The DHT in two dimensions.

(1) Here instead of our initial data being a vector $c_0(k)$, it is a matrix $c_0(n,m)$. The first step of the one-dimensional DHT is applied first to each row of the matrix, then to each column of the resulting matrix. (Or equivalently, first to each column then to each row).

This amounts to a *four-way splitting* of the initial matrix c_0 into four submatrices each of size $1/4$ of the original matrix containing the *approximation coefficients*, the *horizontal detail coefficients*, the *vertical detail coefficients*, and the *diagonal detail coefficients*.

(2) Let’s see how MATLAB does it.

```
>> help dwt2

DWT2 Single-level discrete 2-D wavelet transform.
DWT2 performs a single-level 2-D wavelet decomposition with respect to either a particular wavelet ('wname', see WFILTERS for more information) or particular wavelet filters (Lo_D and Hi_D) you specify.

[CA,CH,CV,CD] = DWT2(X,'wname') computes the approximation coefficients matrix CA and details coefficients matrices CH, CV, CD, obtained by a wavelet decomposition of the input matrix X.
'wname' is a string containing the wavelet name.
```
(3) Small MATLAB example.

```matlab
>> c0=ones(8,8)
c0 =
     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1
     1     1     1     1     1     1     1     1
>> [c1 d11 d12 d13]=dwt2(c0,’haar’)
c1 =
     2.0000   2.0000   2.0000   2.0000
     2.0000   2.0000   2.0000   2.0000
     2.0000   2.0000   2.0000   2.0000
     2.0000   2.0000   2.0000   2.0000
d11 =
     0     0     0     0
     0     0     0     0
     0     0     0     0
     0     0     0     0
d12 =
     0     0     0     0
     0     0     0     0
     0     0     0     0
     0     0     0     0
d13 =
     0     0     0     0
     0     0     0     0
     0     0     0     0
     0     0     0     0
```
>> c0=[1 1 1 1 1 1 1
 -1 -1 -1 -1 -1 -1 -1
 1 1 1 1 1 1 1
 -1 -1 -1 -1 -1 -1 -1
 1 1 1 1 1 1 1
 -1 -1 -1 -1 -1 -1 -1
 1 1 1 1 1 1 1
 -1 -1 -1 -1 -1 -1 -1];
>> [c1 d11 d12 d13]=dwt2(c0,’haar’)
c1 =
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
d11 =
 2.0000 2.0000 2.0000 2.0000
 2.0000 2.0000 2.0000 2.0000
 2.0000 2.0000 2.0000 2.0000
 2.0000 2.0000 2.0000 2.0000
d12 =
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
d13 =
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0

The submatrix d11 contains the horizontal edges of c0.
>> c0=[1 -1 1 -1 1 -1 1 -1
 1 -1 1 -1 1 -1 1 -1
 1 -1 1 -1 1 -1 1 -1
 1 -1 1 -1 1 -1 1 -1
 1 -1 1 -1 1 -1 1 -1
 1 -1 1 -1 1 -1 1 -1
 1 -1 1 -1 1 -1 1 -1
 1 -1 1 -1 1 -1 1 -1];
>> [c1 d11 d12 d13]=dwt2(c0,'haar')

 c1 =
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0

 d11 =
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0

 d12 =
 2.0000 2.0000 2.0000 2.0000
 2.0000 2.0000 2.0000 2.0000
 2.0000 2.0000 2.0000 2.0000
 2.0000 2.0000 2.0000 2.0000

 d13 =
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0

The submatrix d12 contains the vertical edges of c0.
>> c0=[1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 -1
 -1 1 -1 1 1 -1 -1 -1
 1 -1 1 -1 1 -1 1 -1
 -1 1 -1 1 1 -1 -1 -1
 1 -1 1 -1 1 -1 -1 1
 -1 1 -1 1 1 -1 -1 -1
 1 -1 1 -1 1 -1 -1 -1
 -1 1 -1 1 1 -1 -1 -1
 1 -1 1 -1 1 -1 -1 -1
 -1 1 -1 1 1 -1 -1 -1];
>> [c1 d11 d12 d13]=dwt2(c0,’haar’)
c1 =
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
d11 =
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
d12 =
 0 0 0 0
 0 0 0 0
 0 0 0 0
 0 0 0 0
d13 =
 2.0000 2.0000 2.0000 2.0000
 2.0000 2.0000 2.0000 2.0000
 2.0000 2.0000 2.0000 2.0000
 2.0000 2.0000 2.0000 2.0000

The submatrix d13 contains the diagonal edges of c0.
(4) More MATLAB commands.

