MATH 213 – 17 JUNE 2004 – EXAM 1

Answer each of the following questions. Show all work, as partial credit may be given.

1. (6 pts. each) Let \(P = (-1, 2, 2) \), \(Q = (1, 0, 1) \) and \(R = (3, 1, -4) \).

 (a) Find the vectors \(\overrightarrow{PQ} \) and \(\overrightarrow{PR} \).

 (b) Find parametric equations for the line containing the points \(Q \) and \(R \).

 (c) Find the area of the triangle formed by the points \(P, Q, \) and \(R \).

 (d) Find the equation of the plane containing the points \(P, Q, \) and \(R \). Write the equation in the form \(Ax + By + Cz = D \) for appropriate constants \(A, B, C, \) and \(D \).

2. (6 pts. each) Let \(u = \mathbf{i} + \mathbf{k} \), \(v = \mathbf{i} + 2\mathbf{j} \), and \(w = 6\mathbf{i} - \mathbf{j} - 3\mathbf{k} \).

 (a) Find the angle between \(u \) and \(v \) correct to the nearest tenth of a degree or hundredth of a radian. Please indicate whether your answer is in degrees or radians.

 (b) Write \(u \) as the sum of a vector parallel to \(v \) and a vector perpendicular to \(v \).

 (c) Find the triple scalar product \((u \times v) \cdot w \).

3. (6 pts. each) Suppose that \(r(t) = (t + 1)\mathbf{i} + t \cos(t)\mathbf{j} + (t^3 + t)\mathbf{k} \) represents the position of a particle at time \(t \).

 (a) Find the particle’s velocity and acceleration vectors.

 (b) Find the speed and direction of motion of the particle at \(t = 0 \).