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Suppose S ⊆ R
d is a set of (finite) cardinality n whose complement

can be written as the union of k convex sets. It is perhaps intu-
itively appealing that when n is large k must also be large. This is
true, as is shown here. First the case in which the convex sets must
also be open is considered, and in this case a family of examples
yields an upper bound, while a simple application of a theorem of
Björner and Kalai yields a lower bound. Much cruder estimates
are then obtained when the openness restriction is dropped. For
a given set S the problem of determining the smallest number of
convex sets whose union is R

d \S is shown to be equivalent to the
problem of finding the chromatic number of a certain (infinite)
hypergraph HS . We consider the graph GS whose edges are the
2-element edges of HS , and we show that, when d = 2, for any
sufficiently large set S, the chromatic number of GS will be large,
even though there exist arbitrarily large finite sets S for which GS

does not contain large cliques.

In memory of Vic Klee.

1. Introduction. Given a finite set S ⊆ R
d, we consider the following

question: What is the smallest value of k for which there exist k convex
sets C1, . . . , Ck ⊆ R

d such that C1 ∪ . . . ∪ Ck = R
d \ S? We find upper

and lower bounds on this number based upon the dimension d and the
cardinality n = |S|, and we study certain related graphs and hypergraphs.

This problem has apparently not been given explicit treatment until
now. If the question is formulated in terms of the complementary set X =
R

d \ S, then we are asking for the smallest number of convex sets whose
union equals X, and this question has been considered, albeit not for sets
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X that are complements of finite sets. McKinney [14], Breen [7], Lawrence,
Hare, and Kenelly [12], and Perles and Shelah [17] are among many papers
motivated by a result involving the notion of “n-convexity” of Valentine
[19] and the search for generalizations of that result. See Matoušek and
Valtr [15] for recent results and additional references. Also, the problem of
finding linear decision trees having few leaf nodes for a given polyhedral set
X is closely related to the question of how few relatively open convex sets
are required to write X as a union. See Björner, Lovász, and Yao [5]. (We
thank an anonymous referee, who noted the relevance of this reference.)
Finally, the “art gallery” problems, in which it is desired to write X as a
union of a small number of star-shaped sets, are distant relatives of the one
at hand. See Bárány and Matoušek [1], for instance.

We now summarize the contents of the paper. In Section 2, the problem
is studied in the case in which the convex sets Ci are additionally required to
be open. Given an open polyhedron X ⊆ R

d, denote by k the least number
of open convex sets Ci (1 ≤ i ≤ k) such that X =

⋃

Ci. We present a
method to obtain a lower bound on k in terms of the dimension d and the
Betti numbers of X, as a simple consequence of a theorem of Björner and
Kalai [4]. With this result and a simple example we obtain that, given
k open convex sets in R

d whose union has complement of cardinality n,
(⌊k

d
⌋ − 1)d ≤ n ≤

(

k−1

d

)

.

In Section 3, we return to the case in which the openness restriction is
dropped. The Betti bound doesn’t apply to the case of general convex sets;
and even when S is a singleton, only two convex sets are required to write
the complement as a union, while k = d + 1 open convex sets are required.
Given the finite set S ⊆ R

d, a hypergraph HS is introduced, and using
Carathéodory’s Theorem it is shown that the minimum k of our problem
equals the chromatic number of HS . We study an example, in which S is
the set of four vertices of a rectangle.

Theorem 2 yields that, for a set S of cardinality n affinely spanning R
d

whose complement is a union of k convex sets, one has n ≤ (k−1)
(

k
⌊ k

2
⌋

)d−1
.

It follows that, for S ⊆ R
d, if |S| is sufficiently large (with d fixed) then the

number of sets required is large. In Theorem 3, it is shown that when S is
the vertex-set of a simplex, three convex sets suffice.

In section 5, the graphs GS whose edge-sets consist of the 2-element
edges of HS are studied. Analogous graphs have been studied in connection
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with n-convex sets. See Matoušek and Valtr [15], where they are dubbed
“invisibility graphs.” See also Pfender [18] for the related notion of “visibil-
ity graph.” If S ⊆ R

2 has at least nine elements, then GS has a clique with
four vertices (Theorem 4). There are arbitrarily large (finite) sets S ⊆ R

2

for which GS has no large cliques (Theorem 5), and yet the chromatic num-
ber of GS can be arbitrarily large (Theorem 6).

