1. (1.6, # 30) Let $V = M_{2\times2}(F)$ and let W_1 and W_2 be the subsets of V as defined.

Proof: We show that W_1 is a subspace. Let $X, Y \in W_1$. Then say

$$X = \begin{pmatrix} a & b \\ c & a \end{pmatrix} \quad \text{and} \quad Y = \begin{pmatrix} e & f \\ g & e \end{pmatrix}$$

Then $X + Y = \begin{pmatrix} a + e & b + f \\ c + g & a + e \end{pmatrix}$ and since the entries on the main diagonal are equal, this matrix is in W_1. Similarly it is easy to see that αA is in W_1 for $\alpha \in F$. Hence W_1 is a subspace. The same thing works for W_2.

To find a basis for W_1, we note that a, b and c are free variables. So here is a candidate for a basis:

$$\left\{ u_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, u_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, u_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}.$$

Clearly $\begin{pmatrix} a & b \\ c & a \end{pmatrix} = au_1 + bu_2 + cu_3$. So the set spans W_1. To check linear independence, one writes:

$$\alpha_1 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \alpha_2 \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \alpha_3 \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \alpha_1 & \alpha_2 \\ \alpha_3 & \alpha_1 \end{pmatrix} = 0.$$

Clearly this implies that $\alpha_1 = \alpha_2 = \alpha_3 = 0$. Thus $\{u_1, u_2, u_3\}$ is a linearly independent set. Hence it is a basis. Thus $\dim(W_1) = 3$.

It is also direct to see that

$$\left\{ v_1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, v_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$$

is a basis of W_2. Thus W_2 has dimension 2 (there are two free variables in describing elements of W_2).

Since $W_1 + W_2$ is bigger than W_1, it follows that $\dim(W_1 + W_2) > 3$. But this is a subspace of V which has dimension 4. Hence $W_1 + W_2$ has dimension 4. Finally to describe the intersection of the two spaces, notice that for a matrix to be in the intersection entire on the main diagonal must be equal to be in W_1, while they must be 0 to also be in W_2. Therefore we have

$$W_1 \cap W_2 = \left\{ \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix} : a, b \in F \right\}.$$

Clearly there is only one free variable. Hence the space has dimension 1.
2. (Sec. 2.1, # 14a) The next solution is included just to show you how it is done. Let \(T : V \to W \) be linear. Show that \(T \) is injective iff \(T \) carries linearly independent sets to linearly independent sets.

Proof: Let \(T \) be injective. Let \(u_1, \ldots, u_m \) be a linearly independent set in \(V \). We want to show that \(T(u_1), \ldots, T(u_m) \) is a linearly independent set (in \(W \)). Suppose

\[
a_1 T(u_1) + \ldots + a_m T(u_m) = 0
\]

Then by the linearity of \(T \) we have \(T(a_1 u_1 + \ldots + a_m u_m) = 0 \). But \(T \) is injective, hence \(a_1 u_1 + \ldots + a_m u_m = 0 \). But this original set is linearly independent. Hence all \(a_i = 0 \) and we are done in this direction.

Suppose that \(T \) carries linearly independent sets to linearly independent sets. Show that \(T \) is injective. It suffices to show that if \(u \) is a nonzero vector in \(V \), then \(T(u) \neq 0 \). But any set with one nonzero vector is a linearly independent set. Thus by assumption, \(\{T(u)\} \) is a linearly independent set and so \(T(u) \neq 0 \). This proves that the null space of \(T \) is trivial.

(Sec. 2.1, # 14b) Suppose that \(T \) is one-to-one and that \(S \) is a subset of \(V \). Prove that \(S \) is linearly independent iff \(T(S) \) is linearly independent.

Proof: Suppose that \(T \) is one-to-one. Let \(S = \{u_1, u_2, \ldots, u_n\} \) be a linearly independent set in \(V \). Then by part (a) above, \(T(S) \) is linearly independent. Conversely, assume that \(T(S) \) is linearly independent. We want to show that \(S \) is linearly independent (we don’t need the fact that \(T \) is one-to-one for this). Suppose that

\[
a_1 u_1 + a_2 u_2 + \ldots + a_n u_n = 0.
\]

Then \(0 = T(a_1 u_1 + a_2 u_2 + \ldots + a_n u_n) = a_1 T(u_1) + a_2 T(u_2) + \ldots + a_n T(u_n) \). But by assumption the set \(\{T(u_i)\}_{i=1,2,\ldots,n} \) is a linearly independent set. Hence \(a_1 = a_2 = \ldots = a_n = 0 \). Thus \(S \) is a linearly independent set.

3. (Sec. 2.1, # 17) Let \(V \) and \(W \) be finite dimensional vector spaces and let \(T : V \to W \) be linear.

(a) Prove that if \(\dim(V) < \dim(W) \), then \(T \) cannot be onto

(b) Prove that if \(\dim(V) > \dim(W) \), then \(T \) cannot be one-to-one.

Proof: The result we will use for both parts is Theorem 2.3 which states that \(\dim(V) = \text{nullity}(T) + \text{rank}(T) \). Also note that for any transformation \(T \), it is onto iff \(\text{rank}(T) = \dim(W) \) and it is one-to-one iff \(\text{nullity}(T) = 0 \).

(a) Suppose that \(\dim(V) < \dim(W) \). Note that by Theorem 2.3, \(\text{rank}(T) \leq \dim(V) \) for any linear transformation, while by assumption \(\dim(V) < \dim(W) \). Hence \(\text{rank}(T) < \dim(W) \) and so \(T \) is not onto.

(b) By the theorem we have \(\dim(V) = \text{nullity}(T) + \text{rank}(T) \) or \(\dim(V) - \text{nullity}(T) = \text{rank}(T) \). Since the range space is a subspace of \(W \), we have that \(\text{rank}(T) \leq \dim(W) < \dim(V) \). Thus \(\text{nullity}(T) > 0 \) and so \(T \) is not one-to-one.