Multiresolution Analysis.

A new look at the Haar system.

Definition. For each \(j \in \mathbb{Z} \), define the *approximation operator* \(P_j \) on \(L^2(\mathbb{R}) \), by

\[
P_j f(x) = \sum_k \langle f, p_{j,k} \rangle p_{j,k}(x).
\]

Define the *approximation space* \(V_j \) by

\[
V_j = \text{span}\{p_{j,k}(x)\}_{k \in \mathbb{Z}}.
\]

Since \(\{p_{j,k}(x): k \in \mathbb{Z}\} \) is an orthonormal system on \(\mathbb{R} \), \(P_j f(x) \) is the function in \(V_j \) best approximating \(f(x) \) in the \(L^2 \) sense.

Define the *detail operator* \(Q_j \) on \(L^2(\mathbb{R}) \), by

\[
Q_j f(x) = P_{j+1} f(x) - P_j f(x).
\]

Define the *wavelet space* \(W_j \) by

\[
W_j = \text{span}\{h_{j,k}(x)\}_{k \in \mathbb{Z}}.
\]

Since \(\{h_{j,k}(x)\}_{k \in \mathbb{Z}} \) is an orthonormal system on \(\mathbb{R} \), \(Q_j f(x) \) is the function in \(W_j \) best approximating \(f(x) \) in the \(L^2 \) sense.
Theorem. (a) The scale J Haar system on \mathbb{R} is a complete orthonormal system on \mathbb{R}. (The scale J Haar system is

$$\{p_{J,k}(x), h_{j,k}(x): j \geq J; k \in \mathbb{Z}\}.$$

(b) The Haar system is a complete orthonormal system on \mathbb{R}. (The Haar system is

$$\{h_{j,k}(x): j k \in \mathbb{Z}\}).$$

Proving that the Haar system is a complete orthonormal system on \mathbb{R} amounts to showing the following.

Theorem. (a) \(\lim_{j \to \infty} \|P_j f - f\|_2 = 0\), and

(b) \(\lim_{j \to \infty} \|P_j f\|_2 = 0\).

(c) Given \(f \in C^0_c(\mathbb{R})\),

$$Q_j f(x) = \sum_k \langle f, h_{j,k} \rangle h_{j,k}(x).$$
Definition. A *multiresolution analysis* on \mathbb{R} is a sequence of subspaces $\{V_j\}_{j \in \mathbb{Z}} \subseteq L^2(\mathbb{R})$ satisfying:

(a) For all $j \in \mathbb{Z}$, $V_j \subseteq V_{j+1}$.

(b) $\overline{\text{span}}\{V_j\}_{j \in \mathbb{Z}} = L^2(\mathbb{R})$. That is, given $f \in L^2(\mathbb{R})$ and $\epsilon > 0$, there is a $j \in \mathbb{Z}$ and a function $g(x) \in V_j$ such that $\|f - g\|_2 < \epsilon$.

(c) $\cap_{j \in \mathbb{Z}} V_j = \{0\}$.

(d) A function $f(x) \in V_0$ if and only if $D_{2j}f(x) \in V_j$.

(e) There exists a function $\varphi(x)$, L^2 on \mathbb{R}, called the *scaling function* such that the collection $\{T_n\varphi(x)\}$ is an orthonormal system of translates and

$$V_0 = \overline{\text{span}}\{T_n\varphi(x)\}.$$
Examples of MRA.

Note: In order to define an MRA it is sufficient to either (1) specify V_0 then show that there is a scaling function $\varphi(x)$ such that $V_0 = \text{span}\{T_n\varphi\}$, or (2) specify the scaling function $\varphi(x)$ and define $V_0 = \text{span}\{T_n\varphi\}$.

(a) The Haar MRA. $\varphi(x) = p_{0,0}(x) = 1_{[0,1]}(x)$.

(b) The Bandlimited MRA. V_0 is the set of all functions f bandlimited to $[-1/2, 1/2]$.
(c) The Meyer MRA.
Given \(k \in \mathbb{N} \) (or \(k = \infty \)), a function \(b(x) \) is a \(C^k \) bell function over \([-1/2, 1/2]\) provided that \(b(x) \) is \(C^k \) on \(\mathbb{R} \) and satisfies the following conditions:

(a) \(b(x) = 1 \) if \(|x| \leq 1/3 \),
(b) \(b(x) = 0 \) if \(|x| > 2/3 \),
(c) \(0 \leq b(x) \leq 1 \) for all \(x \in \mathbb{R} \), and
(d) \(\sum_n |b(x + n)|^2 \equiv 1 \).

Now take \(\varphi(x) \) to be the inverse Fourier transform of a \(C^k \) bell-function.
(d) **The Piecewise Linear MRA.** Let V_0 consist of all functions $f \in L^2(\mathbb{R}) \cap C^0(\mathbb{R})$ linear on the intervals $I_{0,k}$, for $k \in \mathbb{Z}$. Think of this as a stepped-up version of the Haar MRA.