In the final Section 6, a list of questions and problems is put forth.

2. Complements of unions of open convex sets. Suppose C1, . . . , Ck

are open convex sets in R
d having finite complement S = R

d\(C1∪· · ·∪Ck)
and let n denote the cardinality, n =

∣

∣S
∣

∣. We obtain an upper bound on n
in terms of k and d as a simple corollary of a theorem of Björner and Kalai.

In [4], Björner and Kalai have given a thorough treatment of the ques-
tion of the relationship between the f -vector and the Betti numbers of a
finite simplicial complex. They have characterized the pairs of vectors f ,
b that can be obtained as the f -vector and “Betti vector” of a simplicial
complex. Additionally, they obtained (among other things) the following
theorem, which is useful here.

Theorem of Björner and Kalai. (Theorem 1.3 of [4].) A sequence
b0, b1, . . . is the sequence of Betti numbers of some simplicial complex having
at most k vertices if and only if there is a Sperner family of subsets of [k−1]
that has b0 − 1 singleton sets and, for j ≥ 1, bj sets of cardinality j + 1.

Given a finite family C of closed (or open) convex sets in R
d, recall

that the nerve of C is the simplicial complex on [k] consisting of the index
sets of subcollections of C whose members have nonempty intersection. By
versions of the Nerve Theorem (see Section 10 of the survey article, Björner
[3]), we see that the such

nerve of C and the union of its members have the same Betti numbers.

Corollary 1. Let X be a closed (open) set in R
d, let C = {C1, . . . , Ck}

be a finite collection of closed (open) convex sets in R
d, and suppose that

X = C1 ∪ · · · ∪ Ck. Let b0, b1, . . . be the Betti numbers of X. Then there
is a Sperner family of subsets of [k − 1] that has b0 − 1 singleton sets and,
for j ≥ 1, bj sets of cardinality j + 1.

Proof. We need only note that the nerve of the family is a simplicial complex
having k vertices and Betti numbers b0, b1, · · · .
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In the case of the complement of a disjoint union of compact convex
sets we get the next statement.

Corollary 2. Let S ⊆ R
d be a set which is the union of n pairwise disjoint

compact convex sets, and let C = {C1, C2, . . . , Ck} be a collection of k open
convex sets whose union is R

d \ S. Then n ≤
(

k−1

d

)

.

Proof. Note that each Ci may be replaced by an open convex set that
misses S, so we may assume without loss of generality that the sets Ci are
open. In this case, b0 − 1 = 0 and the only nonzero Betti number of R

d \ S
other than b0 is bd−1 = n; then k must be large enough that there are n
subsets of [k − 1] having d elements.

If S is a set of n distinct points in R
d, then the hypothesis is satisfied,

so, letting η(k, d) denote the largest n such that there exist k open convex
sets in R

d for which the complement of the union is an n-element set, we
have that η(k, d) ≤

(

k−1

d

)

.

Let m be a positive integer. A family of m−1 parallel hyperplanes cuts
R

d into m open convex “slabs.” We may take d such families, the hyper-
planes in each family being parallel to one of the d coordinate hyperplanes.
The complement of the union of the resulting collection of k = dm slabs
consists of n = (m − 1)d points. It follows that η(k, d) ≥ (k

d
− 1)d, when d

divides k.

