Riemann Integrals

November 3, 2004

In what follows, \(\mu \) denotes the Lebesgue measure.

Definition 0.1 Let \(I = [a, b] \) be a closed interval in \(\mathbb{R} \). A finite ordered subset \(a_0 < a_1 < \cdots < a_n \) of \(I \) with \(a_0 = a, a_n = b \) is called a partition \(P \) of \(I \). The norm of \(P \), denoted by \(\| P \| \), is the maximum of \(a_i - a_{i-1}, i = 1, \ldots, n \).

Definition 0.2 Let \(I = [a, b] \) be a closed interval in \(\mathbb{R} \) and \(f : I \to \mathbb{R} \). \(f \) is said to be Riemann integrable on \(I \) if there exists a real number \(A \) satisfying the following condition: For every \(\epsilon > 0 \), there exists a \(\delta > 0 \) such that for any partition \(P : a_0 < \cdots < a_n \) with \(\| P \| < \delta \) and any points \(x_i, i = 1, \ldots, n \) with \(a_{i-1} \leq x_i \leq a_i \), one has

\[
|\sum_{i=1}^{n} f(x_i)(a_i - a_{i-1}) - A| < \epsilon.
\]

The number \(A \), denoted by \((R) \int_{a}^{b} f(x) \, dx \), is called the Riemann integral of \(f \) on \([a, b] \).

Proposition 0.1 Every Riemann integrable function on a closed interval \(I \) is bounded on \(I \).

Proof.
If \(f \) is unbounded on \(I \), then for any partition \(P : a_0 < \cdots < a_n \), \(f \) will be unbounded on one of the intervals \([a_{i-1}, a_i], i = 1, \ldots, n \). Then for any real number \(A, | \sum_{i=1}^{n} f(x_i)(a_i - a_{i-1}) - A| \) can be made arbitrarily large by appropriate choices of \(x_i, i = 1, \ldots, n \). Hence \(f \) cannot be Riemann integrable.

Let \(f \) be a bounded real-valued function defined on a closed interval \(I = [a, b] \). If \(P : a = a_0 < a_1 < \cdots < a_n = b \) is a partition of \(I \), define

\[
u(P, f) = \sum_{i=1}^{n} u_i \chi_{[a_{i-1}, a_i]}
\]
and

\[
l(P, f) = \sum_{i=1}^{n} l_i \chi_{[a_{i-1}, a_i]}
\]
Proof.

Let $\epsilon > 0$ be such that for any partition $P : a_0 < \cdots < a_n$ with $\|P\| < \delta$ and any points $x_i, i = 1, \ldots, n$ with $a_{i-1} \leq x_i \leq a_i$, one has

$$| \sum_{i=1}^{n} f(x_i)(a_i - a_{i-1}) - A | < \frac{\epsilon}{4}.$$

Now let $P : a_0 < \cdots < a_n$ be a partition with $\|P\| < \delta$. Choose points $x_i, y_i \in [a_{i-1}, a_i]$ such that $u_i - x_i < \frac{\epsilon}{4M}$ and $y_i - l_i < \frac{\epsilon}{4M}$. It then follows easily from the triangle inequality that $U(P, f) - L(P, f) < \epsilon$.

$(3) \Rightarrow (2)$: This follows immediately from $0 \leq U(f) - L(f) \leq U(P, f) - L(P, f)$ for any partition P.

$(2) \Rightarrow (3)$: If (b) holds, then for every $\epsilon > 0$, there exist partitions P and Q such that $U(P, f) - L(Q, f) < \epsilon$. Let $T = P \vee Q$. Then $U(T, f) - L(T, f) \leq U(P, f) - L(Q, f) < \epsilon$.

(3) and $(2) \Rightarrow (1)$: Let $A = U(f) = L(f)$. Let $\epsilon > 0$. Choose a partition P such that $U(P, f) - L(P, f) < \epsilon/2$. Let δ_i be the minimum lengths of the intervals determined by P and let $\delta = \min\{\delta_i, \frac{\epsilon}{2M}\}$, where n is the number of intervals determined by P and $M \neq 0$ is a bound for $|f(x)|, x \in I$. Let $Q : a = a_0 < \cdots < a_m = b$ be a partition of I with $\|Q\| < \delta$ and $a_{i-1} \leq x_i \leq a_i, i = 1, \ldots, m$. Let r be the Riemann sum $\sum_{i=1}^{m} f(x_i)(a_i - a_{i-1})$. Let $T = P \vee Q$. Each point in P is either an endpoint of an interval determined by Q or belongs to the interior of exactly one interval determined by Q. It follows that we need to choose at most $n-2$ points in addition to $\{x_i : i = 1, \cdots, m\}$ for the choice of points for a Riemann sum s for T. And $|r - s| \leq (n-2)M\delta < \epsilon/2$. It follows that

