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Abstract. We study the copoint graph of a convex geometry. We give a family of copoint

graphs for which the ratio of the chromatic number to the clique number can be arbitrarily

large. For any natural numbers 1 < d < k, we study the existence of a number Kd(k) so that

the chromatic number of the copoint graph of a convex geometry on a set of at least Kd(k)

elements, with every d-element subset closed, has chromatic number at least k. Our results

are analogues of results of Erdős and Szekeres for convex geometries realizable by point sets

in Rd, where cliques in the copoint graph correspond to subsets of points in convex position.

1. Introduction

Let X be a finite set. An alignment L is a collection of subsets of X such that ∅ ∈

L , X ∈ L , and if A,B ∈ L then A ∩ B ∈ L . A set C ⊆ X is closed or convex if C ∈ L .

Following Edelman and Jamison [6], we also view L as a closure operator on the subsets of

X, where L (A) =
⋂
{C : C is closed and A ⊆ C}. The closure operator L is anti-exchange

if for any x, y /∈ L (C), x ∈ L (C ∪ y), then y /∈ L (C ∪ x). Equivalently, for any closed set

C, with C 6= X, there is at least one closed set of the form C ∪ p for p /∈ C. A pair (X,L )

where L is an anti-exchange closure operator is called a convex geometry. The closed sets

of a convex geometry (X,L ) can be partially ordered by inclusion to form a lattice, LL . A

subset A ⊆ X is convexly independent or independent if for all p ∈ A, p /∈ L (A− p).

A set C ∈ L is a copoint if it is maximal in X−p for some p ∈ X. If C is a copoint, there

is exactly one set in L of the form C ∪ p for p /∈ C. The unique p is denoted α(C), and

we say that the copoint C is attached to α(C). We will sometimes refer to a copoint C by

the pair (α(C), C). The copoint graph of (X,L ), G(X,L ), has as its vertex set the set of

copoints of (X,L ), with copoints C and D adjacent if and only if α(C) ∈ D and α(D) ∈ C.

The definition of independent sets shows that a set A ⊆ X is independent in (X,L ), if and

only if there is a clique in G(X,L ) of copoints attached to the elements of A. Thus the
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clique number of G(X,L ) equals the size of the largest independent set of (X,L ).

If X is a set of points in Rd, and L = {C ⊆ X : X ∩ conv(C) = C}, then (X,L ) is a

convex geometry, called the convex geometry realized by X. One can show that if the points

of a set X are in Rd, then a set A ⊆ X is the vertex set of a convex polytope if and only

if A is independent in (X,L ). For point sets X ⊆ R2 in general position, that is no three

points are on the same line, there is a famous conjecture of Erdős and Szekeres [8] that X

contains the vertex set of a convex n-gon whenever |X| > 2n−2. Morris [16] proved that

for a point set X in general position in R2, the chromatic number of G(X,L ) is at least n

whenever |X| > 2n−2. This result highlights the need to understand the relationship between

the chromatic number and clique number of copoint graphs. We will present several results

involving the clique and chromatic number of copoint graphs for general convex geometries.

One should keep in mind, however, that convex geometries realized by point sets in Rd form

a small subset of the set of all convex geometries.

In Section 2 we answer a question posed by Beagley [2], giving a family of convex geometries

([n],Ld,n), for positive integers d < n, for which ω(G(X,L )) = d + 1 and χ(G(X,L )) ≥

dlog2(n+ 1)e. This shows that the chromatic number of G(X,L ) cannot be bounded by a

function of the clique number of G(X,L ). The convex geometry ([n],Ld,n) will have the

property that it is d-free, i.e. L will contain every d-element subset of [n]. The fact that

every d-element subset is closed, together with the alignment property implies that every

k-element subset is closed for every integer k with 0 ≤ k ≤ d. This is a property that is

satisfied by convex geometries realized by point sets in general position in Rd.

In Section 3 we investigate the effect that the d-free property alone will have on the

chromatic number of G(X,L ). The first main result we prove is that if 1 < d < k there

exists a number Kd(k) so that any d-free convex geometry on a set of size at least Kd(k) will

have the chromatic number of its copoint graph at least k. We also show thatKd(d+2) = d+3

for all d > 1, analogous to a result of Esther Klein that every set of 5 planar points in general

position contains the vertex set of a convex 4-gon.