It is clear from the proofs of the corollaries that in fact the conclu-
sions hold when it is only assumed that the sets Ci and their nonempty
intersections are contractible, or when they are merely acyclic. In the case
of such families, the bound of Corollary 2 is tight. To see that this is so,
consider a simple arrangement of k ≥ d + 1 hyperplanes in R

d. We need
an arrangement for which the union of the bounded cells is homeomorphic
to a d-ball; but, according to Dong [9], every simple arrangement has this
property. As is well-known, there are

(

k−1

d

)

bounded d-dimensional cells of
the arrangement. Upon expanding each hyperplane slightly to an open slab
and restricting attention to the bounded portion, we obtain k open convex
sets contained in an open d-ball for which the complement of the union
consists of n =

(

k−1

d

)

(compact) polytopes. Topologically, this is what we
need for Corollary 2. Observe also that we may shrink the polytopes to
singleton sets, providing an example in which the complement of the union
consists of

(

k−1

d

)

points.
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Letting b denote the largest finite n for which there exist k open convex
sets in R

d whose union has complement consisting of n compact convex
sets, a analogously when the complement consists of n points, we have
that (⌊k

d
⌋ − 1)d ≤ a ≤ b ≤

(

k−1

d

)

. It is possible to show that all of these
inequalities are sometimes strict.

Björner, Kalai, and Yao [5] study the problem of determination of
linear decision trees for various polyhedral sets X in R

d. It is desired to
find such a tree having as few leaves as possible. It is easily seen that the
minimum number of relatively open convex sets required to write X as a
union is a lower bound on the number of leaves. Two methods are given
to find lower bounds on the number of convex sets. One of these involves
computations with volumes; the other involves the Euler characteristic χ of
X. For certain sets S the volume argument might be of use but it does not
yield a bound for our problem in general. The Euler characteristic yields a
simple bound (Theorem 3.1 of [5]). Usually the Betti bound of Corollary 1
is tighter, but it can be more difficult to compute the Betti numbers of X
than to compute the Euler characteristic. See Björner and Welker [6] for
the Betti numbers of the k-equal manifolds.

3. The hypergraphs HS and a planar example. Now we proceed to
the case in which the convex sets Ci are not required to be open. There is
a hypergraph that has relevance to the problem. Given a finite set S ⊆ R

d,
the (infinite) hypergraph, here denoted by HS , has as its vertex set the
complement R

d\S, and a subset E of R
d\S is an edge of HS if E is a minimal

set such that S ∩ conv(E) 6= ∅. Each edge of HS has cardinality lying
between 2 and d + 1 (inclusive), and is the set of vertices of a simplex. We
are interested in determining the possible values for the chromatic number
c(HS). Recall that the chromatic number of a hypergraph is the smallest

number of colors needed to color the vertices of the hypergraph in such
a way that no edge of the hypergraph is monochromatic. This number is
easily described geometrically: It is the smallest positive integer k such that
R

d \ S can be written as the union of k convex subsets. (The equivalence
follows from the well-known theorem of Carathéodory, stated on page 15 of
[11].) Theorem 2 gives a lower bound on the number c(HS) which depends
only on the dimension d and the cardinality n of S.

The one-dimensional case, for S ⊆ R = R
1, is easily dispensed with.

The n elements of S partition the number line into n+1 intervals, and it is
clear that in the most efficient coloring each of these intervals gets its own
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color; so c(HS) = n + 1.
The problem is less trivial for d = 2. The following theorem treats the

case of the set of four vertices of a parallelogram.

Theorem 1. If S is the set of vertices of a parallelogram then c(HS) = 4.

1

2
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6 7

8 9

10

11

12

A

C
D

B

Figure 1. Points in Plane.

Proof. It will be useful to consider, in addition to the hypergraph HS ,
the graph GS obtained from it by considering only the edges of cardinality
two; that is, GS is the graph whose vertex set is R

d \ S, with two vertices
adjacent if the line segment they determine has nonempty intersection with
S. It is clear that the chromatic number of the graph is at most that of the
hypergraph: c(GS) ≤ c(HS).

We may assume that S is the set {A,B,C,D} of vertices of the rect-
angle depicted in Figure 1, since nonsingular affine mappings of the plane
to itself induce isomorphisms of the hypergraphs and graphs. The twelve
marked points in that figure induce the subgraph depicted in Figure 2, which
is easily seen to have chromatic number 4; so we have c(HS) ≥ c(GS) ≥ 4.
A 4-coloring of HS is depicted in Figure 3.

The chromatic number of HS equals the maximum of the chromatic
numbers of its finite subhypergraphs; and similarly for GS ([12], [8]). Indeed
this holds for any graph or any hypergraph having only finite edges, when
the chromatic number is finite (assuming the Axiom of Choice).
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Figure 2. Corresponding Graph.

