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ACYCLIC DIGRAPHS GIVING RISE
TO COMPLETE INTERSECTIONS

WALTER D. MORRIS, JR.

ABSTRACT. We call a directed acyclic graph a CI-
digraph if a certain affine semigroup ring defined by it is
a complete intersection. We show that if D is a 2-connected
CI-digraph with cycle space of dimension at least 2, then
it can be decomposed into two subdigraphs, one of which
can be taken to have only one cycle, that are CI-digraphs
and are glued together on a directed path. If the arcs of
the digraph are the covering relations of a poset, this is the
converse of a theorem of Boussicault, Féray, Lascoux and
Reiner. The decomposition result shows that CI-digraphs
can be easily recognized.

1. Introduction. The present work applies graph theory to answer
a question about partially ordered sets. Suppose P is a finite partially
ordered set (poset) with elements labeled by {1, 2, . . . ,m}. The function

Ψ(P) =
∑

w∈L(P )

1

(xw1
−xw2

)(xw2
−xw3

) · · · (xwm−1
−xwm

)
,

where L(P) is the set of linear extensions of P, was introduced by
Greene [10] and studied by Boussicault and Féray [1]. In [1] it was
shown that this function could be written as a rational function

Ψ(P) =
N(P)∏

ilj(xi−xj)
,

where i l j means that i is covered by j. That paper investigated
the question: When does the numerator N(P) factor? They showed
that if the poset P can be obtained from smaller posets P1 and P2 by
gluing along a chain (see Section 3) then N(P) is the product of N(P1)
and N(P2). The investigations of [1] were inspired by a theorem of
Greene [10], which showed that N(P) is a product of linear factors if
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the poset P is strongly planar (the Hasse diagram of the poset obtained
by appending a maximum and minimum element to P has a planar
embedding in which all arcs are directed upward). The paper left open
the problem of determining if a decomposition of N(P) into linear
factors implies that P can be decomposed into smaller posets P1 and
P2 which can be glued along a chain to form P.

The paper [2] showed that N(P) factors into a product of linear
factors if the semigroup ring Z[SP ] is a complete intersection. There it
was also shown that if P is obtained from smaller posets P1 and P2 by
gluing along a chain, and if Z[SP1

] and Z[SP2
] are complete intersections,

then so is Z[SP ]. This in particular showed that for strongly planar P,
the ring Z[SP ] is a complete intersection.

Recent papers by Gitler et al. [8, 9] have studied complete intersection
affine semigroups defined by directed graphs. We will therefore expand
the scope of our investigation slightly from Hasse diagrams to directed
acyclic graphs. A directed graph (digraph) D = (V,A) consists of
finite sets V and A and a mapping associating to each a ∈ A an
ordered pair of elements of V . A directed trail in D is a sequence
(v0, a1, v1, a2, . . . , ak, vk), where {v0, v1, . . . , vk} ⊆ V and a1, a2, . . . , ak
are distinct elements of A such that for i= 1, 2, . . . , k the image of ai
is (vi−1, vi). The digraph D is called acyclic if there is no directed trail
(v0, a1, v1, a2, . . . , ak, vk) with k > 0 in which v0 equals vk. All of the
digraphs considered in this paper will be acyclic. Acyclicity implies that
every arc will be mapped to an ordered pair of distinct vertices, but it
does not exclude parallel arcs, i.e., two arcs mapped to the same ordered
pair of vertices. An arc a∈A is called dependent if reversing the ordered
pair to which it is mapped makes D no longer acyclic. A directed
acyclic graph with no dependent arcs is the Hasse diagram of a partially
ordered set for which the arcs are the covering relations of the poset.
If a directed acyclic graph has no dependent arcs, we are free to refer
to the arcs by the ordered pairs of vertices to which they are mapped.

One can turn an arbitrary directed acyclic graph into a Hasse diagram
in two ways. First, one can simply remove dependent arcs one by one
until the digraph has no more dependent arcs. The Hasse diagram thus
obtained is the Hasse diagram of the transitive closure of the original
digraph, but it loses much of the directed graph structure. In particular,
the dimension of the cycle space decreases by one for each dependent arc
removed. The other way is to replace each dependent a by a directed



ACYCLIC DIGRAPHS GIVING COMPLETE INTERSECTIONS 243

path (a1, a2), where the tail of a1 is the tail of a and the head of a2 is
the head of a, and the head of a1 and tail of a2 are equal to the same
new vertex. We will see in Corollary 4.4 and Lemma 3.2 that both
Hasse diagrams obtained have the complete intersection property if and
only if the original acyclic digraph does.

Example 0. We start with two vertices, labeled 1 and 6, and four arcs,
a, b, c, d, each mapped to the ordered pair (1, 6). This digraph is not the
Hasse diagram of a poset. Each of the four arcs is dependent, because
reversing any one of them creates a directed path from 1 to 6 and back
again along the reversed arc. We could delete three of the arcs to get a
Hasse diagram with one arc. If we insert a new vertex into each of the
arcs a, b, c, d, we get the Hasse diagram in Figure 1.

The acyclicity condition means that directed trails are directed paths.
If the digraph has no dependent arcs, then a directed path is also called
a chain. A directed path P = (v0, a1, v1, a2, . . . , ak, vk) in D = (V,A) is
called separating if there are subdigraphsD1 =(V1,A1) andD2 =(V2,A2)
of D such that V = V1 ∪ V2, A = A1 ∪A2, V1 ∩ V2 = {v0, v1, . . . , vk},
A1 ∩A2 = {a1, a2, . . . , ak} and each of D1 and D2 contains an arc not
in P . We will say that what is left after removal of a separating path
is disconnected, keeping in mind that some of its “components” might
be arcs without endpoints. Such arcs would all be dependent arcs of D.

