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Abstract. The Mihalisin - Klee Theorem states that an orientation of a 3-polytopal graph

is induced by an affine function on some 3-polytope realizing the graph if the orientation

is acyclic, has a unique source and a unique sink, and admits three independent monotone

paths from the source to the sink. We replace the requirement that the orientation is acyclic

with the assumption that it has no directed cycle contained in a face of the orientation, and

show that such orientations are induced by 3-dimensional fans.

1. Introduction

A graph G is called d-polytopal if there exists a d-dimensional polytope P so that the

graph formed by the vertices and edges of P is isomorphic to G. The classical theorem of

Steinitz [9] states that a graph is 3-polytopal if and only if it is 3-connected and planar.

We apply the term d-polytopal to an orientation of a d-polytopal graph G if there is a d-

dimensional polytope P and an affine function on P so the graph of P is isomorphic to G

and the orientation of the graph agrees with the directions of increase of the affine function.

Holt and Klee [5] showed that if an orientation of the graph of a d-polytope is d-polytopal,

then there are d independent monotone paths from the source to the sink. The Mihalisin -

Klee Theorem is a converse to the Holt - Klee Theorem for the case d = 3 (For examples

that show that no such theorem is possible in dimension 4, see [4] and [8].)

Theorem 1.1. (Mihalisin and Klee [8]) Suppose that K is an orientation of a 3-polytopal

graph G. Then the digraph K is 3-polytopal if it is acyclic, has a unique source and a unique

sink, and admits three independent monotone paths from source to sink.

The characterization of Mihalisin and Klee was used by Kaibel et. al. [6] to analyze the

expected behavior of randomized simplex algorithms on linear programs with three variables.

A fan in Rd is a collection F = {C1, C2, . . . , Ct} of nonempty polyhedral cones, such that

1) Every nonempty face of a cone in F is also a cone in F .
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2) The intersection of any two cones in F is a face of both.

A fan F is complete if the union of its cones is Rd. It is pointed if the zero vector is one of its

cones. All of the fans discussed in this paper will be assumed to be complete and pointed.

We will also assume that all of the cones in F are distinct.

For more background on fans and polytopes, see [2] and [11]. The dual graph of a complete

pointed d-fan F is the graph GF that has a vertex for every d-dimensional cone of F and

has an edge between two vertices if the corresponding cones share a (d − 1)-dimensional

face. We have a function µ from the set of vertices and edges of GF to the set of d− and

(d − 1)−dimensional cones of F that is an inclusion-reversing bijection. If F is a complete

pointed d-fan and g ∈ Rd, we say that g is generic with respect to F if it is not in the linear

span of any (d− 1)-dimensional cone of F . For F and generic g one can define the digraph

DF ,g which has underlying undirected graph GF and directs any edge {v, w} from v to w if

µ(w) is on the same side as g of µ({v, w}).

The digraph DF ,g was studied for complete simplicial fans by Kleinschmidt and Onn [7]. It

is clear that DF ,g has a unique source and a unique sink, namely the vertices corresponding

to the cones containing −g and g. If F is the normal fan of a polytope, then GF is the graph

of the polytope and DF ,g orients edges in the direction of increase of the function gTx. The

theorem of Holt and Klee states that DF ,g has d disjoint paths from the source to the sink

if F is the normal fan of a polytope. The following generalization was proved in [4].

Theorem 1.2. Let F be a complete pointed d-fan, and let g ∈ Rd be generic with respect to

F . Then there are d independent paths from the source to the sink of DF ,g.

Our goal is to weaken the acyclicity condition in the Mihalisin - Klee Theorem and show

that one gets digraphs DF ,g for 3-fans. In order to state the weaker condition, we need the

following fact, proved by Whitney [10]:

Proposition 1.3. The face lattice of a 3-polytope is determined by its graph.

This means that every realization of a given 3-polytopal graph has the same vertex sets

defining 2-dimensional faces of the polytope. We can therefore refer to circuits of a 3-

polytopal graph as either face boundaries or separating circuits. Now we can state our

theorem:
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Theorem 1.4. Suppose that K is an orientation of a 3-polytopal graph G. If none of the

face boundaries are directed cycles, it has a unique source and unique sink, and it admits

three independent monotone paths from source to sink, then the digraph K is DF ,g for some

fan F and generic g.