4. A bound on c(HS). In this section we present a bound on the cardi-
nality of S, given the dimension d and the number k of convex sets in the
covering of the complement. We also give a result that shows that no such
bound in terms of k alone exists, in contrast to results of Section 2 for the
case of open convex sets.

The proof of the next theorem uses the following technical lemma.
Suppose T = {p0, . . . , pd} is an affine basis for R

d. We denote by
A(p0, T ) the cone emanating from p0 ∈ T given by

A(p0, T ) = {p0 +

d
∑

i=1

αi(p0 − pi) : α1, . . . , αd > 0}.

This is the reflection through p0 of the interior of the cone emanating from
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Figure 3. A Four-Coloring.

p0 generated by T .

Lemma 1. Suppose T = {p0, . . . , pd} is an affine basis for R
d, C is a convex

set such that T \{p0} = {p1, . . . , pd} ⊆ cl C, and C∩A(p0, T ) is nonempty.
Then p0 ∈ C.

Proof. Let x = p0 +
∑d

i=1
αi(p0 − pi) ∈ C, where αi > 0 (i = 1, . . . . , d).

Then p0 = (x + α1p1 + · · · + αdpd)/(1 + α1 + · · · + αd) is in the interior
of conv{x, p1, . . . , pd}. Also conv{x, p1, . . . , pd} ⊆ cl C so p0 lies in the
interior of cl C, which is contained in C.

Suppose S ⊆ R
d is finite and C1, . . . , Ck are convex sets such that

⋃

Cj = R
d \ S. For v ∈ S, let λ(v) = {j : v ∈ cl Cj} ⊆ [k]. Using

Lemma 1, it follows that, for any point v ∈ S, the set {u ∈ S : λ(u) ⊇ λ(v)}
is contained in a hyperplane.

Theorem 2. Let S be a set of n points affinely spanning R
d, and let

C1, . . . , Ck ⊆ R
d be convex sets such that C1 ∪ · · · ∪ Ck = R

d \ S. Then
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n ≤ (k − 1)
(

k
⌊ k

2
⌋

)d−1
. Equivalently, c(HS) ≥ k, where k is the smallest

positive integer for which the above inequality holds.

Proof. We proceed by induction on d. For d = 1, clearly, n ≤ k − 1, as
required. Suppose d > 1 and that the result holds for d − 1.

By Lemma 1, if v ∈ S then {u ∈ S : λ(u) ⊇ λ(v)} is contained in a
hyperplane. Let H be such a hyperplane and note that H \(C1∪· · ·∪Ck) =

H ∩ S. By the inductive assumption, |H ∩ S| ≤ (k − 1)
(

k
⌊ k

2
⌋

)d−2
.

Let T be the collection of (distinct) sets of the form λ(v), where v ∈ S,
which are minimal with respect to set inclusion. We have |T | ≤

(

k
⌊ k

2
⌋

)

, by

Sperner’s Theorem; then, since S is the union of the sets {v ∈ S : λ(v) ⊇ T}

for T ∈ T , |S| ≤ (k − 1)
(

k
⌊ k

2
⌋

)d−1
.

Theorem 3. If S is the vertex set of a d-simplex (d ≥ 1), then c(GS) =
c(HS) = 3.

Proof. Since this property is invariant under affine equivalence, we may as-
sume that S = {p0, . . . , pd}, where p0 = (0, . . . , 0, 0, 0), p1 = (0, . . . , 0, 0, 1),
p2 = (0, . . . , 0, 1, 1), . . . , and pd = (1, . . . , 1, 1, 1).

Given u = (x1, . . . , xd) ∈ R
d let u∗ = (1 − xd, 1 − xd−1, . . . , 1 − x1).

