noise. A mild form of model error was simulated
in the corresponding parametric filters by perturbing the
model parameters. Specifically σ, ρ, β in the Lorenz-63
filter and the a parameter in the Lorenz-96 filter were
perturbed from their correct values.

Figure 8 shows the filtering results at increasing levels
of model error in Lorenz-63 in Figure 8(a) and Lorenz-96

in Figure 8(b). As the model error increases, the perfor-
mance of the parametric filter (solid blue curve) breaks
down and is unable to reduce the signal error (dotted
black curve). Of note, in Figure 8(b) there are only three
data points plotted for the parametric filter due to filter
divergence at higher levels of model error. The Kalman-
Takens filter (solid red curve) is robust to model error
and at higher levels of model error outperforms the para-
metric filter.

Of course, in a situation of incorrect parameters,
parameter-fitting methods could be used to correct the
parameters and reduce the error. For example, state-
augmentation methods based on Kalman filtering [47]
could be used. However, realistic model error often man-
ifests itself as missing variables in the model, a mismatch
between the governing physics of the system and those
described by the model or a completely unknown model.
The consideration of incorrect parameter values is an ex-
tremely mild form of model error since the underlying
equations used to generate the data match those of the
model used by the parametric filter. Our purpose in this
example is to compare the performance of the two filter-
ing approaches in the mildest of model error situations –
a more realistic comparison would cause the parametric
approach to fail even more substantially.

In many complex modeling problems, empirical obser-
vation leads to ad hoc identification of model error phe-
nomena. One example of this is the El Niño phenomenon,
an irregular variation in sea surface temperatures (SST)
in the eastern Pacific ocean. The El Niño phenomenon
is commonly described by various univariate indices [48],
which are time series that describe the SST field in a
particular region. El Niño was shown in [49] to be more
accurately forecast by a data-driven model than by re-
duced models used in operational forecasts at the time.
While the method of [49] forecasts the entire SST field,
comparable forecast skill for the El Niño index was ob-
tained in [41] using only the historical time series of the
one dimensional index.

The diffusion forecast of [41] uses training data to
represent an unknown stochastic dynamical system on
a custom basis of orthogonal functions, ϕj(xi) which
are defined on the attractor M of the dynamical sys-
tem described by the data {xi} ⊂ M ⊂ Rn. By rep-
resenting an initial probability density in this basis as
p(x, 0) =

∑
j cj(0)ϕj(xi), the diffusion forecast evolves

the density using a Markov process on the coefficients
cj(t + τ) =

∑
k Ajkck(τ). The key result of [41] is that

Ajk = 1
N

∑
i ϕk(xi)ϕj(xi+1) is an unbiased estimate of

the forward operator eτL for the unknown dynamical sys-
tem, where τ is the time step from xi to xi+1 and L is
the generator of the stochastic dynamical system. We
can then obtain the initial probability density from the
noisy observations using an iterative Bayesian filter in-
troduced in [19, 42]. These initial densities are projected
into the basis {ϕj}, the coefficients are evolved forward
in time, and the diffusion forecast is the mean of the
reconstructed forecast density.
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FIG. 9. The Kalman-Takens method was used to filter a set of
historical data from the El Niño 3.4 index. The resulting 14-
month lead nonparametric diffusion forecast using the filtered
historical data is shown (solid red curve). The forecasted
trajectory captures the general pattern of the true trajectory
(solid black curve).

The difficulty in applying data-driven methods such as
[41, 49] to empirically identified model error phenomena
such as El Niño is that it is extremely difficult for the
modeler to completely isolate the model error phenom-
ena. A trivial example which illustrates this difficulty is
that the El Niño indices contain seasonal variations which
are not part of the model error (these are empirically re-
moved by computing the monthly anomalies). Of course,
even if the seasonality could be perfectly removed, many
other aspects of the observed El Niño index are likely
to be artifacts of the projection from a high-dimensional
chaotic dynamical system to a 1-dimensional time series
[15]. As a result, we expect that the observed data con-
tains a dominant dynamical component which is possible
to probabilistically forecast, and this dominant compo-
nent is the target that the modeler is hoping to explain.
However, the observed data also contains unpredictable
‘noise’ components which result from the projection of
the high-dimensional dynamics, and are nonlinearly in-
tertwined with the dominant dynamical component that
we are interested in. This common scenario is the perfect
context for application of the Kalman-Takens filter to re-
move the unpredictable ‘noise’ component of the time
series. This will allow a method such as the diffusion
forecast to be trained on a cleaner time series which is
more focused on the desired feature.