To close this introductory section, we give the smallest set of points in the plane in general

position for which ω(G(X,L )) and χ(G(X,L )) differ.

Of the 16 order types of 6 planar points in general position [1], there is only one with this

property. It is given in Figure 1. The copoints are shown to the right of the point set, in the
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Figure 1. A six point set and its poset of copoints

form (α(C), C) where α(C) is the point to which copoint C is attached. The copoints are

partially ordered by set containment. The subgraph of G(X,L ) induced by the copoints of

(X,L ) of size bigger than 3 forms the complement of a 9-cycle. This graph has chromatic

number 5 and clique number 4. From the figure one can see that the point set does not

contain the vertex set of a convex 5-gon, so the clique number of the whole graph is 4.

2. Construction of A Convex Geometry

Beagley [2] asked the following question: Is χ(G(X,L ))/ω(G(X,L )) ≤ c for some con-

stant c? We construct a family of convex geometries indexed by integers d, n with clique

number of d+ 1 and chromatic number at least dlog2(n+ 1)e .

Let n be a positive integer and {1, 2, . . . , n} = [n]. When i = 0, then [i] = ∅. Let d be a

positive integer, d < n, and define Ld,n = {([i] ∪ J)|0 ≤ i ≤ n, J ⊆ {i+ 2, . . . , n}, |J | ≤ d}.

Proposition 2.1. For n, d positive integers with d < n, the pair ([n],Ld,n) is a d-free convex

geometry.

Proof. It is easy to see that Ld,n is closed under intersection and ∅, [n] ∈ Ld,n. Let C

be in Ld,n, C 6= [n]. If C = [i] ∪ J with 0 ≤ i ≤ n, J ⊆ {i + 2, . . . , n}, |J | ≤ d, then

C ∪ {i+ 1} ∈ Ld,n, so ([n],Ld,n) is a convex geometry. To see that ([n],Ld,n) is d-free, note

that if |J | ≤ d and i is the smallest element of [n]\J , then J = [i−1]∪J ′ where |J ′| ≤ d. �

For each i ∈ {1, 2, . . . , n − d}, define Ai = {[i − 1] ∪ J |J ⊆ {i + 1, i + 2, . . . , n}, |J | = d}

and for each i ∈ {n− d+ 1, n− d+ 2, . . . , n} let Ai = {[i− 1] ∪ {i+ 1, i+ 2, . . . , n}}.

Proposition 2.2. For i = 1, 2, . . . , n, Ai is the set of copoints of ([n],Ld,n) attached to i.
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Proof. Suppose C ∈ Ai. Then C ∈ Ld,n and i /∈ C. If j /∈ C ∪ {i} then it must be true that

i ∈ {1, 2, . . . , n−d}. In that case |(C ∪{j})∩{i+ 1, i+ 2, . . . , n}| > d, so C ∪{j} /∈ Ld,n. It

follows that C is a copoint attached to i. Suppose C ∈ Ld,n with i /∈ C. If [i− 1] * C then

C ∪ {j} ∈ Ld,n for j the smallest element of [i − 1]\C. Thus C is not a copoint attached

to i. If [i − 1] ⊆ C and C ∩ {i + 1, i + 2, . . . , n} has fewer than d elements and is not

{i+ 1, i+ 2, . . . , n}, then there exists j > i so that C ∪{j} ∈ Ld,n. Again C is not a copoint

attached to i. Thus every copoint of Ld,n attached to i is in Ai. �

We define the graph Gd,n to be the copoint graph G([n],Ld,n). The size of the maximum

clique in Gd,n can be found using the size of the largest independent set.

Lemma 2.3. The clique number of Gd,n is d+ 1.

Proof. Let C ∈ Ld,n. We wish to show that C is the closure in Ld,n of a set of at most

d + 1 elements of [n]. If |C| ≤ d, then Ld,n(C) = C. So, let |C| > d. We can write

C = [i] ∪ J where 1 ≤ i ≤ n− d, J ⊆ {i + 1, . . . , n}, |J | = d. Thus, C = Ld,n({i} ∪ J) and

|{i} ∪ J | = d + 1. Since every closed set C can be written as the closure of at most d + 1

elements of [n], there is no independent set of size d+ 2. Thus ω(Gd,n) ≤ d+ 1.