A directed graph is called connected if the underlying undirected
graph is connected. A digraph is 2-connected if the removal of any vertex
leaves a connected digraph. A 2-connected component of a directed
graph is a maximal subdigraph that is 2-connected. The main point of
our paper is to show:

Theorem 1.1. If a poset has a complete intersection semigroup ring,
then either each 2-connected component of its Hasse diagram has at
most one circuit, or it is obtained from smaller posets, each of which
has a complete intersection semigroup ring, by gluing along a chain.

This answers a question which was posed to the author by Reiner
and Csar (personal communication). We will actually show the stronger
result that the chain referred to by the theorem may be chosen such
that one of the smaller posets glued together has at most one circuit.
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Section 2 supplies background definitions for complete intersection
affine semigroups. The reader with no background in commutative
algebra need only take from this section Theorem 2.2, due to Fischer
and Shapiro, which characterizes the complete intersection property
in terms of the existence of a certain kind of basis of the space of
relations of the semigroup. Section 3 specializes the material of Section
2 to affine semigroups arising from directed graphs. One can take the
characterization of Fischer and Shapiro as the definition of the class
of digraphs we consider, so that all of our presentation can be made in
terms of linear algebra. Some of our results, for example Theorem 3.1,
may be proved differently using commutative algebra techniques. In
Section 4, we also prove some facts concerning deletion and contraction
of arcs in such digraphs. We are particularly interested in cases where
these operations preserve the CI-digraph property. Section 5 proves
Theorem 1.1. The theorem shows that CI-digraphs are easily recogniz-
able. Section 5 also shows that the basis for the cycle space required by
Fischer and Shapiro’s condition must be weakly fundamental. Finally, in
Section 6 we prove that a cycle basis for a CI-digraph satisfying Fischer
and Shapiro’s condition need not be totally unimodular.

2. Complete intersection affine semigroups. In this section we
review the results of [4], [5], [6] and [7] on general complete intersection
affine semigroups, which we will specialize later. Suppose that T is
a set of n nonzero vectors in Qm. Let S be the semigroup generated
by T , i.e., the set of nonnegative integer combinations of elements
of T . If S contains no invertible elements and if the span of T over Q
has dimension d, then S is called an affine semigroup of dimension d.
One may associate to S the space of relations W over the rationals Q.
If {u1, u2, . . . , ur} is a set of integral vectors (vectors with all integer
entries) that forms a basis for W over the rationals, we will call the
r×n matrix with rows uT1 , u

T
2 , . . . , u

T
r a matrix of relations for W .

Let Z[X1, X2, . . . , Xn] be the polynomial ring in the variables
X1, X2, . . . , Xn over the integers Z. For any vector u= (u1, u2, . . . , un)T

in Zn, we define the vectors u+ and u− by u+i = max{0, ui} and
u−i = max{0,−ui} for i = 1, 2, . . . , n. Define Xu =

∏n
i=1X

ui
i . The

semigroup ring Z[S] is Z[X1, X2, . . . , Xn] modulo the ideal of relations

{Xu+ −Xu−}, where u is any integral vector in W . If this ideal is
generated by r=n−d elements, then the semigroup ring Z[S] is called a
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complete intersection. In this case, we will also say that S is a complete
intersection.

The special case that interests us is where D = (V,A) is an acyclic
directed graph, m= |V |, n= |A| and every vector of T is of the form
et− eh for an arc of A. Here et is the standard basis vector with 1 in
the component corresponding to the tail of the arc, while eh has a −1
in the component given by the head. The acyclicity condition on D
guarantees that the semigroup SD generated by T has no invertible
elements.

A vector u in Zn is called mixed if it has both positive and negative
components. An r×n matrix is called mixed if each of its rows is mixed.
It is called dominating if it does not contain a square mixed submatrix.
An r×n matrix M with integer entries is said to have content 1 if the
gcd of its r× r minors is 1.

A useful fact about mixed dominating matrices is the following:

Proposition 2.1 (Corollary 2.8 of [5]). Let M be a mixed dominating
matrix. Then the rows of M are linearly independent.

The following theorem (Corollary 2.10 of [5]) characterizes complete
intersection affine semigroup rings in terms of the existence of a matrix
of relations with certain properties.

Theorem 2.2. Let S be a finitely generated subsemigroup of Zm that
contains no invertible elements. Then S is a complete intersection if
and only if there exists a basis of integral vectors of the relation space
of S whose coefficient matrix is dominating with content 1.

The mixed dominating property of a matrix was shown to imply a
certain block structure in Theorem 2.2 of [6] (see also [7]):

Theorem 2.3. Let M be a mixed dominating r× (r+ d) matrix with
r > 0. Then there is a rearrangement of the rows and columns of M so
that the resulting matrix has the form

(1)

 A 0
0 B
a b
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where A and B are mixed dominating matrices of sizes t × (t + d1)
and s× (s+ d2), respectively, with t ≥ 0, s ≥ 0 and s+ t+ 1 = r and
d1 + d2− 1 = d. Additionally, a and b are 1× (t+ d1) and 1× (s+ d2)
nonzero, nonmixed matrices, respectively, of opposite sign.

Call the elements of T corresponding to columns of A red and
the elements of T corresponding to those of B green. A geometric
interpretation of the decomposition (1) is that the span of the red
elements of T intersects the span of the green elements of T in a line,
and the intersection of S with this line is generated by an element α
of both of the subsemigroups corresponding to the red and the green
elements of T (Theorem 3.1 of [6]).

