2. False. \(M \) can be any number greater than sup \(S \).

4. False. \(\frac{c_1}{n} \) is an example.

6. False. \(\frac{c_0}{n} \) is an example.

(Ex. Prove that \(\{ \frac{c_0}{n} \} \) is not contractive).

3. Let Comment (a): \(|a - b| \neq |a + b| \) generally.

 For example, \(a = 1, b = -1 \)
 \[|a - b| = 2 \neq |a + b| = 0 \]

Comment (b): \(|a - b| \neq |a| \) generally.

 For example, \(a = 2, b = -1 \)
 \[|a - b| = 3 \neq |a| = 2 \]

Comment (c): \(|a + b| \neq |a| \) generally.

 E.g. \(a = 2, b = -1 \)
 \[|a + b| = 1 \neq |a| = 2 \]

(a)

7. Note that in the definition of contractive map sequence \(0 \leq k < 1 \) is independent of \(n \). Otherwise the sequence \(\{ a_n \} \) need not converge. For example for

\[a_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n} \]

\[|a_{n+2} - a_{n+1}| = \frac{1}{n+2} \leq \frac{n+1}{n+2} \cdot \frac{1}{n+1} = \frac{n+1}{n+2} |a_{n+1} - a_n| \]

\[0 < \frac{n+1}{n+2} < 1 \]

But the sequence \(\{ a_n \} \) diverges to \(\infty \).