We follow the proof of Mihalisin and Klee (some aspects of which were inspired by a proof

of Barnette and Grünbaum [1]) to some extent. However, the acyclicity is crucial to building

the polytope in their proof, and we will not be able to make use of that.

In Figure 1., assume that the origin O is in the interior of the prism on the left. For

each nonempty face of the prism, the fan F has a cone generated by the rays from O to the

vertices of the face. We assume that the vector g is pointing directly upward. Unfortunately,

this means that it is not generic with respect to F , because it is contained in the span of the

cones cone({OA,OD}), cone({OC,OE}), and cone({OB,OF}). The graph GF is drawn to

the right, with some edges directed. For example, µ(G) = cone({OA,OC,OD,OE}) and

µ(J) = cone({OA,OB,OC}. We have directed the edge from G to J because the cone µ(G)

and g are on opposite sides of cone({OA,OC}). If we twist slightly the top face of the prism,

then the resulting vertex sets corresponding to the quadrilateral faces of the prism will no

longer be coplanar. The cones generated by these sets will, however, still be pointed convex

cones with four extreme rays. After the twist, the vector g will be generic with respect to F

and the edges {G, I}, {I,H}, {H,G} form a cycle in DF ,g that is directed oppositely to the

twist.

2. Properties of the digraph

Suppose that K is a directed graph. A path in K is a sequence of distinct vertices

(x0, x1, . . . , xk) such that for i = 1, 2, . . . , k, vertices xi−1 and xi are adjacent in the graph

underlying K. The path is monotone if for i = 1, 2, . . . , k the edge containing xi−1 and xi

is oriented from xi−1 to xi. It is called antitone if the path (xk, xk−1, . . . , x0) is monotone.

A directed cycle has the same definition as a monotone path except that x0 = xk. A set of

monotone paths from a vertex x to a vertex y of K will be called independent if the only

vertices that appear in more than one of the paths are x and y.

We assume for the rest of this section that K is an orientation of a 3-polytopal graph.

If K has no directed cycle in a face boundary, has a unique source x and a unique sink
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y, and three independent monotone paths from x to y, then K will be called a generalized

3-monotone orientation. If C is a directed cycle in K, we define a side of C to be a planar

digraph containing C and all of the vertices and edges contained on one side of C in a plane

drawing of K.

Proposition 2.1. If C is a directed cycle in a generalized 3-monotone orientation K, then

x is in one of the sides of C and y is in the other.

Proof. The proof is by induction on the number k of faces in a given side S of C. If k = 1

then the proposition is vacuously true, since C is not the boundary of a face. Let e be an

edge of S but not in C that has at least one vertex in C. If the tail of e is in C, we can

follow a monotone path starting with e until we either arrive at y, or arrive at a vertex of

C, or encounter a vertex of the monotone path for a second time. In the last two cases, we

will find a directed cycle bounding a side S ′ that is contained in S and has fewer faces than

S does. By induction, S ′ contains x or y. If the head of e is on C, then we can follow an

antitone path and find either x or a directed cycle with a side that has strictly fewer faces

than S. Because the source and the sink are unique, we must find one in each side of C. �

Corollary 2.2. Let C be a directed cycle in K. Then C contains at least one vertex of every

monotone path from the source to the sink.

Proof. This follows from Proposition 2.1 and the planarity of K. �
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Corollary 2.3. Let v be a vertex of K that is neither the source nor the sink. Then there

is a monotone path from v to y and an antitone path from v to x.