3. Affine semigroup rings from directed graphs. We will as-
sume throughout that D = (V,A) is an acyclic digraph. The columns
of the node-arc incidence matrix of D form a set T of vectors in Q|V |.
Let SD be the semigroup generated by the vectors et− eh in Q|V | cor-
responding to arcs of A. If SD is a complete intersection, then we will
say that D is a CI-digraph.

The cycle space is central to the class of digraphs we consider. An
excellent survey of recent research on cycle spaces is [11], from which
we take much of our notation. Let W ⊆Q|A| be the space of relations
of SD. Then W is the orthogonal complement of the row space of
the node-arc incidence matrix of D, called the cycle space of D. By
Theorem 2.2, D is a CI-digraph if and only if there is a matrix M that
is mixed dominating with content 1, whose rows form a basis of W .

An element of W is called a cycle of D. A cycle is called simple if
its entries are in {1, 0,−1}, and a simple cycle is called a circuit if it is
nonzero and has minimal support among simple cycles.

For each circuit u of W , there is a circuit (a connected subgraph with
each vertex of degree 2) Cu in the unoriented multigraph underlying D,
containing the edges corresponding to arcs indexing the support of u.
For one of the two ways to go around Cu, one encounters the arcs for
which the component of u is +1 in the forward direction and those for
which the component of u is −1 in the backward direction. We will use
the word circuit to refer to both the vector u and the corresponding
subgraph Cu. A vertex v of a circuit C is called a source of C if no arcs
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of C enter v and it is called a sink of C if no arcs of C leave it. Define
V +(C) to be the set of sources of A and V −(C) to be the set of sinks
of C. The circuit C defines an element

∑
i∈V +(C) ei−

∑
j∈V −(C) ej of

SD which can be written as a sum of elements of T in two different
ways.

It is known that every integer vector in W can be written conformally
as a nonnegative rational combination of circuit vectors, that is, a linear
combination in which every nonzero component of each of the summands
agrees in sign with the corresponding component of the sum.

Theorem 3.1. Suppose that D is a CI-digraph and let M be the
coefficient matrix of a basis of the relation space that is dominating with
content 1. Then the rows of M are circuits.

Proof. If the relation space is 1-dimensional, then it is spanned by
a circuit, and the entries of a circuit are ±1. Now assume that the
relation space is r-dimensional for r > 1, and that the matrix of the
basis is decomposed as in Theorem 2.3 and has content 1. We can
assume by induction that the rows of A and B are circuits. Suppose
that the vector ur = (a, b) is not a circuit. Let x be a circuit that
conforms to (a, b). Then x is in W and must be an integral combination
x = a1u1 + a2u2 + · · ·+ arur of the rows of M . The vector arur − x
either conforms to ur or to the negative of ur. The vector arur − x
is not the zero vector, because then ur would be a circuit. Thus the
matrix obtained from M by replacing ur by arur−x is still dominating.
Because its rows are linearly dependent, we have a contradiction to
Proposition 2.1. �

The property that all of the rows of M are circuits means that the
rows form what [11] calls a cycle basis. The property that M has
content 1 then implies that [11] calls this basis integral. A useful
technical fact about cycle bases, which can be found in [11], is that if
the rows of an r×n matrix M are a cycle basis of a digraph, then the
determinants of all of the r× r nonsingular submatrices of M have the
same absolute value. Thus the content 1 property is equivalent to the
property that all nonsingular r× r submatrices have determinant ±1.

Example 1. (See Figure 1, where the arcs are all directed upward.)
Suppose the vertices of the digraph D are labeled 1, 2, 3, 4, 5, 6 and the
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Figure 1. Poset for Example 1.

arcs are (1, 2), (2, 6), (1, 3), (3, 6), (1, 4), (4, 6), (1, 5), (5, 6). A matrix
of relations (with the columns labeled in the bottom row) is( )

1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 1 0 0 0 0 −1 −1

(1, 2) (2, 6) (1, 3) (3, 6) (1, 4) (4, 6) (1, 5) (5, 6)

.

This matrix has content 1 and decomposes as in matrix (1), so
D is a CI-digraph. Note that one could replace the last row by
(1, 1, 1, 1,−1,−1,−1,−1) and get another set of rows that spans the
cycle space and for which the matrix decomposes as in matrix (1).
However, the resulting matrix would have content 2.

We can reorder the rows and columns of this example to obtain an
alternate decomposition, also in the form of (1):( )0 0 0 0 1 1 −1 −1

0 0 1 1 0 0 −1 −1
−1 −1 0 0 1 1 0 0

(1, 3) (3, 6) (1, 4) (4, 6) (1, 2) (2, 6) (1, 5) (5, 6)

.

Here, the vector a consists of the first two entries of the bottom row
and the matrix A is empty, i.e., it has no rows. It will follow from our
results (Theorem 5.12) that every mixed dominating matrix of relations
with content 1 for a CI-digraph decomposes in this way, with either A
or B empty.
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If an acyclic digraph D has no dependent arcs, then it is a Hasse
diagram of a poset. For such D, Boussicault et al. [2] proved that
D is a CI-digraph if and only if each of the 2-connected components
of D is a CI-digraph. It was also proved in [2] that if D is a circuit,
D is a CI-digraph. These results can also be established from the
decomposition in Theorem 2.3 and hold for general directed acyclic
graphs. If M is a matrix of relations for SD, then it can be decomposed
into blocks corresponding to the 2-connected components, and M is
mixed dominating with content 1 if and only if each of its blocks is. If D
has only one circuit, then its matrix of relations has only one row with
entries in {−1, 0, 1}, which makes it mixed dominating with content 1.