To demonstrate this we examined the filter-forecast
problem in the context of the El Niño 3.4 index which
was also used in [41]. We used historical data from Jan-
uary 1950 to December 1999 to build our nonparametric
forecast. Prior to building the diffusion forecast model,
we first filter the data using the Kalman-Takens method
with d = 9, 5 neighbors and Q and R noise covariance
matrices tuned for optimal performance. Figure 9 com-
pares the 14-month diffusion forecast using the filtered
training data (solid red curve) to the true value of the El
Niño index at the corresponding time (solid black curve).
We note that our predictions follow the same general pat-
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FIG. 10. Results of the diffusion forecast when trained on
the unfiltered historical data (solid black curve) and Kalman-
Takens filtered data (solid red curve). (a) Both forecasts com-
pare favorably to the climatological error (dotted grey curve).
However, processing the historical data with the Kalman-
Takens filter results in improved forecast error. (b) Similarly,
forecast correlation is improved by filtering the data.

tern of the true trajectory. However, our real interest is
in determining if use of the Kalman-Takens filter results
in any improvement in forecasting capability. In Figure
10(a) we show the resulting forecast error and in Fig-
ure 10(b) the forecast correlation of the diffusion forecast
when the historical data is unfiltered (solid black curve)
and filtered using Kalman-Takens (solid red curve). We
observe that denoising the time series using the Kalman-
Takens filter improved the isolation of the predictable
component of the El Niño 3.4 index as shown by the im-
proved forecast skill of the diffusion forecast when trained
on the denoised data.

VI. DISCUSSION

The blending of the Takens embedding method with
Kalman filtering is designed to exploit the complemen-
tary strengths of the two methodologies. Under favorable
conditions, delay coordinate embedding can replace the
underlying evolution equations with no loss in accuracy,
and Kalman update provides a maximum likelihood es-
timate of the reconstructed state in the presence of ob-
servational noise. While the Kalman update equations
were proposed with the assumption that a known set of
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dynamical evolution equations were available, we show
here that they can be used to effectively reduce observa-
tional noise and increase predictability when using non-
parametric representations, such as those derived from
delay coordinates.

Perhaps more surprisingly, our results show that the
Kalman-Takens filter may outperform the standard,
parametric Kalman filter when model error is present.
The sensitivity of filter output to model error is difficult
to quantify; we show that in certain cases, even when
the model error is relatively small, the nonparametric
approach may be a welcome alternative.

The Kalman-Takens filter shares the limitations of all
Kalman filtering to the extent that it is limited to Gaus-
sian noise assumptions. For more general, multimodal
noise, a more complex type of data assimilation may be
necessary. In this article, we restricted the computational
examples to the EnKF form, but the fundamental strat-
egy is not restricted to any particular version of Kalman
filtering.

We expect this idea to be applicable to a wide range of
nonlinear systems that are measured with observational
noise. For forecasting, the data requirements are similar
to other applications of Takens’ theorem, in that enough
observations must be available to reconstruct the under-
lying dynamical attractor to a sufficient extent. However,
even if the system exhibits high-dimensional dynamics,
we show that filtering may still be possible if some spa-
tial localization can be done. Intuitively, this means that
on short time scales, local information is sufficient to de-
termine short-term dynamics. This may be used produc-
tively in geophysical applications where considerable pre-
processing is needed, as a kind of nonparametric reanal-
ysis. Such a reanalysis may reduce bias from incorrect
priors such as insufficient models or poorly constrained
parameters.
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Appendix: Adaptive updating of covariance
matrices.

Since we cannot assume that the noise covariance ma-
trices Q and R in (1) are known, we used a recently-
developed method for the adaptive fitting of these matri-
ces [9] as part of the filtering algorithm. The method uses
the innovations εk ≡ yk − y−k in observation space from
(2) to update the estimates Qk and Rk of the covariances
Q and R, respectively, at step k of the filter.

