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Abstract

The Holt-Klee theorem says that the graph of a d-polytope, with
edges oriented by a linear function on P that is not constant on any
edge, admits d independent monotone paths from the source to the
sink. We prove that the digraphs obtained from oriented matroid
programs of rank d + 1 on n + 2 elements, which include those from
d-polytopes with n facets, admit d independent monotone paths from
source to sink if d ≤ 4. This was previously only known to hold for
d ≤ 3 and n ≤ 6.

1 Introduction

We will call a graph that is isomorphic to the graph formed by the vertices
and edges of a d-dimensional convex polytope d-polytopal. A fundamental
property of d-polytopal graphs is that they are d-connected, as shown by
Balinski [1].

The term d-polytopal will be applied to a digraph K if there exists a
d-dimensional polytope P and an affine function ϕ on P that is not constant
on any edge of P such that the graph underlying K is isomorphic to the
graph of P and the edges of K are oriented in the direction of increase of
ϕ. A d-polytopal digraph has a unique source and sink on every subgraph
corresponding to a face. A path (v0, v1, . . . , vk) from the source to the sink of
a d-polytopal digraph will be called monotone if (vi, vi+1) is an arc of K for
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i = 0, 1, . . . , k − 1. A set of monotone paths from the source to the sink of a
d-polytopal digraph K will be called independent if the only vertices common
to any 2 of the paths are the source and sink of K. The following theorem
comes from Holt and Klee [14]:

Theorem 1.1 Suppose that K is a d-polytopal digraph. Then K admits d
independent monotone paths from source to sink.

We call the existence of d independent monotone paths the Holt-Klee
property.

Figure 1 shows acyclic orientations of 3-polytopal graphs that have a
unique source and sink on every face but do not have 3 independent monotone
paths from the source to the sink. For each of the three orientations, vertices
marked A and B cover all of the monotone paths from the source to the sink.
By the theorem of Holt and Klee, these orientations are not 3-polytopal. The
orientation of the triangular prism on the left is from Felsner, Gärtner and
Tschirschnitz [9]. The example in the middle is an orientation of the cyclic
3-polytope with 6 vertices, from Fukuda, Moriyama and Okamoto [11]. The
orientation of the 3-cube appeared in Stickney and Watson [21].
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Figure 1: Only two independent monotone paths from source to sink

Combinatorial types of polytopes are difficult to enumerate because non-
obvious restrictions quickly arise as the dimension and number of faces in-
crease. Oriented matroids provide a way to generate combinatorial spheres
that satisfy a short list of necessary conditions for polytopes. There are
two dual spheres that may be derived from an oriented matroid. The Las
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Vergnas sphere has vertices corresponding to the elements of the oriented
matroid ground set. The Edmonds - Mandel sphere has facets corresponding
to elements of the ground set. The papers by Bremner et. al. ([5], [6]) use
the term matroid polytope for the Las Vergnas sphere of an oriented ma-
troid. They studied ridge paths of the Las Vergnas sphere, which correspond
to paths in the graph of the Edmonds - Mandel sphere. Their upper bounds
on the diameter of polytopal graphs for fixed small dimension and number of
facets were obtained by showing that the bound holds for graphs of Edmonds
- Mandel spheres. It is known that Edmonds - Mandel spheres are shellable,
but shellability of Las Vergnas spheres is an open problem.

An oriented matroid program is an oriented matroid M of rank d+ 1 on
a ground set of size n+ 2, where n elements of the ground set correspond to
facets of the (d− 1)-dimensional Edmonds - Mandel sphere. The remaining
two elements, called the objective and right hand side elements, determine the
orientation of the graph of the Edmonds - Mandel sphere. IfM is realizable,
these define an orientation of the graph of a polytope that is d-polytopal.
Oriented matroid programming has had a central place in the evolution of
oriented matroid theory, starting with [4], [10], and continuing with [7], [22]
and [16].

u u

u

v

u
u u

wu u

-

6

�
���

�

-
�

��	

�
���

?

6

-

�
���

6

��

��

�� ��

Figure 2: Oriented matroid program with a monotone cycle

Figure 2 shows that the extension of polytopal digraphs to digraphs of
oriented matroid programs is proper already for d = 3 and n = 6, coming
from an oriented matroid of rank 4 on 8 elements (See [7], [8]). The digraph
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depicted cannot be 3-polytopal, due to the monotone cycle containing all
vertices other than the source and sink.

