Answer each of the following questions. Show all work, as partial credit may be given.

1. (12 pts.) Find all critical points of the function \(f(x, y) = 2x^2 + 8xy + y^4 \). (Hint: There are three.)

2. (12 pts.) Given that the function \(f(x, y) = 3x^2y + y^3 - 3x^2 - 3y^2 + 2 \) has critical points \((0, 0), (0, 2), (1, 1)\) and \((-1, 1)\), identify each as a local maximum, local minimum, or saddle point.

3. (15 pts. each) Evaluate the following iterated integrals.

 (a) \(\int_0^1 \int_x^{3-x} (x + y)^2 \, dy \, dx \)

 (b) \(\int_0^1 \int_y^{2y} \int_0^{2y-z} z \, dx \, dz \, dy \)

4. (12 pts.) Evaluate the integral \(\iint_D x \, dA \) where \(D \) is the region in the first quadrant bounded by the circle \(x^2 + y^2 = 4 \) after changing the integral into polar coordinates.

5. (12 pts.) Change the order of integration in the integral \(\int_0^2 \int_0^{4-2x} xy \, dy \, dx \). DO NOT EVALUATE.

6. (12 pts.) Write \(\iiint_E xyz \, dV \) as an iterated triple integral in the order \(dx \, dy \, dz \) where \(E \) is bounded by the coordinate planes and the plane \(2x + y + z = 4 \). DO NOT EVALUATE.

7. (12 pts.) Find the center of mass of the region in the first quadrant bounded by the lines \(y = 0, x = 2, \) and the curve \(y = x^2 \) when the density is given by \(\delta(x, y) = xy \). (Hint: The “total mass” of the region is \(16/3 \)).