Let A0 = {u : u and u∗ are lexicographically positive}. Let B =
{u : u is lexicographically positive and u∗ is lexicographically negative}.
Let C = {u : u is lexicographically negative}. It is clear that A0 ∪B ∪C =
R

d \ {p0, pd}, B ∩ S = C ∩ S = ∅, and A0 ∩ S = {p1, p2, . . . , pd−1}. Let
A = A0 \ {p1, p2, . . . , pd−1}. Then A ∪ B ∪ C = R

d \ {p0, p1, . . . , pd}.
Also it is clear that A0, B, and C are convex. We show that A is also

convex. Let u = (u1, . . . , ud) and v = (v1, . . . , vd) be elements of A and
suppose there is a convex combination w = αu+βv (so that α, β ≥ 0, α+β =
1) which is not in A. Since A0 ⊇ A is convex, w must be in A0\A. If j is the
smallest index for which one of uj , vj is nonzero, then, using lexicographic
positivity of u and v, wj = αuj + βvj > 0. Letting j′ denote the largest
index for which neither of uj , vj is 1, we see by lexicographic positivity of
u∗ and v∗ that wj′ = αuj′ + βvj′ < 1. Then, since w ∈ {p1, . . . , pd−1},
j′ < j. We have that ui = vi = 0 for i < j and ui = vi = 1 for i > j′, so it
must be the case that j = j′ + 1 and u = v is in A0 \ A, a contradiction.

Then A, B, and C are convex and have union R
d. We have c(GS) ≤

c(HS) ≤ 3.
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That c(GS) ≥ 3 is easy to verify (and holds for any set S such that
|S| ≥ 2).

5. The graphs GS. One might venture the conjecture that a statement
analogous to Theorem 2 should hold for GS , as well, so that for large sets S
the chromatic number of GS should be large. One way to attempt to prove
this would be to try to find a lower bound on the maximum clique size of
GS that grows without bound as |S| does. The following theorem shows
that such

the graph does contain cliques of four vertices when |S| is large enough.
However, there are arbitrarily large (finite) sets S for which GS contains no
clique having 22 vertices; this is Theorem 5. Subsequently, the last theorem
establishes the conjecture when d = 2, by making use of a different sequence
of graphs having members of large chromatic number.

Lemma 2. Assume the vertices of a convex pentagon are y1, y2, y3, y4, y5,
in clockwise order around the pentagon. There exists a yj for which the
rays −−−−→yjyj−1 and −−−−→yjyj+1 both intersect the line L determined by yj−2 and
yj+2. (Indices are taken modulo 5.)

Proof. At least one of the rays −−→y1y5 and −−→y1y2 intersects the line L3,4 (where
Li,j denotes the line through yi and yj). If both do, then y1 serves as the
yj required by the lemma. Otherwise, assume that −−→y1y5 intersects L3,4 and
that −−→y2y1 either intersects or is parallel to L3,4. Then −−→y2y1 must intersect
the line L4,5. If also −−→y2y3 intersects L4,5, then y2 satisfies the requirements
of the lemma. Otherwise, −−→y3y2 intersects or is parallel to L4,5. Then −−→y3y2

intersects L1,5. We assumed that −−→y1y5 intersects L3,4; the point of intersec-
tion must be on the ray −−→y3y4. Therefore y3 satisfies the requirements of the
lemma.

Theorem 4. Suppose S has nine points. Then GS has a clique with four
vertices.

Proof. If S contains three collinear points, then GS clearly contains a clique
with four vertices. If S has nine points, no three of which are collinear, then
S contains the vertex set of a convex 5-gon. (See Morris and Soltan [16]
for a proof due to Bonnice.) Let y1, . . . , y5 be as in the lemma, indexed
so that the j guaranteed by the lemma is j = 3. For ǫ > 0, let x1 =
y3 +ǫ(y3−y1)+ǫ(y3−y5). For small enough ǫ, the three intersection points

10



x2, x3, x4 of the rays −−→x1y2,
−−→x1y3, and −−→x1y4 with the line L through y1 and

y5 will lie in different components of L \ {y1, y5}. The vertices x1, x2, x3, x4

form a clique of GS .

By a transversal of a family of line segments is meant a set T which
has nonempty intersection with the relative interior of each segment of the
family. By a pair-transversal of a set X is meant a transversal of the family
of all line segments determined by pairs of points of X. Given a finite set
X in R

2, τ(X) denotes the minimum cardinality of a pair-transversal of X.