Further, Gd,n contains a (d + 1)-clique consisting of the copoints of the form [n]\{i} for

i = n− d, . . . , n, so ω(Gd,n) = d+ 1. �

Let f : (V (G1,n)\{[n − 1]}) →
(
[n]
2

)
, where f([i − 1] ∪ {j}) = {i, j}. Then f is a graph

isomorphism from the subgraph of G1,n induced by the vertices other than [n−1] to the shift

graph of Kn (see [19, Chapter 8]). The shift graph of Kn is known to have clique number 2

and chromatic number dlog2(n)e.

To bound the chromatic number of Gd,n we make note of the following property of the set

Ai.

Proposition 2.4. Suppose that B ⊆ [n], |B| ≤ d, and i < b for all b ∈ B. Then there exists

C ∈ Ai so that C contains every element of B.

Proof. Choose a copoint C = [i− 1] ∪ J in Ai with B ⊆ J , and the result is immediate. �

Corollary 2.5. Suppose that B ⊆ [n], |B| ≤ d, and that i < b for all b ∈ B. Then there

exists C ∈ Ai so that C is adjacent in Gd,n to every copoint D in
⋃
b∈B

Ab.
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Proof. Proposition 2.4 shows that there is a C ∈ Ai containing every element of B. Because

b > i, we have i ∈ [b− 1] ⊆ D for all D ∈ Ab. �

We shall answer Beagley’s question, using ([n],Ld,n) to show that χ(G(X,L )) is not

bounded by any function of ω(G(X,L )).

Theorem 2.6. The convex geometry ([n],Ld,n) has ω(Gd,n) = d + 1 and dlog2(n+ 1)e ≤

χ(Gd,n).

Proof. ω(Gd,n) = d+ 1 by Lemma 2.3.

For any proper coloring of Gd,n with c colors, let Si be the set of colors used to color the

copoints of Ai, i = 1, 2, . . . , n. For 1 ≤ i < j ≤ n, the fact that there is a copoint of Ai

adjacent to every copoint of Aj means that the Si are distinct and nonempty. Therefore,

n ≤ 2c − 1, and any proper coloring of Gd,n requires at least dlog2(n+ 1)e colors. �

The graph for the convex geometry ([n],Ld,n) has clique number that is a function of d

and independent of n, while the chromatic number is at least dlog2(n+ 1)e. Therefore the

ratio χ(Gd,n)/ω(Gd,n) can be bigger than any fixed constant c, provided n is large enough.

The precise determination of χ(Gd,n) for d ≥ 2 is an interesting question in its own right.

Let S be a finite set. A d-nondecreasing sequence of subsets of S is a sequence S1, S2, . . . , St

so that for any set B ⊆ [t], |B| ≤ d, and for j ∈ [t] with j > b for all b ∈ B, we have

Sj 6⊆
⋃
b∈B

Sb.

Lemma 2.7. The chromatic number of Gd,n is the smallest integer s for which there is a

d-nondecreasing sequence of length n of subsets of an s-element set S.

Proof. For any proper coloring of Gd,n with s colors, let Si be the set of colors used to color

the copoints of Ai, i = 1, 2, . . . , n. It follows from Corollary 2.5 and the definition of d-

nondecreasing sequence of subsets of [s], that Sn, Sn−1, . . . , S1 is a d-nondecreasing sequence

of length n.

Let Sn, Sn−1, . . . , S1 be an arbitrary d-nondecreasing sequence of subsets of an s-element

set of available colors. It is possible to color the vertices in sets An, An−1, . . . , A1 successively,

because for any D = [i− 1] ∪ J in Ai that is adjacent to the copoints in Aj for j ∈ J , there

is a color in Si that does not appear in the set Sj for any j ∈ J . This color can be used for

the copoint D. Therefore, there is a proper coloring with s colors of Gd,n. �
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We are confronted with the problem of determining the smallest integer s for which there

is a d-nondecreasing sequence of length n of subsets of an s-element set S.

A binary covering array of strength d + 1 is an s × n matrix A with entries in {0, 1} so

that for every s× (d+ 1) submatrix B of A, every possible 0-1 vector of length d+ 1 appears

as a row of B.