By Menger’s theorem [18], a d-polytopal digraph admits d independent
monotone paths from source to sink if and only if there is no set of d −
1 vertices, not containing the source and the sink, that covers all of the
monotone source to sink paths. Given a d-dimensional polytope P and a set
S of d− 1 vertices not containing the source and sink, the argument of Holt
and Klee [14] introduces a hyperplane H, containing the source and sink, for
which one of the open half-spaces H− determined by H contains points of P
but no points of S. Then a monotone source to sink path is found in the union
of H− with the set consisting of the source and sink. The extension of this
proof to oriented matroid programming would require the extension of the
oriented matroid program by an element corresponding to the hyperplane H.
There are several known obstructions to extending a non-realizable rank 4
oriented matroid. It is therefore reasonable that the seminal paper [11] on the
Holt-Klee property for oriented matroids showed by computer enumeration
that every oriented matroid program of rank 4 on 8 elements has the Holt -
Klee property, that is, the orientation of the graph of the Edmonds - Mandel
sphere has 3 independent monotone paths from the source to the sink. We
adapt the argument of [14] and [13] to the setting of oriented matroids to
prove that an oriented matroid program M has the Holt-Klee property if
an extension problem in the oriented matroid M/{f, g}, of rank 2 less than
that of M, has a solution. This will, in particular, prove that M has the
Holt-Klee property if d = 3 or d = 4, with n arbitrarily large.

The d = 3 case has particular interest because [14] used the Holt-Klee
property to prove the bound ∆sm(3, n) ≤ b2

3
nc − 1 on the strict monotone

diameter in dimension 3. Our results imply that this bound also holds for
oriented matroid programs. See [12] for a recent application of oriented ma-
troid programming to determination of polytope diameters. In dimension 3,
the Holt-Klee condition is also known to be sufficient for an acyclic orienta-
tion of the graph of a polytope with a unique source and sink on every face
to be d-polytopal. (See [19],[17]).

The paper [11] showed that oriented matroid programming is not the
only way to produce digraphs from oriented matroids that are d-polytopal in
the realizable case. From an oriented matroid of rank d + 1 on n + (d − 1)
elements, where n of the elements correspond to the facets of the Edmonds
- Mandel sphere and d − 1 define a line shelling of the sphere, one obtains
an orientation of the graph of the Las Vergnas sphere. Their enumeration of
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rank 4 oriented matroids on 8 elements produced the digraph in the middle
of Figure 1, which does not have 3 independent monotone paths from the
source to the sink. It follows that digraphs produced this way from oriented
matroids do not necessarily satisfy the Holt-Klee condition, even though
those that are produced from realizable oriented matroids do.

2 Oriented Matroids

We will give some basic definitions, following the notation of the standard
reference [3].

Let E be a finite set. A sign vector on E is a vector indexed by E with
entries in {+,−, 0}. The support of a sign vector X is X := {e ∈ E :
Xe 6= 0}. For a sign vector X, we define X+ = {e ∈ E : Xe = +} and
X− = {e ∈ E : Xe = −}. The negative of a sign vector X is the sign vector
−X obtained from X by replacing + entries with − and vice versa. The
composition X ◦ Y of sign vectors X and Y is defined by (X ◦ Y )e = Xe

if Xe 6= 0 and (X ◦ Y )e = Ye otherwise. For sign vectors X, Y , define
S(X, Y ) = {e ∈ E : Xe = −Ye 6= 0}. Two sign vectors X and Y are said to
be orthogonal if S(X, Y ) and S(X,−Y ) are both empty or both nonempty.

An oriented matroid M on E consists of a collection Y of sign vectors,
called covectors, on E, satisfying the following properties:

(Y0) 0 ∈ Y ,

(Y1) If X ∈ Y then −X ∈ Y ,

(Y2) If X, Y ∈ Y then X ◦ Y ∈ Y ,

(Y3) If X, Y ∈ Y , and e ∈ S(X, Y ), then there exists Z ∈ Y so that Ze = 0
and Zf = (X ◦ Y )f = (Y ◦X)f for all f ∈ E\S(X, Y ).

A covector Z obtained as in (Y 3) is said to be obtained by eliminating
e between X and Y . The nonzero covectors in Y with minimal support are
called the cocircuits ofM. The set of cocircuits ofM is denoted C∗(M). We
will call a covector Y nonnegative if Ye ≥ 0 for all e ∈ E.

A sign vector on E is called a vector of M if it is orthogonal to every
covector of M. The nonzero vectors of M with minimal support are called
circuits of M. We denote by C(M) the set of circuits of M. The vectors of
M are the covectors of an oriented matroidM∗ on E, called the dual ofM.
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A subset of E is called independent if it does not contain the support of
a circuit. The rank of M is the size of a largest independent subset of E. A
maximal independent subset of M is a base of M. A base of M∗ is called a
cobase of M.