$$r - \frac{\epsilon}{2} - A \leq s - A \leq U(T, f) - A \leq U(P, f) - A \leq U(P, f) - L(P, f) < \frac{\epsilon}{2}$$

and

$$A - r - \frac{\epsilon}{2} \leq A - s \leq A - L(T, f) \leq A - L(P, f) \leq U(P, f) - L(P, f) < \frac{\epsilon}{2}$$

Lemma 0.1 Let f be a bounded real-valued function defined on a closed interval $I = [a, b]$. The following are equivalent:

1. f is Riemann integrable on I.
2. $U(f) = L(f)$.
3. For every $\epsilon > 0$, there exists a partition P of I such that $U(P, f) - L(P, f) < \epsilon$.

Proof.

$(1) \Rightarrow (3)$: Suppose f is Riemann integrable on I and let A be its Riemann integral. Let $\epsilon > 0$ be given. Let $\delta > 0$ be such that for any partition $P : a_0 < \cdots < a_n$ with $\|P\| < \delta$ and any points $x_i, i = 1, \ldots, n$ with $a_{i-1} \leq x_i \leq a_i$, one has

$$| \sum_{i=1}^{n} f(x_i)(a_i - a_{i-1}) - A | < \frac{\epsilon}{4}.$$
showing that $|r - A| < \epsilon$. ■

Corollary 0.1 Let f be a Riemann integrable function on $[a, b]$. Then for any partitions P and Q, $L(P, f) \leq (R) \int_{a}^{b} f(x) \, dx \leq U(Q, f)$ and $U(f) = L(f) = (R) \int_{a}^{b} f(x) \, dx$.

Lemma 0.2 Let f be a Riemann integrable function on $I = [a, b]$. If P_n is a sequence of partitions of I with $\|P_n\| \to 0$ as $n \to \infty$, then $\lim_n U(P_n, f) \to (R) \int_{a}^{b} f(x) \, dx$ and $\lim_n L(P_n, f) \to (R) \int_{a}^{b} f(x) \, dx$.

Proof. Let $A = (R) \int_{a}^{b} f(x) \, dx$. Let $\epsilon > 0$. There exists $\delta > 0$ such that for any partition $P : a_0 < \cdots < a_k$ with $\|P\| < \delta$ and any points $x_i, i = 1, \ldots, k$ with $a_{i-1} \leq x_i \leq a_i$, one has

$$|\sum_{i=1}^{n} f(x_i)(a_i - a_{i-1}) - A| < \frac{\epsilon}{2}$$

For such partition P, if one chooses $a_{i-1} \leq x_i \leq a_i$ such that $u_i - f(x_i) \frac{\epsilon}{2\|P\|}$, where $u_i = \sup\{f(x) : x \in [a_{i-1}, a_i]\}$, then $U(P, f) - \sum_{i=1}^{n} f(x_i)(a_i - a_{i-1}) < \frac{\epsilon}{2}$.

So $U(P, f) - A < \epsilon$. The proof for $L(P, f)$ is similar. ■

Proposition 0.2 If f is Riemann integrable on $I = [a, b]$, then it is also Lebesgue integrable on I and the two integrals are equal.

Proof. Let P_n be the partition of $[a, b]$ with each interval having length $\frac{b - a}{2^n}$. Using the notations preceding Lemma ??, let $u_n = u(P_n, f)$ and $l_n = l(P_n, f)$. Then u_n and l_n are bounded monotonic functions. Let u and l be the limits of u_n and l_n respectively. By Bounded Convergence Theorem and the preceding lemma, both u and l are Lebesgue integrable and $\int u \, d\mu = \int l \, d\mu = (R) \int_{a}^{b} f(x) \, dx$. Thus $\int u - l \, d\mu = 0$. Since $u \geq f \geq l$, we have $u - l = 0$ a.e. and hence $u = f = v$ a.e. Hence f is Lebesgue integrable and $\int f \, d\mu = \int u \, d\mu = (R) \int_{a}^{b} f(x) \, dx$. ■

Let X be a topological space and f be a function from X to \mathbb{R}. For each $x \in X$, the oscillation $\omega(x, f)$ of f at x is defined to be

$$\inf\{\text{diam } f(U) : U \text{ a neighborhood of } x\}$$

Proposition 0.3 The function $\omega(x, f)$ is upper semicontinuous. f is continuous at x if and only if $\omega(x, f) = 0$.