Lemma 2.8. If A is an s× n binary covering array of strength d + 1, then the columns of

A are the characteristic vectors of a d-nondecreasing sequence of length n of subsets of an

s-element set.

Proof. If A is an s × n binary covering array of strength d + 1 and B is an s × (d + 1)

submatrix of A, then there is a row of B which consists of d zeroes followed by a 1. This

implies that the set with characteristic vector equal to column d + 1 of B is not contained

in the union of the sets whose characteristic vectors are the first d columns of B. �

The survey paper of Lawrence et al. [14] on covering arrays gives the result of Kleitman and

Spencer [13] that there exist Cd+1 and Dd+1 such that the smallest integer s for which there

exists an s×n binary covering array of strength d+1 is bounded below by (Cd+1−o(1)) log n

and above by (Dd+1 + o(1)) log n.

Corollary 2.9. There exists a constant Dd+1 so that the chromatic number of Gd,n is at

most (Dd+1 + o(1)) log n.

2.1. Order Dimension. Let P = (Y,≤) be a partially ordered set. The order dimension

of P , denoted dim(P ), is the least positive integer t for which there exists a family R =

{L1, L2, . . . , Lt} of linear extensions of P so that P = ∩R. Any family of linear extensions

R such that ∩R = P is called a realizer of P .

Felsner and Trotter [9] showed that the order dimension of a partially ordered set P is

equal to the chromatic number of a hypergraph for which the vertices are the critical pairs

of elements of P . Beagley [2] showed that in the case that P is the lattice of closed sets of

a convex geometry (X,L ), then the the critical pairs are of the form (α(A), A) for copoints

A of (X,L ). We will describe the hypergraph of critical pairs in this special case.

Let ~G(X,L ) be a directed graph with vertex set equal to the set of pairs (α(A), A)

for copoints A of (X,L ) and let there be a directed edge from (α(A), A) to (α(B), B)
6



whenever α(B) ∈ A. From this directed graph, we form a hypergraph H(X,L ) on the

same vertex set with {(α(A1), A1), (α(A2), A2), . . . , (α(Ak), Ak)} a hyperedge of H(X,L ) if

{(α(A1), A1), (α(A2), A2), . . . , (α(Ak), Ak)} is a minimal directed cycle in ~G(X,L ). Beagley

[2] showed that the digraph ~G(X,L ) is isomorphic to one studied by Felsner and Trotter

[9],[19] with the possible addition of vertices that do not appear in any directed cycles. It

follows from this correspondence and the results of Felsner and Trotter that dim(LL ) =

χ(H(X,L )) [2, Theorem 3.3]. The graph induced by the hyperedges of size 2 in H(X,L )

is G(X,L ). Thus dim(X,L ) ≥ χ(G(X,L )) with equality holding whenever H(X,L ) has

no hyperedges of size greater than 2.

Proposition 2.10. dim(LLd,n
) = χ(Gd,n)

Proof. We show that H([n],Ld,n) ∼= Gd,n. Suppose that there is a hyperedge of size strictly

more than 2, {(α(B1), B1), (α(B2), B2), . . . , (α(Bk), Bk)} where k > 2. There is some i ∈ [k],

such that α(Bi) < α(Bi+1) in [n], so α(Bi) ∈ Bi+1, where the indices are taken mod k. Also

by definition of H([n],Ld,n), we have that α(Bi+1) ∈ Bi. Thus, there is an edge in Gd,n

between Bi+1 and Bi. So {(α(B1), B1), (α(B2), B2), . . . , (α(Bk), Bk)} was not a hyperedge

with k > 2. �

We have shown that the ratio between the chromatic number and the clique number of

the graph Gd,n can get arbitrarily large. There is a related result about posets in a book of

Trotter [19]. The standard example, Sn for n ≥ 3, is a partial order on X = {a1, a2, . . . , an}∪

{b1, b2, . . . , bn} with the relations ai < bj if and only if i 6= j, for i, j = 1, 2, . . . , n. For

i = 1, 2, . . . , n, ai is a minimal element and bi is a maximal element of the partial order.