Lemma 3.2. Suppose that an acyclic digraph D′ is obtained from D by
replacing an arc (i, j) by arcs (i, k) and (k, j), for a vertex k not in D.
Then D is a CI-digraph if and only if D′ is.

Proof. Suppose a matrix M is a matrix of relations for SD. Let M ′

be obtained from M by replacing the column for (i, j) by two copies of
the same column, one for (i, k) and one for (k, j). Then M ′ is a matrix
of relations for SD′ . Similarly, if one starts with a matrix M ′ of relations
for SD′ , then the columns for (i, k) and (k, j) must be identical and
one gets a matrix of relations for SD by merging the columns into one.
Clearly, M is mixed dominating with content 1 if and only if M ′ is. �

For an affine semigroup S in Qk define the cone of S to be the set of
all nonnegative rational combinations of elements of S. Because S has
no invertible elements, this cone is pointed.

A corollary to Theorem 2.3 is the following:

Corollary 3.3 (Corollary 3.4 of [6]). Let S be a d-dimensional affine
semigroup that is a complete intersection and suppose that d≥ 2. Then
the cone of S contains no more than 2d− 2 extreme rays.

Proposition 5.1 of [2] showed that the extreme rays of the cone of SD

are generated by the vectors ei−ej for arcs (i, j) if D is a Hasse diagram.
The same proof can be used to show that for general D the extreme rays
of SD are generated by the vectors ei− ej for independent arcs (i, j) of
D. The dimension of the semigroup SD is |V (D)| − c, where c is the



250 WALTER D. MORRIS, JR.

number of connected components of D. (By connected component of D
we mean a connected component of the undirected graph underlying D.)
The following corollary is an immediate consequence.

Corollary 3.4. Let D be a CI-digraph. The number of independent
arcs of D is bounded above by 2 |V (D)| − 4.

The example of Figure 1, possibly with more directed paths of length
2 from the bottom vertex to the top, shows that this bound is tight.
This example actually appeared as Example 3.5 of [6]. Similarly defined
classes of undirected graphs, studied in [3] and [12], have smaller upper
bounds on the numbers of arcs.

It should be pointed out that there is always a set of circuits that span
W and for which the matrix with those circuits as rows has content 1.
Such a set is given by the fundamental set of circuits associated with
a spanning forest F of D, i.e., the circuits contained in F ∪ e where e
runs through the arcs of D not in F . In fact, the matrix with rows
corresponding to these circuits would be totally unimodular [11]. The
matrix may, however, contain a square mixed submatrix.

Example 2. Let the vertices of D be labeled 1, 2, . . . ,m and for all
1 ≤ i < j ≤ m let (i, j) be an arc of D. Then the arcs (i, i+ 1) for
i= 1, 2, . . . ,m−1 are the independent arcs of D. They form a spanning
tree F . There are

(
m
2

)
− (m− 1) dependent arcs. The matrix whose

rows form the fundamental set of circuits associated with F has the
form [N, I], where N is an

((
m
2

)
− (m − 1)

)
× (m − 1) matrix with

nonpositive entries. It is easy to see that the matrix [N, I] is mixed
dominating. Because it is totally unimodular, it has content 1, so SD

is a complete intersection. The case m≥ 5 shows that D need not be
planar if its semigroup ring is a complete intersection. If one replaces
each dependent arc by a directed path of length 2, then one gets such an
example where the digraph is the Hasse diagram of a poset. The tree F
is an example of a depth-first search tree. For any undirected graph G
with no parallel edges, one can label the vertices in the order in which
they are found in a depth-first search tree and then direct every arc from
the lower labeled vertex to the higher labeled vertex. It follows (see
[13]) that the depth-first search tree contains all of the independent arcs,
and that the matrix whose rows form the fundamental set of circuits
associated with this tree has the form [N, I] with N nonpositive. This
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recovers the result of Gitler et al. [9] that every graph has an orientation
for which the associated semigroup ring is a complete intersection.

Example 3. The digraph with the arcs (1, 3), (3, 5), (1, 4), (4, 5), (2, 3),
(2, 4) gives a semigroup that is not a complete intersection. The circuits
of the digraph are given by the rows of the following matrix (and their
negatives): ( )

1 1 −1 −1 0 0
1 0 −1 0 −1 1
0 1 0 −1 1 −1

(1, 3) (3, 5) (1, 4) (4, 5) (2, 3) (2, 4)

.

The dimension of the cycle space is 2. Every choice of two rows of
the matrix gives a 2× 6 matrix that contains a 2× 2 mixed submatrix.
In commutative algebra terms, none of the three binomials in the
set {x13x35 − x14x45, x23x35 − x24x45, x13x24 − x14x23} is in the ideal
generated by the other two. For the partial order P with Hasse diagram
in Figure 2, we get

Ψ(P) =
x1x2−x3x4−x1x5−x2x5 +x3x5 +x4x5

(x1−x3)(x1−x4)(x2−x3)(x2−x4)(x3−x5)(x4−x5)
.

Note that the numerator does not factor.

If we add to this digraph the arc (1, 2), then the resulting digraph
would be a CI-digraph. Thus the complete intersection property is not
always preserved by deletion of arcs.

Reversing the orientation of any of the arcs of Example 3 makes one
of the paths from vertex 3 to vertex 4 a directed path, and we will see
that this critical change makes the resulting digraph a CI-digraph.
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Figure 2. Poset for Example 3.
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4. Deletion and contraction. In this section, we prove some
fundamental tools for analyzing the CI-digraph property. The results
involving deletion of dependent arcs will be essential for proving the
main results of the paper. Results on contraction of independent arcs,
which appear fundamental but are not directly used in later sections,
appear at the end of the section.