Proof. If e is an edge with tail v, follow a monotone path starting with e until either the sink

is reached or a directed cycle is obtained. If a directed cycle is reached this means that we

have reached each of the three independent monotone x−y paths. From the first intersection

of our path with one of these independent monotone x − y paths, we can continue on the

monotone x − y path to y. Similarly, we can follow an edge with head v backwards to get

an antitone path from v to x. �

3. Two Lemmas of Mihalisin and Klee

In this section we follow the exposition of Mihalisin and Klee. A digraph J is contained

in a digraph K if there exist two injections ψ : vert(J) → vert(K) and φ : edge(J) →

the set of all monotone paths in K satisfying the following conditions: for each edge
−→
ab of

J , φ(
−→
ab) is a monotone path in K from ψ(a) to ψ(b); the interior of each path in image(φ)

is disjoint from all other paths in image(φ). A particular choice of ψ and φ is called an

embedding of J in K. Let D4 be the unique acyclic orientation of the complete graph on

four vertices.

The following lemmata, without the word “generalized,” are Lemma 3.2 and Lemma 3.3

of [8]. The proofs in [8] used acyclicity only in justifying the existence of a monotone path

from any vertex of a 3-monotone digraph to the sink and the existence of an antitone path to

the source. Due to Corollary 2.3, the analogous property holds for generalized 3-monotone

digraphs. The proofs of [8] carry over to the case of generalized 3-monotone orientations.

Lemma 3.1. Each generalized 3-monotone digraph contains D4. Further, the embedding

may be chosen so that the source and sink of D4 are sent to the source and sink of the

digraph.

In the following Lemma, when we say that Jn−1 is obtained from Jn by deleting one edge,

one or both of the endpoints of the deleted edge may have degree 3 in Jn and be the middle

vertex of a monotone path of length 2 in Jn which is then replaced by a single edge of Jn−1

oriented from the beginning to the end of the monotone path.
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Lemma 3.2. For each generalized 3-monotone digraph K there exists a sequence of gen-

eralized 3-monotone digraphs J0, J1, . . . , Jk such that J0 is D4, Jk = K, and each Jn−1 is

obtained from Jn by deleting one edge.

Proof. Let J0 be D4, which is 3-monotone and is contained in K by Lemma 3.1. The proof

of [8] shows that one can always add an edge to a 3-monotone digraph Jn contained in K to

get a 3-monotone digraph digraph Jn+1 contained in K. Their construction is also valid for

generalized 3-monotone digraphs, in that Jn+1 is contained in K, is planar and 3-connected

and has 3 independent monotone paths from the source to the sink. We have to show that

Jn+1 cannot have any directed cycle contained in one of its faces. If C is a directed cycle of

Jn+1 contained in one of its faces, then C is contained in K and does not separate x and y.

By replacing edges of C with monotone paths in K, this implies the existence of a directed

cycle of K that does not separate x and y, contradicting Proposition 2.1. �

Corollary 3.3. Let K be a generalized 3-monotone digraph. Then the restriction of K to

any face contains a unique source and a unique sink.

Proof. Assume the sequence J0, J1, . . . , Jk is as in the previous lemma. We will prove by

induction that for any n, the restriction of Jn to any face contains a unique source and a

unique sink. This is clearly true for n = 0. Suppose it is true for Jn. Because Jn+1 is a

generalized 3-monotone digraph, each of its faces contains at least one source and at least

one sink. Any face of Jn+1 with more than one source must be one of the two faces containing

the edge that was added to Jn to create Jn+1. Call the face of Jn that was split by the new

edge F and the two faces of Jn+1 created F1 and F2. (See Figure 2.) If F1 contains the source

of F and F2 contains the sink of F , then neither F1 nor F2 can contain a second source. If F1

contains the source and the sink of F and F2 contains neither, then the presence of a second

source in F1 means that F2 has no source at all, contradicting the generalized 3-monotone

property. �

4. Building the Fan

We will assume that K is a generalized 3-monotone digraph, and that we have a sequence

of generalized 3-monotone digraphs J0, J1, . . . , Jk, where J0 is D4, Jk = K, and each Jn−1

is obtained from Jn by deleting one edge. Fix g = (0, 0, 1)T . We will build a corresponding
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sequence (F0,F1, . . . ,Fk) of 3-fans so that Jn = GFn,g for n = 0, 1, . . . , k. We may take

F0 to be the set of cones generated by the subsets of a set of four vectors that positively

span the origin and are such that g is generic with respect to the fan they generate. We

have a bijection µ0 from the set of vertices, edges and faces of D4 to the set of 3-, 2-, and

1-dimensional cones of F0 that is inclusion-reversing.