Theorem 0.1 A real function f on a closed interval I is Riemann integrable if and only if it is bounded on I and is continuous a.e. on I.
Proof.
Suppose \(f \) is Riemann integrable on \(I \). By Proposition 0.1, \(f \) is bounded. Let \(m \) be a positive integer and \(E_m = \{ x : \omega(x, f) \geq 1/m \} \). We need to show that \(\mu(E_m) = 0 \). Let \(\epsilon > 0 \) be given. By Lemma 0.1 there exists a partition \(P \) of \(I \) such that
\[
U(P, f) - L(P, f) < \frac{\epsilon}{m}.
\]

If an interval \(I_i \) determined by \(P \) contains some points of \(E_m \) in its interior, then \(u_i - l_i \geq 1/m \). It follows that if \(J_1, \ldots, J_k \) are such intervals determined by \(P \) then
\[
\frac{\epsilon}{m} > U(P, f) - L(P, f) \geq \frac{1}{m}(|J_1| + \cdots + |J_k|)
\]
and \(|J_1 + \cdots + |J_k| < \epsilon \). So \(E_m \) is a union of a subset of the finite set \(\{ a = a_0, a_1, \ldots, a_n = b \} \) and a set of measure \(< \epsilon \); so \(\mu(E_m) < \epsilon \). Since \(\epsilon > 0 \) is arbitrary, one has \(\mu(E_m) = 0 \). Since the set \(E = \{ x : f \text{ discontinuous at } x \} = \bigcup_{m=1}^{\infty} E_m \), one obtains \(\mu(E) = 0 \).

Next assume that \(f \) is bounded on \(I = [a, b] \) and is continuous a.e. on \(I \). Let \(\epsilon > 0 \) be given. Let \(m \) be a positive integer such that \(\frac{b-a}{m} < \frac{\epsilon}{4} \). Since the set \(E_m = \{ x : x \in I, \omega(x, f) \geq 1/m \} \) is of measure 0 there exist disjoint open intervals \(I_i, i = 1, 2, \ldots \) in \(\mathbb{R} \) such that \(E_m = \bigcup_{i=1}^{\infty} I_i \) and \(\sum_{i=1}^{\infty} |I_i| < \frac{\epsilon}{16m} \), where \(\mu \) is a bound for \(|f(x)|, x \in I \). Since \(E_m \) is compact (it is a closed subset of \(I \) by the upper semicontinuity of \(\omega \)), we may assume that \(E_m \subset \bigcup_{i=1}^{\infty} I_i \). \(I \setminus \bigcup_{i=1}^{\infty} I_i \) is a disjoint union of a finite number of closed subintervals \(J_1, \ldots, J_k \) of \(I \). Let \(J \) be one of these subinterval. For each \(x \in J \) since \(\omega(x, f) < 1/m \) there exists an open interval \(O_x \) containing \(x \) such that \(u - l < 1/m \) where \(u = \sup \{ f(y) : y \in O_x \cap J \} \) and \(l = \inf \{ f(y) : y \in O_x \cap J \} \). By the compactnes of \(J \), a finite number of these open intervals \(O_x \)‘s cover \(J \). The endpoints of these finite number of \(O_x \)’s together with those of \(J \) make a partition of \(J \). We do this for each \(J_i \)’s. Now these partitions together with endpoints of \(I_i, i = 1, \ldots, n \) and \(I \) make up a partition \(P \) for \(I \). It is quite obvious now that \(U(P, f) - L(P, f) < \epsilon \). Since \(\epsilon > 0 \) is arbitrary, \(f \) is Riemann integrable on \(I \) by Proposition ??.

Example 0.1 Show that the functions
\[
f(x) = \begin{cases}
x & x \text{ irrational} \\ p \sin \frac{1}{q} & x \text{ rational }, x = \frac{p}{q} \text{ in its lowest terms} \end{cases}
\]
and
\[
g(x) = \begin{cases}
0 & x = 0 \\ \sin \frac{1}{x} & 0 < x \leq 1
\end{cases}
\]
are Riemann integrable on \([0, 1]\).

Example 0.2 Show that the function
\[
h(x) = \begin{cases}
0 & x \text{ rational} \\ 1 & x \text{ irrational}
\end{cases}
\]
is Lebesgue integrable but not Riemann integrable on \([0, 1]\).