Answer all of the following questions in the space provided. Show all work as partial credit may be given. Answers without justification, even if they are correct, will earn no credit.

1. (4 pts.) Evaluate the line integral $\int_C xy \, dx + x \, dy$ where C is the curve parametrized by $x = 2t + 1, y = 3t$ for $0 \leq t \leq 1$.

 \[\int_0^1 ((2t + 1)(3t)(2) + (2t + 1)(3)) \, dt \]

 \[= \int_0^1 (12t^2 + 12t + 3) \, dt = 4t^3 + 6t^2 + 3t \bigg|_0^1 \]

 \[= 4 + 6 + 3 = 13 \]

2. (4 pts. each) Consider the planar vector field $\mathbf{F} = xy \mathbf{i} + x^2 \mathbf{j}$ and the curve C given by the vector valued function $\mathbf{r}(t) = 3t^2 \mathbf{i} + 2t \mathbf{j}$, $0 \leq t \leq 1$.

 (a) Calculate the flow of \mathbf{F} along C, that is, find $\int_C \mathbf{F} \cdot T \, ds$.

 \[= \int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^1 [(3t^2)(2t) \mathbf{i} + 9t^4 \mathbf{j}] \cdot [6t \mathbf{i} + 2 \mathbf{j}] \, dt \]

 \[= \int_0^1 36t^4 + 18t^4 \, dt = \int_0^1 54t^4 \, dt = \frac{54}{5} t^5 \bigg|_0^1 = \frac{54}{5} \]

 (b) Calculate the flux of \mathbf{F} across C, that is, find $\int_C \mathbf{F} \cdot \mathbf{n} \, ds$.

 \[= \int_0^1 [(3t^2)(2t) \mathbf{i} + 9t^4 \mathbf{j}] \cdot [2 \mathbf{i} - 6t \mathbf{j}] \, dt \]

 \[= \int_0^1 12t^3 - 54t^5 \, dt = 3t^4 - 9t^6 \bigg|_0^1 = -6 \]