For m = 0, 1, . . . , n, assume that we have a fan Fm and a function µm that is an inclusion-

reversing bijection from the set of vertices, edges and faces of Jm to the set of 3-, 2- and

1-dimensional cones of F so that whenever an edge of Jm points from vertex v to vertex w,

then µm(w) and g are on the same side of the hyperplane containing µm({v, w}) and µm(v)

is on the other side.

Because Jn+1 is constructed from Jn by adding an edge which splits a face F of Jn into

two faces F1, F2 of Jn+1, we will alter Fn by splitting the 1-dimensional cone µn(F ) of Fn

into two 1-dimensional cones. Let v and w be the endpoints of the new edge of Jn+1. If v is

a vertex of Jn, define C(v) to be µn(v). If v is a new vertex in the interior of an edge e of

Jn, define C(v) to be µn(e). Define C(w) similarly.

Lemma 4.1. C(v) ∩ C(w) = µn(F ).

Proof. If v is a vertex of Jn, then C(v) contains µn(F ) by the inclusion-reversing property

of µn. If v is a new vertex in an edge e of Jn, then we will still have C(v) containing µn(F ),

because e ⊆ F . Thus C(v)∩C(w) contains µn(F ). The proof of Lemma 3.2 in [8] took great

care to show that there is no edge of Jn that contains both v and w. If C(v)∩C(w) were 2-

or 3-dimensional, then it would be the image under µn of a vertex or edge of Jn. There is,

however, no edge of Jn containing both v and w. �

The following Lemma is a standard separation result. See [2], Lemma 1.13, for a close

relative.

Lemma 4.2. There is a hyperplane H in R3 that contains µn(F ) and has C(v)\µn(F ) in

one of its open halfspaces and C(w)\µn(F ) in the complementary open half space.

Proof. Let C ′(v) and C ′(w) be the projections of C(v) and C(w) onto the subspace V

orthogonal to µn(F ). Then C ′(v) and C ′(w) are pointed cones in V . Let C be the cone

generated by C ′(v) ∪ −C ′(w). We claim that this cone C is pointed. If z 6= 0 is such
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that z ∈ C and −z ∈ C, write z = v1 + w1 and −z = v2 + w2 with v1, v2 ∈ C ′(v) and

w1, w2 ∈ −C ′(w). Then (v1 + v2) + (w1 + w2) = 0, indicating that v1 + v2 ∈ C ′(v) ∩ C ′(w).

However, C ′(v) ∩ C ′(w) = {0}, contradicting the assumption that z 6= 0. Thus there is a

vector u so that C is supported at {0} by span(u). It follows that span(u) supports each

of C ′(v) and C ′(w) at {0} and that C ′(v) and C ′(w) are on opposite sides of span(u). The

hyperplane H required by the Lemma is then the span of {u} ∪ µn(F ). �

Let p be a nonzero vector in µn(F ) and let u ∈ V be as in Lemma 4.2. For ε > 0, define

p1 = p + εu and p2 = p − εu. Let P1 be the path on the boundary of F from v to w such

that p1 ∈ µn(z) for some vertex z in the interior of P1 and let P2 be the other path on the

boundary of F from v to w. Figure 2 shows a typical face F of Jn on the top right and the

part of the fan containing the images under µn of F and the vertices and edges it contains is

shown on the top left. Below these are shown the corresponding objects in Fn+1 and Jn+1.

The fan Fn+1 contains the following cones:

1) The one-dimensional cones generated by p1 and p2 and the two-dimensional cone

generated by {p1, p2}.
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2) Cones of Fn that do not contain p.

3) For a vertex or edge z in the interior of P1, the cone µn(z) in Fn is replaced by a cone

with p replaced in the generating set by p1.

4) For a vertex or edge z in the interior of P2, the cone µn(z) in Fn is replaced by a cone

with p replaced in the generating set by p2.

5) If v is a vertex of J(n), the cone µn(v) is replaced by a cone that has generator p

replaced by the two generators p1 and p2.