Figure 2 is the Hasse diagram of the standard example S5. It is known that the order

dimension of Sn is n. However, posets with large order dimension do not require Sn as a

subposet. Further, [19] gave examples where the ratio between the order dimension of a poset

and the size of the largest subposet isomorphic to a standard example becomes arbitrarily

large. Proposition 2.11 shows that the independent sets of (X,L ) in LL act in much the

same manner as Sn in posets.

Proposition 2.11. Let (X,L ) be a convex geometry. LL contains a subposet isomorphic

to Sk, the standard example, if and only if G(X,L ) contains a k-clique.
7
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Figure 2. The Standard Example, S5

Proof. We label the standard example Sk contained in LL in the usual way. Let pi be a

point in X such that pi ∈ (ai − bi) for i = 1, 2, . . . , k. As pi ∈ ai, this means that for all

j 6= i, pi ∈ bj. We now construct the copoint Ci to be a maximal subset of X− pi containing

bi. Consider the copoints Ci and Cj for j 6= i. Cj is a copoint attached to pj and Ci is a

copoint attached to pi. By definition, pi ∈ bj ⊆ Cj and pj ∈ bi ⊆ Ci. This means that Ci

and Cj are adjacent in the graph G(X,L ). Since Ci and Cj are adjacent for all i 6= j, we

have a clique of size k in G(X,L ).

Conversely, let G(X,L ) contain a k-clique composed of copoints C1, C2, . . . , Ck attached

to p1, p2, . . . , pk respectively. By definition of G(X,L ), this means that pi ∈ Cj when i 6= j.

Thus, we let ai = {pi} and bi = Ci for i = 1, 2, . . . , k and we have that LL contains a

subposet isomorphic to Sk. �

Theorem 2.6 and Proposition 2.11 together show that the convex geometry ([n],L1,n)

and its lattice of closed sets, LL1,n , is an example of a poset that has order dimension that

becomes arbitrarily large but does not contain a poset isomorphic to S3. The lattice LL1,n

is of order dimension k when |X| = 2k−1, which means that |L1,n| = 22k−3 + 2k−2 + 1. The

example given by Trotter [19, Example 5.3] requires a poset of size R3(k, 4) to have the order

dimension equal to k, where R3(k, 4) is the Ramsey number on 3-regular hypergraphs. It

is known that R3(k, 4) is at least 2ck log(k) for some constant c [3]. Thus the posets LL1,n

perform the function of making the order dimension high at a greater economy than do the

examples of [19].

2.2. Remarks. Convex geometries isomorphic to ([4],L1,4) are in the references [6] and

[7]. The copoint graph for ([4],L1,4) contains an induced 5-cycle. The convex geometry

([5],L2,5), for which the copoint graph has clique number 3, shows that 5 elements do not

force a 4-clique for general convex geometries even when every 2-element subset is closed.

Thus one would need more restrictions for combinatorial analogues of Esther Klein’s result
8
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Figure 3. Lattice of Closed Sets for a Convex Geometry

that 5 point sets in general position in the plane must contain vertex sets of convex 4-gons.

The chromatic number of G([5],L2,5), however, is 4. This will be implied by Theorem 3.6

that we prove in the next section.

One can compute that for any d, n the total number of copoints of the convex geometry

([n],Ld,n) is
∑n

i=1 |Ai| =
∑n−d

i=1

(
n−i
d

)
+
∑n

i=n−d+1 1 =
(

n
d+1

)
+ d. For the case d = bn−1

2
c, we

get that the total number of copoints is
(

n
bn
2
c

)
+bn−1

2
c. Jamison [11] states that no examples of

convex geometries with total number of copoints greater than the middle binomial coefficient

for the number of elements are known.

3. Consequences of Freeness

We now introduce a new problem analogous to the Erdős–Szekeres problem: for any integer

k ≥ d ≥ 2, determine the smallest positive integer Kd(k) such that for any d-free convex

geometry with |X| ≥ Kd(k) it follows that χ(G(X,L )) ≥ k. There are two questions of

interest related to the study of Kd(k):

1) Does the number Kd(k) exist?

2) If so, how is Kd(k) determined as a function of k?

We specify d ≥ 2 because of the following 1-free convex geometry. Let X = [k], and for

S ⊆ [k] let L (S) = [min(S),max(S)] ∩ X, which is realizable by a set of k points in R1.