Lemma 3. Let X be a set of n points in R
2 that affinely spans R

2. Let
m denote the number of points of X that lie in the interior of the convex
polygon P = conv(X). Then τ(X) ≥ 2n − 3 + m.

Proof. The polygon P can be triangulated (using geometric triangles) in
such a way that the points of X are the vertices of the triangulation. There
are exactly 2n − 3 + m edges in such a triangulation, and these edges have
pairwise disjoint relative interiors.

Lemma 4. Let X be the set of vertices of a convex 5-gon. Then τ(X) = 8.

Proof. Any pair-transversal T of X is of the form T = T1 ∪ T2, where T1

consists of the points of T lying in the interior of P = conv(X) and T2

consists of boundary points. Then T2 has at least five elements, one for
each boundary edge; and T1 is a transversal of the set of five interior edges
of P , no three of which have relative interiors with a point in common. It
follows that T2 has cardinality at least ⌈5

2
⌉ = 3, so |T | = |T1| + |T2| ≥ 8.

Clearly eight such points can be chosen.

Lemma 5. Suppose X is a finite set in the plane, L is a line determined by
points of X, and H+, H− are the closed halfplanes bounded by L. Then

τ(X) ≥ τ(X ∩ H+) + τ(X ∩ H−) − τ(X ∩ L).

Proof. Note that T1 is a pair-transversal of X ∩H+ if and only if T1 ∩L is
a pair transversal of X ∩L and T1 \L is a transversal of the relatively open
edges determined by X∩H+ which do not lie in L. If T is a pair-transversal
of X then T1 = T ∩ H+, T2 = T ∩ H−, and T ∩ L are pair-transversals of
X ∩ H+, X ∩ H−, and X ∩ L, respectively; and

|T | = |T1 ∪ T2| = |T1 \ L| + |T2| ≥
(

τ(X ∩ H+) − τ(X ∩ L)
)

+ τ(X ∩ H−).
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Lemma 6. Let X ⊆ R
2 with no four points of X on a line.

(1) If |X| = 7 then τ(X) ≥ 12.
(2) If |X| = 12 then τ(X) ≥ 23.
(3) If |X| = 22 then τ(X) ≥ 45.

Proof. Let P = conv(X).
Suppose |X| = 7. If some point of X is interior to P then Lemma

3 yields the desired conclusion. Otherwise, X contains the vertices of a
convex 5-gon, P0. Let X0 denote the five vertices. by Lemma 4, τ(X0) ≥ 8.
If v is one of the remaining two points of X, there is a line L determined
by an edge of P0 that separates P0 from v. Using this line L as in Lemma
5, we see that τ(X0 ∪ {v}) ≥ 10. A similar argument using the last point
of X yields τ(X) ≥ 12.

Suppose |X| = 12. If two or more points of X lie in the interior of P
then Lemma 3 yields the result. Otherwise, it is clear that there is a line L,
bounding halfplanes H+ and H−, |X∩L| = 2, and |X∩H+| = |X∩H−| = 7.
Then (1) and Lemma 5 yield (2). A similar argument for |X| = 22 yields
(3).

Theorem 5. There exist arbitrarily large (finite) sets S ⊆ R
2 such that

GS contains no clique with twenty-two vertices.

Proof. Let Λ = {(λ1, µ1), (λ2, µ2), . . . , (λ45, µ45)} denote a set of 45 ordered
pairs (λ, µ), where 1 ≤ λ < µ ≤ 22. Consider the real vector spaces V and
W , where V consists of (R2)22 ×R

45, an arbitrary element of which can be
denoted by

X = (x1, . . . , x22;α1, α2, . . . , α45),

the xi’s being elements of R
2 and the αi’s being real numbers, and where

W is (R2)45, consisting of points Y = (y1, y2 . . . , y45), with the yi’s in R
2.

Let FΛ : V → W be the function that takes X to the point Y , where
yi = αixλi

+ (1 − αi)xµi
. Since dim W = 90 > 89 = dim V , it is clear

that this polynomial function is not surjective: The image of FΛ is an
algebraic set of smaller dimension. Therefore there is a polynomial PΛ(Y ),
not identically zero, such that PΛ(Y ) = 0 for Y ∈ FΛ(V ).

