Answer each of the following questions. Show all work, as partial credit may be given.

1. (6 pts. each) Let \(a = 6\mathbf{i} - 5\mathbf{j} + \mathbf{k} \), \(b = \mathbf{i} + \mathbf{k} \), and \(c = \mathbf{i} + \mathbf{j} - 3\mathbf{k} \). Find each of the following.

 (a) The angle between \(a \) and \(b \) correctly rounded to the nearest degree.

 (b) A unit vector perpendicular to both \(b \) and \(c \).

 (c) The vector projection of \(a \) along \(b \).

 (d) Parametric equations for the line through the point \((6, -5, 1)\) parallel to \(c \).

 (e) The equation of the plane containing the point \((1, 1, -3)\) with normal vector \(a \). Put your answer in the form \(Ax + By + Cz = D \).

 (f) The volume of the parallelepiped formed by the vectors \(a \), \(b \), and \(c \). (Hint: This is \(|a \cdot (b \times c)|.|\))

2. Let \(A = (2, 4, 5) \), \(B = (0, 0, 1) \) and \(C = (3, -1, 2) \).

 (a) (10 pts.) Find an equation for the plane containing the points \(A \), \(B \) and \(C \). Put your answer in the form \(Ax + By + Cz = D \).

 (b) (5 pts.) Find the area of the triangle with vertices \(A \), \(B \), and \(C \).

3. (10 pts.) Find parametric equations for the line of intersection of the planes given by \(x - y + z = 1 \) and \(2x + y + z = 2 \).

4. (10 pts.) The position vector of a particle in space is given by the vector-valued function \(\mathbf{r}(t) = (t - \sin t)\mathbf{i} + (1 - \cos t)\mathbf{j} + t\mathbf{k} \).

 (a) Find the velocity, acceleration and speed of the particle.

 (b) Find parametric equations for line tangent to the path of the particle when \(t = 0 \).

5. (10 pts. each) Consider the curve given by the vector-valued function \(\mathbf{r}(t) = (2t + 3)\mathbf{i} + (5 - t^2)\mathbf{j} + 3t\mathbf{k} \), for \(1 \leq t \leq 4 \).

 (a) Find the unit tangent vector for the above curve.

 (b) Set up but DO NOT EVALUATE an integral giving the length of the above curve.