Define the function $\varphi(x) = (1 - |x|) 1_{[-1,1]}(x)$.

Lemma. If $f \in V_0$ then $f(x) = \sum_n f(n) T_n \varphi(x)$ pointwise and in $L^2(\mathbb{R})$.

Lemma. $V_0 = \overline{\text{span}} T_n \varphi$.

Theorem. There is a function $\tilde{\varphi}(x)$, L^2 on \mathbb{R}, such that:
(a) $\{ T_n \tilde{\varphi}(x) \}$ is an orthonormal system of translates, and
(b) $V_0 = \overline{\text{span}} \{ T_n \tilde{\varphi}(x) \}$.
Some results about collections of the form \(\{T_{n}g\}_{n \in \mathbb{Z}} \).

(a) If \(\{T_{n}g\}_{n \in \mathbb{Z}} \) is an orthonormal system on \(\mathbb{R} \), then \(f \in \overline{\text{span}}T_{n}g \) if and only if

\[
 f(x) = \sum_{n} \langle f, T_{n}g \rangle T_{n}g(x)
\]

in \(L^{2} \) if and only if there is a Fourier series \(\hat{c}(\gamma) \) with period 1 such that

\[
 \hat{f}(\gamma) = \hat{g}(\gamma) \hat{c}(\gamma).
\]

(b) The collection \(\{T_{n}g(x)\} \) is an orthonormal system of translates if and only if for all \(\gamma \in \mathbb{R} \),

\[
 \sum_{n} |\hat{g}(\gamma + n)|^{2} = 1.
\]

(c) If for some \(0 < A < B \)

\[
 A \leq \sum_{n} |\hat{g}(\gamma + n)|^{2} \leq B
\]

then there is a function \(\tilde{g} \in L^{2}(\mathbb{R}) \), such that:

(i) \(\{T_{n}\tilde{g}(x)\} \) is an orthonormal system of translates and

(ii) \(\overline{\text{span}}\{T_{n}g(x)\} = \overline{\text{span}}\{T_{n}\tilde{g}(x)\} \).
Wavelet basis from MRA

Theorem. (The two-scale relation) There exists \(\{h(k)\} \in \ell^2 \) such that

\[
\varphi(x) = \sum_k h(k) 2^{1/2} \varphi(2x - k)
\]

in \(L^2 \) on \(\mathbb{R} \). Moreover, we may write

\[
\hat{\varphi}(\gamma) = m_0(\gamma/2) \hat{\varphi}(\gamma/2),
\]

where

\[
m_0(\gamma) = \frac{1}{\sqrt{2}} \sum_k h(k) e^{-2\pi ik\gamma}.
\]
Theorem. (The wavelet ”recipe”) Let \(\{V_j\} \) be an MRA with scaling function \(\varphi(x) \) and scaling filter \(h(k) \). Define the wavelet filter \(g(k) \) by

\[
g(k) = (-1)^k h(1 - k)
\]

and the wavelet \(\psi(x) \) by

\[
\psi(x) = \sum_k g(k) 2^{1/2} \varphi(2x - k).
\]

Then

\[
\{\psi_{j,k}(x)\}_{j,k \in \mathbb{Z}}
\]

is a wavelet orthonormal basis on \(\mathbb{R} \).

Alternatively, given any \(J \in \mathbb{Z} \),

\[
\{\varphi_{J,k}(x)\}_{k \in \mathbb{Z}} \cup \{\psi_{j,k}(x)\}_{j,k \in \mathbb{Z}}
\]

is an orthonormal basis on \(\mathbb{R} \).

Remark. Taking the Fourier transform gives that

\[
\hat{\psi}(\gamma) = m_1(\gamma/2) \hat{\varphi}(\gamma/2),
\]

where

\[
m_1(\gamma) = e^{-2\pi i (\gamma + 1/2)} m_0(\gamma + 1/2),
\]
(a) The Haar wavelet. In this case, we can compute the scaling and wavelet filters directly.

$$\varphi(x) = \varphi(2x) + \varphi(2x-1) = \frac{1}{\sqrt{2}} \varphi_{1,0}(x) + \frac{1}{\sqrt{2}} \varphi_{1,1}(x).$$

Therefore,

$$h(n) = \begin{cases} \frac{1}{\sqrt{2}} & \text{if } n = 0, 1, \\ 0 & \text{if } n \neq 0, 1, \end{cases}$$

Therefore,

$$g(n) = \begin{cases} \frac{1}{\sqrt{2}} & \text{if } n = 0, \\ -\frac{1}{\sqrt{2}} & \text{if } n = 1, \\ 0 & \text{if } n \neq 0, 1. \end{cases}$$

and

$$\psi(x) = \frac{1}{\sqrt{2}} \varphi_{1,0}(x) - \frac{1}{\sqrt{2}} \varphi_{1,1}(x)$$

$$= \varphi(2x) - \varphi(2x-1)$$

$$= 1_{[0,1/2)}(x) - 1_{[1/2,1)}(x).$$
(b) The Bandlimited wavelet. Here it is more convenient to work on the transform side. Recall that $\hat{\varphi}(\gamma) = 1_{[-1/2,1/2]}(\gamma)$. Since $\hat{\varphi}(\gamma/2) = 1_{[-1,1]}(\gamma)$, it follows that

$$\varphi(\gamma) = m_0(\gamma/2) \varphi(\gamma/2),$$

where $m_0(\gamma)$ is the period 1 extension of $1_{[-1/4,1/4]}(\gamma)$.