Figure 3 shows this convex geometry for k = 3. It is clear that there are two chains of

copoints for (X,L ), those containing 1 and those containing k. The graph G(X,L ) has

chromatic number 2, for all k for this convex geometry, as each of the chains of copoints is

an independent set in G(X,L ). This convex geometry has every 1-element subset closed.

Thus 1-freeness alone does not force the chromatic number of the copoint graph to increase

with |X|.
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To show that the number Kd(k) exists for d > 1, we focus on K2(k). It is sufficient to

show that K2(k) is finite, because d-freeness for d > 2 implies that every 2-element subset is

also closed, because L is an alignment.

Let (X,L ) be a 2-free convex geometry and I = {I1, I2, . . . , It} be a partition of G(X,L )

into independent sets. For x, y ∈ X, x 6= y, define Syx = {j ∈ [t] : there is a copoint C with

α(C) = x, y ∈ C,C ∈ Ij}. For each x ∈ X, let Dx = {Syx : y 6= x}.

A family of subsets of [t] is called intersecting if A ∩B 6= ∅ whenever A and B are in the

family. An intersecting family of subsets is maximal if it is contained in no other intersecting

family.

Lemma 3.1. For each x ∈ X, Dx is an intersecting family.

Proof. A copoint C attached to x is a maximal closed subset in X − x. For any {y, z}

with x, y, and z distinct {y, z} is closed, so there is a copoint containing {y, z} attached to

x. This copoint must be in one of the independent sets Ij. Therefore, j ∈ Syx ∩ Szx and

Syx ∩ Szx 6= ∅. �

Corollary 3.2. No two families Dx for x ∈ X are contained in the same maximal intersect-

ing family of [t].

Proof. For x 6= y, Syx is contained in the complement of Sxy in [t], because I is a proper

coloring of G(X,L ). �

Corollary 3.2 shows that Kd(k) exists and is at most γ(k − 1) + 1, where γ(k) is the

number of maximal intersecting families of a k-element set. The number γ(n) of maximal

intersecting families of subsets of an n-element set is at most 2( n−1
b(n−1)/2c), see [5] and [12].

The size of the largest antichain of copoints of a convex geometry is called the convex

dimension of (X,L ) [7]. A problem related to computing Kd(k) is that of determining the

smallest integer ACd(k) such that for any d-free convex geometry with |X| ≥ ACd(k) it

follows that (X,L ) contains an antichain of k copoints. By [7] and [15], the number ACd(k)

is also the answer to Dushnik’s problem: Find the smallest integer t so that for every set of

less than k linear orders of [t] there is a d-element subset J of [t] and some a /∈ J such that

a is smaller than some element of J in each linear order. Hoşten and Morris [10] and Morris

[15] showed that ACd(k) ≤ γ(k − 1) + 1 in a manner very similar to the proofs of Lemma

3.1 and Corollary 3.2.
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Theorem 3.3. K2(k) = γ(k − 1) + 1

Proof. Corollary 3.2 shows that K2(k) ≤ γ(k − 1) + 1. The construction of Hoşten and

Morris [10] gives a 2-free convex geometry of convex dimension k with γ(k) elements, for

any k. Edelman and Jamison [6] proved that the convex dimension is bounded below by

the order dimension and Beagley [2] proved that the order dimension is bounded below by

χ(G(X,L )). So, K2(k) ≥ AC2(k) ≥ γ(k − 1) + 1. Therefore, K2(k) = γ(k − 1) + 1. �

Corollary 3.4. Kd(k) exists for d ≥ 2, and Kd(k + 1) ≤ 2( k−1
b(k−1)/2c) + 1.

We do not know of any pair (d, k) for which ACd(k) 6= Kd(k). Due to the results of

[4], ACd(k) can also be viewed as the smallest positive integer t so that the collection of

d-element and 1-element subsets of [t], partially ordered by inclusion, has order dimension k.

Known values of ACd(k) for small d and k are tabulated in [18]. Examples of small convex

geometries for which the size of the largest antichain of copoints is larger than the chromatic

number of the copoint graph can be found in [7], [16], and Figure 1.

The computation of the numbers Kd(k) for d > 2 appears to be difficult, in general. We

will calculate Kd(d + 2). Before we do this, we recall a result of Morris and Soltan [17] to

indicate the kind of combinatorial restrictions that lead to analogous results for the clique

number. The Carathéodory number of a convex geometry (X,L ) is the least positive integer

c such that L (Y ) = ∪{L (Z) : Z ⊆ Y, |Z| ≤ c} for any Y ⊆ X.