If B is a base ofM and p ∈ E\B, then we denote by X(B, p) the unique
circuit ofM with support in B ∪{p} and with coordinate p equal to +. The
complement B = E\B is a cobase of M. For every q ∈ B, there is a unique
cocircuit Y (B, q) with support in B ∪ q and with Y (B, q)q = +.

If p ∈ E and A ⊆ E\p, we say p ∈ convM(A) if there is a circuit X ofM
such that X+ ⊆ A and X− = {p}. We also say that −p ∈ convM(A) if there
is a positive circuit X of M such that p ∈ X+ ⊆ A ∪ {p} and X− = ∅.

If T is a matrix with real entries, then the collection of sign vectors
obtained from the vectors in the row space of T by forgetting magnitudes is
the set of vectors of an oriented matroid, called the oriented matroid realized
by T . The covectors of this oriented matroid correspond analogously to
vectors in the null space of T .

If X is a sign vector on E and e ∈ E, we denote by X\e the subvector of
X with component indexed by e removed. IfM is an oriented matroid on E
and e ∈ E, the oriented matroidM\e on E\e has circuit set equal to {X\e :
X ∈ C(M), Xe = 0}. We say that M\e is obtained from M by deleting e.
If A ⊆ E then M(A), the restriction of M to A, is the oriented matroid
obtained from M by deleting E\A. The oriented matroid M/e on E\e
has circuit set the members of {X\e : X ∈ C(M)} with minimal support.
M/e is said to be obtained from M by contracting e. The relationship
(M\e)∗ =M∗/e shows how duality and minors are related.

If M is an oriented matroid on a set E and ê /∈ E, then an oriented
matroid M̂ on E ∪ ê is said to be an extension ofM to E ∪ ê if M̂\ê =M.
We will only consider extensions for which the rank of M̂ equals the rank of
M. An oriented matroid M̂ such that (M̂)∗ is an extension of M∗ will be
called a dual extension of M.

Suppose M is an oriented matroid on a set E, and σ is a function from
C∗(M), the set of cocircuits of M, to {+,−, 0}, satisfying σ(−Y ) = −σ(Y )
for every cocircuit Y of M. For every cocircuit Y ∈ C∗(M), define Ŷ on
E∪e so that Ŷf = Yf for all f ∈ E and Ŷe = σ(Y ). Theorem 7.1.8 of [3], due

to Las Vergnas, says that {Ŷ : Y ∈ C∗(M)} is a subset of the set of cocircuits
of an extension of M if and only if σ defines a single element extension of
every contraction of M of rank 2.
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3 Oriented matroid programming

Oriented matroid programming provides a combinatorial abstraction of linear
programs of the form

maximize f = cTy + β subject to
Ay = b
y ≥ 0.

.

Here A is assumed to be an m × n matrix of rank m. We view linear
programming as the search for vectors of certain sign patterns in the null
space and row space of the matrix

T =

[
A 0 −b
−cT 1 −β

]
.

With this motivating linear program in mind, we assume thatM is a rank
r = n−m + 1 oriented matroid on an (n + 2)-element set E = [n] ∪ {f, g}.
The element f is called the objective element and the element g is called the
right hand side element.

WhenM is realized by T , the covectors ofM are sign vectors for vectors
in the null space of T . The elements f and g correspond to the last two
columns of T . The covectors ofM\f are obtained by deleting component f
from the covectors of M. Covectors Y of M\f with Yg = + correspond to
solutions of Ay = b in the realizable case.

3.1 The underlying undirected graph

We will assume that every nonnegative cocircuit of M\f contains g in its
support. In the terminology of [3], the feasible region of the oriented matroid
program defined by M contains no covectors at infinity. This implies the
oriented matroid program is bounded. We will also assume that for every
e ∈ [n] there is a nonnegative cocircuit Y of M\f with Ye = +. In the
terminology of [3], the oriented matroid M\f is acyclic.

Consider the set F := {[n]\Y : Y is a nonnegative covector of M\f}.
The collection F can be partially ordered, with F1 ≤ F2 if F1 ⊆ F2. The
elements of F are the faces of the oriented matroid polytope given byM\f ,
and the partial order is called the Las Vergnas face lattice. Its order dual is
called the Edmonds-Mandel face lattice.
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Theorem 3.1 (Theorem 4.3.5 of [3]) Let r be the rank of M and M\f .

1. The Edmonds-Mandel lattice is isomorphic to the face lattice of a shellable
regular cell decomposition of the (r − 2)-sphere.