Lemma 4.1. Suppose that an acyclic digraph D′ is obtained from D by
adding an arc e which is then dependent in D′. Then D′ is a CI-digraph
if D is.

Proof. Suppose D is a CI-digraph. Then there is a basis for the cycle
space of D consisting of the rows of a matrix M that is mixed dominating
with content 1. We can append a column of zeroes corresponding to
the dependent arc e to M and then append a row which is +1 on the
entry in the new column, −1 on each of the entries corresponding to the
arcs in the directed path in D from the tail of e to the head of e, and
zeroes elsewhere, to get a matrix M ′. The matrix M ′ is clearly mixed
dominating. It has content 1 because M does. �

Lemma 4.2. Suppose that D is a CI-digraph and e is a dependent arc
of D from vertex i to vertex j. Suppose that the cycle space of D has a
basis consisting of the rows of a matrix M , partitioned as in (1). Then
there is, distinct from e, a red directed path or a green directed path
from i to j.

Proof. Without loss of generality, suppose that e is red. Let P be a
directed path distinct from e from the tail of e to the head of e. If P
contains any green arcs, let β be the sum of the green elements of T
corresponding to these arcs. Then β is in the span of the red elements
of T , so β is in the semigroup generated by the red elements of T . If β
is equal to the element of T corresponding to e, then there is a green
path from i to j other than e. Otherwise, there is a red path from i to
j other than e. �

Proposition 4.3. Suppose D is a CI-digraph containing a dependent
arc e. Then D has a mixed dominating matrix of relations with content 1
that has a single nonzero entry in the column corresponding to arc e. The
entry of nonzero sign in column e is the only entry of its sign in its row.
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Proof. Suppose D is a CI-digraph. Then there is an r×n matrix M
of relations that decomposes as in (1). The proof is by induction on r.
The statement is clearly true if r = 1. Without loss of generality, let e
be a red arc.

Suppose there is a red directed path other than e from the tail of e to
the head of e. By the inductive hypothesis, we can replace A by a matrix
A′ that has a unique nonzero entry in column e and the row containing
this entry, call it x, has 1 in column e and no other positive entries. If
the bottom row of M has ae = 0, then the matrix M ′ decomposed as in
(1), with the matrix A′ replacing A is what we want. If ae = 1, we can
eliminate component e of the last row between row x and the last row to
obtain a vector y that is zero on component e. The matrix M ′′ obtained
from M ′ by replacing the bottom row by y is still mixed dominating
with content 1. M ′′ satisfies the requirements of the proposition.

Now suppose that e is independent in the red subgraph. The previous
lemma shows that there is a green directed path from the tail of e to
the head of e. The proof of that lemma shows that the vector a of the
decomposition 1 corresponds to a directed path from the tail of e to the
head of e. The assumption that e is independent in the red graph means
that the vector a in the decomposition 1 has a single nonzero entry
corresponding to e. Replace each row of M other than the bottom row
that contains a nonzero in entry e by the result of eliminating e between
the given row and the bottom row. It is easy to see that the resulting
matrix M ′ is mixed dominating with content 1 if M is. M ′ satisfies the
requirements of the proposition. �

Corollary 4.4. Suppose that D is an acyclic digraph and e is a
dependent arc. Then the digraph D′ obtained from D by deleting e
is a CI-digraph if and only if D is.

By deleting dependent arcs from an acyclic digraph one by one until
there are no dependent arcs left, one obtains the Hasse diagram of the
partial order given by the transitive closure of the digraph. Thus we
have the following.

Corollary 4.5. An acyclic digraph D is a CI-digraph if and only if the
Hasse diagram of the partial order given by the transitive closure of D
is a CI-digraph.
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Definition 4.6. Let v be a vertex and C a circuit of a digraph D. Let
X be a set of arcs leaving v in D. Then v is an X-source in C if two
arcs of X are in C. Similarly, if X is a set of arcs entering v in D, then
v is an X-sink in C if two arcs of X are in C.

Proposition 4.7. Suppose that D is a CI-digraph and that M is a
mixed dominating matrix of content 1 whose rows form a cycle basis
for D. Suppose v is a vertex of D and X is a set of arcs entering v.
Then v is an X-sink in at most |X| − 1 circuits given by rows of M .
Similarly, if X is a set of arcs leaving v, then v is an X-source in at
most |X| − 1 circuits given by rows of M .

Proof. If v is an X-sink in |X| circuits corresponding to rows of M ,
then M contains a square mixed submatrix in the columns corresponding
to X. A similar conclusion follows if v is an X-source in |X| circuits
corresponding to rows of M . �

We will call a path P in an acyclic digraph D dependent if each of its
interior vertices has degree 2 in the graph underlying D, and there is a
directed path other than P from one endpoint of P to another. The
following corollary is a special case of Proposition 4.7 corresponding to
the case |X| = 2. If a dependent path is not a directed path, then at
least one of its interior vertices must be an |X|-sink or an |X|-source
for a set X of cardinality 2.

Corollary 4.8. Suppose that D is a CI-digraph and that P is a
dependent path in C that is not a directed path. Let M be a mixed
dominating matrix of content 1 whose rows form a cycle basis for D.
Then the arcs in P appear in only one of the circuits corresponding to
rows of M .

Proposition 4.9. Let D be a CI-digraph and let P be a dependent
path in D. Let Q be a directed path other than P from one end of P to
the other. Then there is a mixed dominating matrix M ′ with content 1
whose rows, one of which is formed from the circuit containing P and Q,
form a cycle basis for D.