Denote by U be the vector space having points of the form Z =
(y1, y2, . . . , yn), where the yi’s are in R

2 (and where, in nontrivial cases,
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n ≥ 45). Choose a point Z ∈ U with no three of the entries of Z collinear
and having the property that, whenever (as above) Λ is an indexed set
of ordered pairs, j1, . . . , j45 are distinct indices between 1 and n, and
Y = (yj1 , . . . , yj45) has entries obtained from those of Z, we have that
PΛ(Y ) 6= 0. This is possible, since we have only finitely many polynomial
equations. Let S = {y1, y2, . . . , yn}.

It remains to be shown that GS has no clique with 22 vertices. Suppose,
on the contrary, that there is such a clique, with vertices xλ, 1 ≤ λ ≤ 22.
For each pair (λ, µ) with 1 ≤ λ < µ ≤ 22, there are α ∈ R (between 0
and 1) and j ∈ [n] such that αxλ + (1 − α)xµ = yj . Since no three points
of S are collinear and each pair of points xλ are adjacent in GS , no four
of these points can be collinear, so Lemma 6 applies to yield that the im-
age of the function (λ, µ) 7→ j has cardinality at least 45. Therefore, we
may choose a set Λ of 45 pairs {(λi, µi) : 1 ≤ i ≤ 45} and correspond-
ing ji’s and αi’s, where the ji’s are distinct. Letting X denote the point
(x1, . . . , x22;α1, α2, . . . , α45) ∈ V and Y the point (yj1 , . . . , yj45) ∈ V , we
have Y ∈ FΛ(X), contrary to our choice of Z.

For the proof of the next theorem, a sequence of graphs, slight variants
of which were apparently first studied by A. Gyárfás (see problem 15, page
360, of [2]), will be useful. For m ≥ 2 let Dm denote the graph whose
vertices are the ordered pairs (i, j) of integers with 1 ≤ i < j ≤ m, having
(i1, j1) and (i2, j2) adjacent provided that j2 = i1 or j1 = i2. Given a
positive integer k, for sufficiently large m, this graph has chromatic number
at least k, a consequence of the next lemma. Given this number m, we
show in the proof of Theorem 6 that GS contains a subgraph isomorphic to
Dm, provided that |S| is large enough.

Lemma 7. The chromatic number of Dm equals ⌈log2 m⌉.

Proof. (This statement is a version of the problem of [2] cited earlier.) Given
I, a set of vertices of Dm with no two adjacent, let A = {i ∈ [m] : there is
j ∈ [m] with (i, j) ∈ I}. Clearly, if (i, j) ∈ I then i ∈ A and j /∈ A. Given a
k-coloring of Dm, let A1, A2, . . . , Ak be the subsets of [m] corresponding in
this way to the vertices of each color. Let ǫ : [m] → {0, 1}k be the function
having ǫ(i) = (ǫ1, . . . , ǫk), where ǫl is 1 if i ∈ Al, and 0 otherwise. For
i, j ∈ [m], where i < j, there exists l such that (i, j) is of the l-th color;
then i ∈ Al and j /∈ Al. It follows that ǫ is injective, so m ≤ 2k.

A coloring using only ⌈log2 m⌉ colors can easily be found.
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The proof of the following theorem also uses the notion of “strongly
convex position.” We say that a set {p1, . . . , pn} ⊆ R

2 is in strongly convex

position relative to a given set of coordinates for R
2 if the x-coordinates are

in (strictly) increasing order (as indexed), and, for each j with 1 < j < n,
the point pj is below the line through the points pj−1 and pj+1. The next
two lemmas facilitate the use of this notion.

Lemma 8. Given positive integers m, k (2 ≤ k < m) there exists a positive
integer n such that, for any set of at least n points in the plane with no k on
a line, there is a subset having m elements, of which no three are collinear.

Proof. See [11]. This is a special case of the assertion contained in the
remark on page four of that book, where the usefulness of the statement is
noted. A proof is given in the notes at the chapter’s end.

