FACTS. Let S be a set of real numbers. Then

(i) $\sup S = \infty$ iff S is not bounded above, i.e. for any number $M > 0$, there exists $s \in S$ such that $s > M$.

(ii) $\sup S = a$ where $a \in \mathbb{R}$ iff a is an upper bound for S and for every $\varepsilon > 0$, there exists $s \in S$ such that $s > a - \varepsilon$.

"If (i) is just the definition of $\sup S = \infty$.

(\Rightarrow) By def., $\sup S = a$ is an upper bound for S.

For every $\varepsilon > 0$, since a is the LEAST upper bound, and $a - \varepsilon < a$, $a - \varepsilon$ cannot be a upper bound for S. So there exists $s \in S$ such that $s > a - \varepsilon$.

(\Leftarrow) Suppose a is an upper bound for S and a satisfies the condition. If $b < a$, let $b < a$, and let $\varepsilon = a - b > 0$. There exists $s \in S$ such that $s > a - \varepsilon = b$. So b cannot be an upper bound for S. So a is the LEAST upper bound.