Proof. Let M be a mixed dominating matrix with content 1 whose
rows form a cycle basis for D. Let M ′ be the matrix obtained from M
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by replacing the row corresponding to a circuit that uses the arcs of
P by the row formed from the circuit involving P and Q. Then M ′ is
mixed dominating with content 1. �

Proposition 4.9 shows that there is some freedom in choosing a
directed path Q to go along with a dependent path P in a row of M .
Note however that for every choice of Q, the set of sinks and sources in
the resulting circuit is the same.

Proposition 4.10. Suppose D is an acyclic digraph, and suppose D′

is obtained from D by removing the arcs and interior vertices of a
dependent path P . Then D′ is a CI-digraph if and only if D is.

Proof. If P is a directed path, then we can assume by Lemma 3.2 that
P consists of a single arc. Then the proposition follows from Lemma 4.1
and Proposition 4.3. If P is not a directed path, suppose that D is a
CI-digraph and let M be a mixed dominating matrix of relations for
D with content 1. There may only be one row of M , which we assume
to be the bottom row, that contains nonzero entries in the components
corresponding to arcs of P . If two rows had such entries, then M would
contain a 2× 2 mixed submatrix. The matrix obtained from M by
deleting the bottom row will be mixed dominating and have content 1.
This matrix is therefore a matrix of relations for the digraph D′. Thus
D′ is a CI-digraph. Now suppose that D′ is a CI-digraph and that M ′

is a mixed dominating basis for the cycle space of D′ with content 1.
Append columns of zeroes to M ′ corresponding to arcs of P , and then
append a row that is a circuit consisting of P and a directed path of
D′ from one endpoint of P to the other. Call the resulting matrix M .
Then M is mixed dominating, because all the nonzero entries of the
bottom row of M corresponding to the arcs of D′ have the same sign.
M has content 1 because M ′ does. �

If D is an acyclic digraph and e is a dependent arc of D, then
contracting e leaves a graph that is no longer acyclic. The situation is
different, however, if e is independent.

Proposition 4.11. Suppose that D is a CI-digraph and that e is
an independent arc of D. Then the digraph D′ obtained from D by
contracting e is a CI-digraph.
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Proof. Suppose that D is a CI-digraph, e is an independent arc of D,
and M is a mixed dominating matrix with content 1 whose rows form
a cycle basis for D. Let M ′ be the matrix obtained from M by deleting
the column corresponding to arc e. Because e is independent, every row
of M ′ is mixed. Because M was dominating, so is M ′. Every row of M ′

is in the cycle space of the digraph D′ obtained from D by contracting e.
Thus M ′ is a cycle basis of D′. M ′ also has content 1. This is because
the rows of M ′ are linearly independent, and the r × r nonsingular
submatrices of M ′ are nonsingular submatrices of M and thus all have
determinant 1. �

A chord of a circuit C in a digraph is an arc that is not in C but has
its endpoints in C.

Corollary 4.12. Suppose that D is a CI-digraph and that C is a
circuit of D that has an independent chord. Then the circuit C does not
correspond to any of the rows of a minimal matrix of relations for D.

Proof. Suppose C is a circuit with an independent chord e. If we
delete entry e from the vector corresponding to C, we get a vector that
is in the cycle space of D′ but is not a circuit. If C corresponded to
a row of M , then the matrix M ′ constructed as in the proof of the
previous proposition would not have all rows corresponding to circuits.
This contradicts Theorem 3.1. �

5. Existence of a separating path. A directed path

P = (v0, a1, v1, a2, . . . , ak, vk)

in D= (V,A) is called separating if there are subdigraphs D1 = (V1,A1)
and D2 = (V2,A2) of D such that V = V1 ∪ V2, A = A1 ∪ A2,
V1 ∩ V2 = {v0, v1, . . . , vk}, A1 ∩A2 = {a1, a2, . . . , ak}, and each of D1

and D2 contains an arc not in P . In this case, we say that D is obtained
from D1 and D2 by gluing along P .

We assume that D is a digraph for which the semigroup SD is a
complete intersection. By the discussion in Section 3, we can also
assume that the graph underlying D is 2-connected. This implies that
for any two arcs, there exists a circuit containing both. Moreover,
2-connectivity implies that any separating dipath must contain at least
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one arc. By Theorem 2.3, we assume that the matrix of relations has
the form

M =

 A 0
0 B
a b

 .
We remind the reader that the arcs corresponding to the columns

of A are called red and those corresponding to the columns of B green.
Let AR be the set of red arcs, VR the set of vertices incident to red arcs,
and cR the number of connected components of the digraph (VR,AR).
Similarly, let AG be the set of green arcs, VG the set of vertices incident
to green arcs, and cG the number of connected components of the
digraph (VG,AG). By assumption, D has one connected component.

The number of rows of A is given by |AR|−|VR|+cR, and the number
of rows of B is given by |AG| − |VG|+ cG. The number of rows of the
whole matrix is given by |A|− |V |+ 1. Clearly, we have

(|AR| − |VR|+ cR) + (|AG| − |VG|+ cG) + 1 = |A|− |V |+ 1.

The sizes of V, VR and VG are related by |V |= |VR|+ |VG|−|VR∩VG|.
We also have |A|= |AR|+ |AG|. We must therefore have

(2) |VR ∩VG| − (cR + cG) + 1 = 1.

A vertex of (V,A) is contained in at most one connected component
of (VR,AR) (a red component) and at most one connected component
of (VG,AG) (a green component). Define C to be the union of the
set of connected components of (VR,AR) and the set of connected
components of (VG,AG). For each vertex x of VR ∩ VG, define CR(x)
to be the red component containing x and CG(x) to be the green
component containing x. Define the bipartite multigraph Γ to have
vertex set C and edge set {{CR(x), CG(x)} : x ∈ VR ∩VG}.