First, we construct linearizations of the dynamics
and the observation function that are reconstructed
from the ensembles used by the EnKF. Let x+i,k−1 ∼
N (x+k−1, P

+
k−1) be the analysis ensemble at step k − 1,

where the index 1 ≤ i ≤ E indicates the ensemble mem-
ber, and let x−i,k = F(x+i,k−1) be the forecast ensemble
which results from moving from tk−1 to tk using the
Takens embedding with initial condition x+i,k−1. Define

x−k = 1
E

∑E
i=1 x

−
ik, the matrix of analysis perturbations

X+
k−1 =

[
(x+1,k−1 − x

+
k−1)T , ..., (x+E,k−1 − x

+
k−1)T

]
and the matrix of forecast perturbations

X−k =
[
(x−1k − x

−
k )T , ..., (x−Ek − x

−
k )T

]
.

Then an approximation for the one-step dynamics is
given by the matrix Fk = X−k (X+

k−1)†, where † de-

notes the matrix pseudo-inverse. Similarly, let x̃−i,k ∼
N (x−k , P

−
k +Q) be the inflated forecast ensemble and let

z−i.k = h(x̃−i,k) be the projection of this ensemble into the

observation space. Then we can define Hk = Z−k (X̃−k )†,
which we think of as a local linearization of the observa-
tion function h, where

X̃−k =
[
(x̃−1k − x

−
k )T , ..., (x̃−Ek − x

−
k )T

]
Z−k =

[
(z−1k − z

−
k )T , ..., (z−Ek − z

−
k )T

]
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are the matrix of inflated forecast perturbations and the
matrix of observed forecast perturbations, respectively,

and where z−k = 1
E

∑E
i=1 z

−
ik.

After computing Fk and Hk, we use them to update
covariances Q and R as follows. We produce empirical
estimates Qek−1 and Rek−1 of Q and R based on the inno-
vations at time k and k − 1 using the formulas

P ek−1 = F−1k−1H
−1
k εkε

T
k−1H

−T
k−1 +Kk−1εk−1ε

T
k−1H

−T
k−1

Qek−1 = P ek−1 − Fk−2P ak−2FTk−2
Rek−1 = εk−1ε

T
k−1 −Hk−1P

f
k−1H

T
k−1. (6)

It was shown in [9] that P ek−1 is an empirical estimate of
the background covariance at time index k − 1. Notice
that this procedure requires us to save the linearizations
Fk−2, Fk−1, Hk−1, Hk, innovations εk−1, εk, and the anal-
ysis P ak−2 and Kalman gain matrix, Kk−1, from the k−1
and k − 2 steps of the EnKF.

The estimates Qek−1 and Rek−1 are low-rank, noisy esti-
mates of the covariance matrices Q and R that will make
the posterior estimate statistics from the filter consistent
with the empirical statistics in the sense of (6). In order

to form stable full-rank estimates of Q and R we assimi-
late these estimates using an exponential moving average
with window τ :

Qk = Qk−1 + (Qek−1 −Qk−1)/τ

Rk = Rk−1 + (Rek−1 −Rk−1)/τ. (7)

We interpret the moving average in (7) as a mov-
ing average filter that stabilizes the noisy empirical esti-
mates Qk and Rk. The stochastic nature of the estimate
of Qk can lead to excursions that fail to be symmet-
ric and/or positive definite, leading to instability in the
EnKF. While the matrix Qk is not changed, the matrix
used in the k-th step of the fter is a modified version of
Qk which is forced to be symmetric and positive defi-
nite by taking Q̃k = (Qk + QTk )/2 and then taking the

max of the eigenvalues of Q̃k with zero. Again, we em-
phasize that Q̃k is only used in the k-th filter step and
no ad-hoc corrections are made to the matrix Qk which
eventually stabilizes at a symmetric and positive definite
matrix naturally via the moving average in (7). These
ad-hoc corrections are only needed during the transient
period of the estimation of Q, in particular when the
trivial initialization Q1 = 0 is used.