Lemma 9. Given positive integers m and k, there exists n such that for
any set S ⊆ R

2 having at least n points, no k collinear, there are a choice
of coordinates and a subset S′′ ⊆ S of m points, such that, with respect to
these coordinates, S′′ is in strongly convex position.

Proof. By a well-known theorem of Erdős and Szekeres (of [10]; see also
the survey article, Morris and Soltan [16]), there is a number n0 such that
if S′ is a set of n0 points in the plane, no two elements of S′ have equal x-
coordinates, and no three elements of S′ are collinear, then there is a subset
S′′ ⊆ S′ having m elements such that either S′′ or −S′′ is in strongly convex
position.

By Lemma 8, there is n such that any set S ⊆ R
2 having more than n

elements, no k on a line, contains a subset S′ of n0 points, no three on a line.
By a new choice of coordinates, it can be arranged that the x-coordinates
of the elements of S′ are distinct. Then, by the first paragraph, S′ has a
subset S′′ of cardinality m such that either S′′ or −S′′ is in strongly convex
position with respect to the chosen coordinates; and by another change of
coordinates, it can be arranged that S′′ is in strongly convex position.

Theorem 6. For each positive integer k there exists an integer n0 such
that if S ⊆ R

2 and |S| ≥ n0 then c(GS) ≥ k.

Proof. Let n1 be a positive integer such that, if m ≥ n1, then Dm has
chromatic number at least k.
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By Lemma 9, there is a number n0 such that if S is a set having at
least n0 elements and if S has no k−1 collinear points then there is a choice
of coordinates for R

2 and a subset S′ ⊆ S having 2n1 elements such that
S′ is in strongly convex position with respect to these coordinates.

Let S ⊆ R
2 be a set having cardinality at least n0. If some subset of

k − 1 points of S is collinear then clearly c(GS) ≥ k. Otherwise, there is
a choice of coordinates for R

2 and a subset S′ = {p1, . . . , p2n1
} of S such

that, with respect to these coordinates, S′ is in strongly convex position.
For 1 ≤ i < j ≤ n1, let qi,j denote the point of intersection of the

line through p2i−1 and p2i with the line through p2j−1 and p2j . If j2 = i1
or j1 = i2 then qi1,j1 and qi2,j2 are adjacent in GS′ . It follows that Dn1

is
isomorphic to a subgraph of GS .

6. Additional questions. We mention a few open questions and problems.

1. Is it the case that, for each finite set S ⊆ R
d, c(GS) = c(HS)?

2. Compare the problem of covering R
d \ S by open sets that are indepen-

dent in the graph GS (that is, having no two elements adjacent) with the
problem of coloring the graph GS . Already when S consists of a single point
in R

d, the number of such open sets required to write R
d \ S as the union

is d + 1, whether or not the sets are also required to be convex.

3. If (when d ≥ 2) GS and GS′ are isomorphic graphs, must S and S′ be
equivalent by a linear transformation?

4. It is shown by Lawrence and Soltan in [13] that the convex hull of the
complement of the union of k convex sets is a convex polyhedron, so that
if this set is compact then it is a polytope. How many vertices can such a
polytope have?

5. Find c(HS) or c(GS) in specific cases. What are the values, when S is
the set of vertices of a regular n-gon? Does the value change for n-gons
that are not regular?

6. We have observed that Corollary 1 applies when the open sets Ci and
their intersections are assumed only to be acyclic. Is the resulting bound
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tight for compact polyhedra in this case? That is, given a compact poly-
hedron X having Betti numbers b0, b1, . . . and given an integer k such that
there exists a Sperner family of subsets of [k − b0] consisting of bj sets of
cardinality j + 1 (for j = 1, 2, . . . ), is it always possible to cover X by k
acyclic subspaces?

7. Does Theorem 6 hold in R
d when d > 2?
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[15] J. Matoušek and P. Valtr, On visibility and covering by convex sets.
Israel J. Math. 113 (1999), 341–379.

[16] W. Morris and V. Soltan, The Erdős-Szekeres problem on points in
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