Lemma 5.1. The graph Γ is connected and contains a unique circuit.

Proof. Let C1 and C2 be vertices of Γ. Let v1 and v2 be vertices
of D in C1 and C2, respectively. Because the graph underlying D is
connected, there is a path P from v1 to v2 in D. This path corresponds
to a path in Γ containing the vertices that contain the vertices of P .
Equation (2) can be interpreted as |E(Γ)| − |V (Γ)|+ 1 = 1, showing
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that the cycle space of Γ has dimension 1. Thus Γ contains a unique
circuit. �

Let Cab be the circuit of (V,A) given by the row (a, b) in the
decomposition (1). There must be an integer k ≥ 1 and red-green
vertices v0, v1, v2, . . . , v2k = v0 such that for one of the ways of going
around Cab, there is a red path in Cab from v2i+1 to v2i+2 with all
arcs directed forward and a green path in Cab from v2i to v2i+1 with
all arcs backward for i = 1, 2, . . . , k − 1. A maximal monochromatic
subpath of Cab is a path from vi to vi+1 for some i∈ {0, 1, . . . , 2k−1}. A
maximal monochromatic subpath of Cab will be called red if it contains
red edges, and green if it contains green edges. If none of the maximal
monochromatic subpaths of Cab are in components of (VR,AR) or
of (VG,AG) that have arcs not in Cab, then Cab is D, because D is
2-connected.

Proposition 5.2. Suppose that C is a circuit of D. Then either C is
contained in a red component or a green component, or C has the same
structure as Cab, in that it consists of paths between vi and vi+1 for
each i ∈ {0, 1, . . . , 2k− 1}.

Proof. The circuit C naturally defines a cycle in the graph Γ among
the vertices of Γ that contain edges of C. Recall that Γ contains a
unique cycle, and that the arcs of Γ correspond to red-green vertices
of D. Every vertex that is incident to both red and green arcs of C must
be vi for some i∈{0, 1, . . . , 2k−1}, by the uniqueness of the circuit in Γ.
The uniqueness of this circuit also implies that each vi appears in C. �

The vertices in Cab that have indegree 0 or 2 in Cab fill a special role,
in that every circuit containing red and green arcs must pass through
each of these vertices. Another role that they fill is as the nonzero
components of the element α of the semigroup S, which is the generator
of the 1-dimensional subsemigroup that is the intersection of the red
and green subsemigroups of S. Let

V +(Cab) = {i ∈ V (Cab) : i has indegree 0 in Cab},
V −(Cab) = {i ∈ V (Cab) : i has indegree 2 in Cab}.
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Proposition 5.3. The vector α generating the intersection of the red
and green subsemigroups of SD is equal to∑

i∈V +(Cab)
ei−

∑
j∈V −(Cab)

ej .

Lemma 5.4. Each of the red and green components of D is a CI-
digraph.

Proof. By Proposition 2.3, the digraphs (VR,AR) with red edges
and (VG,AG) of green edges are CI-digraphs. Therefore, the connected
components of these digraphs are CI-digraphs. �

Corollary 5.5. The graph Γ consists of one circuit.

Proof. This follows from Proposition 5.2 and the assumption that D
is 2-connected. �

Proposition 5.6. Suppose P is a maximal monochromatic subpath of
Cab and P is in a red (resp. green) component of D which contains an
arc not in Cab. Then P is a separating directed path.

Proof. Let A1 be the set of arcs in the red (resp. green) component of
D containing P , and let A2 be the remaining arcs of D. Let V1 consist
of vertices of D incident to arcs of A1 and let V2 consist of vertices of
D incident to arcs of A2. Then the only elements of V1 ∩ V2 are the
endpoints of P . �

Referring back to Example 1, the bipartite multigraph Γ contains one
vertex for one red component, and one vertex for one green component.
It contains two edges, one corresponding to the element 1 which is
both in the red component and the green component, and one edge
corresponding to the element 6 which is both in the red component and
the green component. The cycle Cab is made up of a maximal red chain
(1, 2, 6) and a maximal green chain (6, 5, 1). Both of these chains are in
components that contain other vertices not in Cab. The chain (1, 2, 6)
is in the red component which contains vertex v = 3. Cab contains a
vertex w = 5 that is not in the chain (1, 2, 6). Every path in the Hasse
diagram from v to w goes through a vertex of (1, 2, 6).
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Theorem 5.7. Suppose that D is a 2-connected CI-digraph and that P
is a directed path in D. Then there is a dependent path in D that does
not use any of the arcs in P .

Proof. The proof is by induction on the dimension of the cycle space.
It is clearly true when the dimension is 1. Suppose the dimension of
the cycle space is r ≥ 2 and P is a directed path in D. Suppose that
M is a mixed dominating matrix of relations for D with content 1,
decomposed as in matrix (1). Consider the circuit Cab. The red and
green components of D need not be 2-connected. However, any cut
vertices that they have will be on the circuit Cab. Let Y be the set of
all red-green vertices, together with all of the cut vertices of the red
and green components, ordered cyclically according to their appearance
in Cab. We will refer to a subdigraph between two consecutive vertices of
Y as a component. Then each component of D between two consecutive
vertices of Y is 2-connected or a single arc. Because r ≥ 2, then at least
one of these components will be 2-connected.

Case 1: There is a 2-connected component C between two consecutive
vertices of Y that has no arcs of P . Apply the inductive hypothesis to
this component and the path that is the intersection of Cab with C. The
resulting path Q that is dependent in C misses P and is also dependent
in D because none of its interior vertices is in Y .