Let c be the Carathéodory number of a convex geometry (X,L ), and suppose that ev-

ery (c − 1)-element subset of X is closed. We say that (X,L ) satisfies the simplex par-

tition property if for any set {z1, z2, . . . , zc+2} of c + 2 elements of X, with {zc+1, zc+2} ⊆

L ({z1, z2, . . . , zc}), the point zc+2 belongs to exactly one of the sets L (z1, . . . , zi−1, zi+1, . . . , zc, zc+1),

i = 1, . . . , c. We state a result of Morris and Soltan [17].

Proposition 3.5. [17, Theorem 5.6] Let (X,L ) be a d-free convex geometry. If (X,L ) has

Carathéodory number d+1, the simplex partition property, and |X| = d+3, then X contains

d+ 2 convexly independent points.

The analogous result for chromatic number does not require the simplex partition property

or any condition on the Carathéodory number, only that every d-element subset be closed.

Theorem 3.6. Kd(d+ 2) = d+ 3 for d ≥ 2.
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Proof. The example from Section 2, ([d + 2],Ld,d+2), is realizable by a d-simplex with a

point in the interior. The copoints of the form [d + 2]\{i} for i = 2, 3, . . . , d + 2 form

a (d + 1)-clique. The remaining copoints are [d + 2]\{1, i} for i = 2, 3, . . . , d + 2. For

i = 2, 3, . . . , d+2, the copoint [d+2]\{1, i} can be colored with the same color as [d+2]\{i},

so χ(G([d+ 2],Ld,d+2)) = d+ 1. Thus Kd(d+ 2) ≥ d+ 3.

Let (X,L ) be a d-free convex geometry with X = {q1, q2, p1, . . . , pd+1}. If (X,L ) contains

a convexly independent set of size d + 2, we have the conclusion. The elements x ∈ X for

which X\{x} ∈ (X,L ) form a convexly independent set. Therefore we assume that there

are exactly d+ 1 such elements; specifically, we assume X\{pi} ∈ L for i = 1, 2, . . . , d + 1.

These sets form a clique in G(X,L ).

Let P = {p1, p2, . . . , pd+1}. For each i = 1, 2, . . . , d + 1, the set P\{pi} is closed, because

it has cardinality d. Because P is not closed, either (P\{pi}) ∪ q1 or (P\{pi}) ∪ q2 is in L .

Define I1 = {i ∈ [d+ 1] : (P\{pi}) ∪ q1 ∈ L } and I2 = {i ∈ [d+ 1] : (P\{pi}) ∪ q2 ∈ L }.

Suppose i ∈ I1 ∩ I2. Let A = {(P\{pi}) ∪ q1, (P\{pi}) ∪ q2} ∪ {X\{pj} : j 6= i}. We

claim that A is a (d+ 2)-clique in G(X,L ). The copoints (P\{pi})∪ q1 (attached to q2) and

(P\{pi}) ∪ q2 (attached to q1) are adjacent, and each contains {pj : j 6= i}.

Suppose now that I1 and I2 are disjoint. Because d ≥ 2, at least one of these sets must

contain two or more elements. Without loss of generality, we assume that {1, 2} ⊆ I1.

Consider the set C = (P\{p1, p2}) ∪ {q2}. |C| = d, so C is closed. Because 1 and 2 are not

in I2, the only element of X that can be added to C to form a closed set is q1. Thus C is a

copoint attached to q1. C is adjacent in G(X,L ) to each X\{pi} for i ≥ 3, and it is adjacent

to each of (P\{p1}) ∪ q1 and (P\{p2}) ∪ q1. In a proper (d + 1)-coloring of G(X,L ), the

copoints X\{pi} : i ∈ [d + 1] would get distinct colors. (P\{p1}) ∪ q1 must get the same

color as X\{p1} because it is adjacent to each of X\{pj} for j > 1 and (P\{p2}) ∪ q1 must

get the same color as X\{p2}. There is no way to extend such a proper (d + 1)-coloring to

the copoint C. Thus, χ(G(X,L )) ≥ d+ 2. �
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