Thus, $m_1(\gamma)$ is the period 1 extension of the function

$$e^{-2\pi i (\gamma+1/2)} (1_{[-1/2,-1/4]}(\gamma) + 1_{[1/4,1/2]}(\gamma))$$

so that

$$\hat{\psi}(\gamma) = m_1(\gamma/2) \hat{\varphi}(\gamma/2)$$

$$= -e^{-\pi i \gamma} (1_{[-1,-1/2]}(\gamma) + 1_{[1/2,1]}(\gamma)).$$

By taking the inverse Fourier transform,

$$\psi(x) = \frac{\sin(2\pi x) - \cos(\pi x)}{\pi(x - 1/2)}$$

$$= \frac{\sin \pi(x - 1/2)}{\pi(x - 1/2)} (1 - 2 \sin \pi x).$$
(c) The Meyer wavelet. Recall that

$$\hat{\varphi}(\gamma) = \begin{cases}
0 & \text{if } |\gamma| \geq 2/3, \\
1 & \text{if } |\gamma| \leq 1/3, \\
s(\gamma + 1/2) & \text{if } \gamma \in (1/3, 2/3), \\
c(\gamma - 1/2) & \text{if } \gamma \in (-2/3, -1/3),
\end{cases}$$

Therefore, $$\hat{\varphi}(\gamma) = m_0(\gamma/2) \hat{\varphi}(\gamma/2),$$ where $$m_0(\gamma)$$ is the period 1 extension of the function $$\hat{\varphi}(2\gamma) 1_{[-1/2,1/2]}(\gamma).$$

$$\psi(x)$$ is defined by

$$\hat{\psi}(\gamma) = -e^{-\pi i \gamma} m_0(\gamma/2 + 1/2) \hat{\varphi}(\gamma/2)$$

and

$$\hat{\psi}(\gamma) = \begin{cases}
0 & \text{if } |\gamma| \leq 1/3 \text{ or } |\gamma| \geq 4/3, \\
s(\gamma - 1/2) & \text{if } \gamma \in (1/3, 2/3], \\
c(\gamma/2 - 1/2) & \text{if } \gamma \in (2/3, 4/3), \\
s(\gamma/2 + 1/2) & \text{if } \gamma \in (-4/3, -2/3), \\
c(\gamma + 1/2) & \text{if } \gamma \in [-2/3, -1/3).
\end{cases}$$
(d) The Piecewise Linear wavelet. Recall that

\[\hat{\phi}(\gamma) = \hat{\phi}(\gamma) \Phi(\gamma) = \frac{\sqrt{3} \hat{\phi}(\gamma)}{(1 + 2 \cos^2(\pi \gamma))^{1/2}}, \]

where \(\varphi(x) = (1 - |x|) 1_{[-1,1]}(x) \) and

\[\Phi(\gamma) = (\sum_n |\hat{\varphi}(\gamma + n)|^2)^{-1/2}. \]

Also,

\[\hat{\varphi}(\gamma) = \cos^2(\pi \gamma/2) \varphi(\gamma/2). \]

Therefore,

\[\hat{\varphi}(\gamma) = \cos^2(\pi \gamma/2) \left(\frac{1 + 2 \cos^2(\pi \gamma/2)}{1 + 2 \cos^2(\pi \gamma)} \right)^{1/2} \hat{\varphi}(\gamma/2), \]

so that

\[m_0(\gamma) = \cos^2(\pi \gamma) \left(\frac{1 + 2 \cos^2(\pi \gamma)}{1 + 2 \cos^2(2\pi \gamma)} \right)^{1/2}. \]
Therefore,

\[m_1(\gamma) = -e^{-2\pi i \gamma} \sin^2(\pi \gamma) \left(\frac{1 + 2 \sin^2(\pi \gamma)}{1 + 2 \cos^2(2\pi \gamma)} \right)^{1/2}. \]

and

\[\hat{\psi}(\gamma) = d(\gamma/2) \hat{\varphi}(\gamma/2). \]

where

\[d(\gamma) = -\sqrt{3} e^{-\pi i \gamma} \sin^2(\pi \gamma/2) \]

\[\times \left(\frac{1 + 2 \sin^2(\pi \gamma)}{(1 + 2 \cos^2(2\pi \gamma))(1 + 2 \cos^2(\pi \gamma))} \right)^{1/2} \]

Therefore

\[\psi(x) = \sum_n d(n) \varphi_{1,n}(x), \]

where \(d(n) \) is the \(n^{th} \) Fourier coefficient of \(d(\gamma) \).