>> help wavedec2

WAVEDEC2 Multilevel 2-D wavelet decomposition.

[C,S] = WAVEDEC2(X,N,'wname') returns the wavelet decomposition of the matrix X at level N, using the wavelet named in string 'wname' (see WFILTERS). Outputs are the decomposition vector C and the corresponding bookkeeping matrix S.

N must be a strictly positive integer (see WMAXLEV).

The output wavelet 2-D decomposition structure [C,S] contains the wavelet decomposition vector C and the corresponding bookkeeping matrix S. Vector C is organized as:

\[
C = \begin{bmatrix}
A(N) & H(N) & V(N) & D(N) & \\
H(N-1) & V(N-1) & D(N-1) & \ldots & H(1) & V(1) & D(1)
\end{bmatrix}
\]

where A, H, V, D, are row vectors such that:

A = approximation coefficients,

H = hori. detail coefficients,

V = vert. detail coefficients,

D = diag. detail coefficients,

each vector is the vector column-wise storage of a matrix.

Matrix S is such that:

S(1,:) = size of app. coef.(N)
S(i,:) = size of det. coef.(N-i+2) for i = 2,...,N+1
and S(N+2,:) = size(X).
WRCOEF2 Reconstruct single branch from 2-D wavelet coefficients. WRCOEF2 reconstructs the coefficients of an image.

X = WRCOEF2('type',C,S,'wname',N) computes the matrix of reconstructed coefficients of level N, based on the wavelet decomposition structure [C,S] (see WAVEDEC2 for more information).

'wname' is a string containing the name of the wavelet. If 'type' = 'a', approximation coefficients are reconstructed otherwise if 'type' = 'h' ('v' or 'd', respectively), horizontal (vertical or diagonal, respectively) detail coefficients are reconstructed.

Level N must be an integer such that:
0 <= N <= size(S,1)-2 if 'type' = 'a' and such that
1 <= N <= size(S,1)-2 if 'type' = 'h', 'v'or 'd'.

X = WRCOEF2('type',C,S,'wname') or
X = WRCOEF2('type',C,S,Lo_R,Hi_R) reconstruct coefficients of maximum level N = size(S,1)-2.
>> help appcoef2

APPCOEF2 Extract 2-D approximation coefficients.
APPCOEF2 computes the approximation coefficients of a
two-dimensional signal.

A = APPCOEF2(C,S,'wname',N) computes the approximation
coefficients at level N using the wavelet decomposition
structure [C,S] (see WAVEDEC2).
'wname' is a string containing the wavelet name.
Level N must be an integer such that 0 <= N <= size(S,1)-2.

A = APPCOEF2(C,S,'wname') extracts the approximation
coefficients at the last level size(S,1)-2.

>> help detcoef2

DETCOEF2 Extract 2-D detail coefficients.
D = DETCOEF2(O,C,S,N) extracts from the wavelet
decomposition structure [C,S], the horizontal, vertical
or diagonal detail coefficients for O = 'h'
(or 'v' or 'd', respectively), at level N. N must
be an integer such that 1 <= N <= size(S,1)-2.
See WAVEDEC2 for more information on C and S.

[H,V,D] = DETCOEF2('all',C,S,N) returns the horizontal H,
vertical V, and diagonal D detail coefficients at level N.

D = DETCOEF2('compact',C,S,N) returns the detail
coefficients at level N, stored row-wise.

DETCOEF2('a',C,S,N) is equivalent to DETCOEF2('all',C,S,N).
DETCOEF2('c',C,S,N) is equivalent to DETCOEF2('compact',C,S,N).