Case 2: P contains arcs of every 2-connected component between
consecutive vertices of Y , but P has all arcs of the same color. Let
C be the red component or green component containing P . Each red
component and green component other than C must be a directed path.
Together they form a dependent path with no arcs of P .

Case 3: P has arcs in every 2-connected component between consecutive
vertices of Y , and one of the interior vertices, call it v, of P is a red-green
vertex. Let C be the red or green component containing v in which
v is the head of the arc of Cab in C containing v and the tail of the
arc of P in C containing v or vice versa. The part of C between v and
the next vertex of Y in C is a 2-connected component that we call C′.
Apply the inductive hypothesis to C′ and the path in C′ that is the
intersection of C′ and Cab ∪P . The resulting path Q that is dependent
in this component is also dependent in D, because none of its interior
vertices is in Y . �
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Corollary 5.8. Suppose that D is a 2-connected CI-digraph. Then D
has at least two dependent paths, neither of which is a subpath of the
other.

Proof. Let P be a dependent path guaranteed by the theorem, and
let P ′ be a minimal dependent subpath of P . Let P ′′ be a directed path
with at least one arc that is a subpath of P ′. Then the dependent path
Q that does not contain any arcs of P ′′ is such that neither of Q nor
P ′ is a subpath of the other. �

Corollary 5.9. A digraph D is a CI-digraph if and only if there is
a sequence D = D1, D2, . . . , Dr where Dr has a single circuit and for
i= 1, 2, . . . , r−1, the digraph Di+1 is obtained from Di by removing the
arcs and interior vertices of a dependent path.

Proof. Suppose D is a CI-digraph. Theorem 5.7 shows that D =D1

contains a dependent path in each 2-connected component and Propo-
sition 4.10 shows that the digraph obtained by removing the arcs and
interior vertices of the path is a CI-digraph. If Di is a CI-digraph for
some i, and Di is not a circuit, then for the same reasons there will be
a dependent path whose removal leaves a CI-digraph Di+1. �

Example 4. In Figure 3 below, the “ears” form the two dependent
paths. This example contains no directed dependent paths. By
increasing the size of the diamond, one can make the ratio of arcs
to vertices arbitrarily close to 2.
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Figure 3. Diamond with ears.

Theorem 5.7 and its corollaries suggest an efficient algorithm to
recognize CI-digraphs, by locating and removing dependent paths. Each
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dependent path removed contributes one row to the matrix of relations.
In Example 3, notice that there is no dependent path.

Corollary 5.10. Let D be a CI-digraph and let P be a separating
directed path. Then each of the subdigraphs D1 and D2 glued together
along P to form D is a CI-digraph.

Proof. Apply Theorem 5.7 repeatedly to D and the path P , locating
and removing dependent paths. Note that none of the dependent paths
to be removed may have a vertex of P as an interior vertex, so each
of the dependent paths is contained in D1 or D2. If a directed path Q
from one end of a dependent path R to the other contains arcs in both
D1 and D2 that are not in P , then one can also obtain, by replacing
subpaths of this path by subpaths of P , a directed path Q′ from one
end of R to the other that has all its arcs in the same component, D1

or D2, that contains R. By Proposition 4.9, we can use this circuit in a
mixed dominating cycle basis. Each path yields a circuit in D1 or in D2.
The circuits in D1 form a mixed dominating matrix with content 1 that
is a cycle basis for D1 and the circuits in D2 form a mixed dominating
matrix with content 1 that is a cycle basis for D2. �

Definition 5.11. Let the rows of an r× n matrix M span the cycle
space of D. The rows of M form a weakly fundamental cycle basis if the
rows and columns of M can be permuted so that M contains an r× r
nonsingular triangular submatrix.

Theorem 5.12. Suppose that M is a mixed dominating matrix of
relations of content 1 for the CI-digraph D. Then the rows of M form
a weakly fundamental cycle basis of the cycle space of D.

Proof. We proceed by induction on r, the number of rows of M . The
result is clear if r= 1. Suppose the theorem is true whenever the matrix
has r− 1 rows. Let M have r rows. Let e be an arc that only appears
in one row of M . Permute the rows of M so that the row containing a
nonzero entry in column e is last. Permute the columns of M so that
the columns containing entries in this row that do not have nonzero
entries in any other row are last. The remaining rows of M form a
mixed dominating matrix of content 1, which is a matrix of relations for
the semigroup of the digraph with arc e deleted. By induction, the rows
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and columns of this smaller matrix can be permuted to make the matrix
contain a nonsingular (r− 1)× (r− 1) lower triangular submatrix. �

6. A non-TU example. The following example shows that the
matrix M for a complete intersection need not be totally unimodular.
It is reminiscent of Figure 23 of [1].

Example 5. Consider the matrix


1 1 1 0 −1 −1 0 0 0 0 0 0
0 1 1 1 0 0 −1 −1 0 0 0 0
0 1 1 0 0 0 0 0 −1 −1 0 0
1 0 0 1 0 0 0 0 1 1 −1 −1

(1, 2) (2, 3) (3, 4) (4, 5) (1, 8) (8, 4) (2, 9) (9, 5) (2, 6) (6, 4) (1, 7) (7, 5)

.

The submatrix in rows 1, 2 and 4 and columns (1, 2), (2, 3) and (4, 5)
has determinant 2. Note also that columns (1, 8), (2, 9), (2, 6) and (1, 7)
contain a triangular basis with −1 on the diagonal.
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Figure 4. Poset for Example 5.
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