6) In the case that v is not a vertex of Jn but is a new vertex in the interior of an edge e

of J(n), then the cone µn(e) is replaced by a three-dimensional cone with p replaced

in the generating set of µn(e) by {p1, p2}.

Note that the cone generated by p is not a cone of Fn+1.

Lemma 4.3. The collection of cones Fn+1 given above is a complete pointed fan, for ε > 0

sufficiently small.

Proof. Each cone of Fn+1 that does not contain both p1 and p2 is a cone of Fn with possibly

one extreme ray perturbed, so it is pointed and convex. The 3-dimensional cones that

contain p1 and p2 are the cone generated by {p1, p2} and the perturbations of C(v) and

C(w). Because the plane spanned by {p1, p2} supports C(v) and C(w) at p, the replacement

of p in the generating set of C(v) and C(w) by {p1, p2} will still yield a convex cone. If ε is

small enough, these perturbations will also be pointed. �

Lemma 4.4. Suppose that the source and the sink of F are both contained in the path P1.

Then the path P2 is a directed path, and the orientation of the new edge of Jn+1 is determined

by the requirement that there be no directed cycle in a face of Jn+1. If µn(v) is on the same

side of H as g is, then the edge containing v and w is oriented from w to v.

Proof. That the path P2 is a directed path is due to Corollary 3.3. Assume that the path

P2 is monotone from v to w. The images of the vertices and edges in F under µn appear in

the same order around µn(F ) as their preimages appear around F . As before, let C ′(v) and

C ′(w) be the projections of C(v) and C(w) onto the space V orthogonal to µ(p). Let g′ be

the projection of g onto V . Then C ′(v) and C ′(w) are on the same side of span(g′) in V .

The projection of span{p1, p2} onto V is span(u). By construction, span(u) separates C ′(v)
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and C ′(w). There must be a vertex q of P2 for which the projection of µn(q) onto V has

nonempty intersection with span(u). Each of the projections of the images under µn of the

vertices in the directed path from q to the sink of F , including C ′(w) , must be on the same

side of u as g′, and C ′(v) must be on the other. This agrees with the orientation of the new

edge from v to w that is forced to avoid a directed cycle on a face of Jn+1. �

Lemma 4.5. Suppose that the source of F is in the interior of P1 and the sink of F is in

the interior of P2. Then we can take the hyperplane H required by Lemma 4.2 to be the span

of {g} ∪ µn(F ). This hyperplane can be perturbed as needed to make g generic with respect

to Fn+1 and to make µn+1(v) on the same side of H as g if and only if the orientation of

the edge {v, w} in Jn+1 is from w to v.

Proof. Let xF and yF be the source and the sink of F . Then v is in the interior of one of

the paths from xF to yF and w is in the other. The union of the projections of µn(xF ) and

µn(yF ) onto V contains the line span(g′). Therefore C(v) and C(w) are on opposite sides of

the plane spanned by g and µn(F ), and this plane supports them both at µn(F ). �

5. Counterexample in Dimension 4

Several papers, including [4], have been devoted to orientations of the graph of the d-cube.

An orientation of the graph of the d-cube that is DF ,g for some fan F and generic g is called

a PLCP-orientation. An enumeration of the PLCP-orientations of the 4-cube was recently

completed [3]. An example of an orientation of the graph of the 4-cube that is acyclic, has

a unique source and sink and has 4 independent directed paths from the source to the sink

but is not a PLCP-orientation was given in section 4.4 of [4]. The idea of the proof is that

if the given orientation K were DF ,g for some F and g, then for one-dimensional cones s

and t of F corresponding to opposite facets of the 4-cube, one could obtain the fan F ′ by

replacing each cone of F with s in its generating set by the cone with s replaced by −s in

the generating set, and by replacing each cone of F with t in its generating set by the cone

with t replaced by −t in the generating set. Then DF ′,g would be obtained from DF ,g by

reversing all of the directed edges between the opposite facets of the 4-cube corresponding

to s and t. However, the orientation K ′ obtained from K by reversing all of these edges fails

to have 4 directed paths from the source to the sink. By Theorem 1.2, K ′ is not DF ′,g for

any F ′ and g.
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