2. The Las Vergnas lattice is isomorphic to the face lattice of a PL regular
cell decomposition of the (r − 2)-sphere.

We are interested in the graph G of the Edmonds-Mandel sphere. We will
use the words facet and node for an element of F of rank r − 1, depending
on whether it is viewed as a facet of the Las Vergnas sphere or a vertex of
the Edmonds-Mandel sphere. Two distinct nodes v and v′ of G are adjacent
if v ∩ v′ has rank r− 2. The graph is (r− 1)-connected, by Theorem 4.4.9 of
[3].

Because of the assumption that Yg = + for every nonnegative covector of
M\f , it follows that the poset of nonnegative covectors ofM\{f, g} ordered
as before, is the same as F . Thus the elements f and g are not required to
define the undirected graph G.

3.2 The orientation of the graph

The digraph Kf of the oriented matroid program is obtained by orienting
the edges of G. We will assume that every circuit of M containing f in its
support has support of size r + 1. This will ensure that every edge of G
receives an orientation.

Every node of Kf is the zero set of a cocircuit Y ofM that is nonnegative
on E\f , and has f, g ∈ Y . Suppose v and v′ corresponding to Y and Y ′ are
adjacent nodes of Kf . Let the cocircuit Y ′′ be obtained by eliminating g
between Y and −Y ′. Then removing the zero entry in position g from Y ′′

yields a cocircuit of M/g. Note that Y ′′e = + for all e in v′\v and Y ′′e = −
for all e in v\v′, and Y ′′e = 0 for all e in v∩ v′. Because of the nondegeneracy
assumption on f we have Y ′′f 6= 0. If Y ′′f = Y ′′e for e ∈ v\v′, then the arc
containing v and v′ is directed from v to v′.

If B is a base ofM contained in the set ([n]\Y ′′)∪{e, g} for some e ∈ v\v′,
then the supports of X = C(B, f) and Y ′′ intersect on {e, f} Thus the arc
leaves v if entry e of X is negative.

The fundamental theorem of oriented matroid programming (10.1.13 in
[3]) implies that the digraph Kf has a unique sink. By considering minors,
it implies that the restriction of Kf to any face of M\f has a unique sink.
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We summarize the above discussion: The undirected graph G of the ori-
ented matroid program is defined by the cocircuits of the minor M\f . The
edges of the graph are given orientations by the minor M/g.

4 Building a Path from Source to Sink

The path that we will build is in the nondegenerate case a generalization
to oriented matroids of the Gass-Saaty shadow-vertex algorithm. For cases
when the Edmonds-Mandel sphere is not simple, it is most succinctly de-
scribed in section 4 of [20]. This description is in terms of the cells of a
subdivision of an oriented matroid. We repeat Definition 4.5 of [20]:

Definition 4.1 A collection S of subsets of E (called cells) is called a sub-
division of a rank r − 1 oriented matroid N on E if the following hold:

1. Every cell σ ∈ S has rank r − 1. (The “r” in [20] is replaced by r − 1
here, the rank of M\f/g.)

2. For every one-element extension N ∪ f of N and every σ1, σ2 ∈ S,

f ∈ convN∪f (σ1) ∩ convN∪f (σ2)⇒ f ∈ convN∪f (σ1 ∩ σ2)

3. If σ1, σ2 ∈ S, then σ1 ∩ σ2 is a common face of the two restrictions
N (σ1) and N (σ2).

4. If σ ∈ S, then each facet of N (σ) is either contained in a facet of N
or contained in precisely two cells of S.

A subdivision is called a lifting subdivision if there is an oriented matroid
N̂ on a set E∪g so that N = N̂ /g and the subsets in S are the complements

of the supports of nonnegative cocircuits of N̂ .
We will be concerned with the lifting subdivision ofM\f/g given by the

facets of the Las Vergnas sphere of M\f . Recall that the vertices of the
Edmonds-Mandel sphere are the facets of the Las Vergnas sphere.

The oriented matroid M/g is an extension of M\f/g by an element f
in general position. If v is the unique sink of the digraph Kf , then −f ∈
convM/g(v). By considering the oriented matroid program obtained fromM
by reversing the sign of f in every vector and covector ofM, one sees that Kf
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has a unique source. If v′ is the unique source of Kf , then f ∈ convM/g(v
′).

With the interpretation of vertices of Kf as facets of the Las Vergnas sphere,
or as cells of a subdivision, we say that −f is covered by v and f is covered
by v′.

Now we will extract from Lemma 4.6 of [20] what we need. Define M̂ to

be an extension of M/g by an element h in general position. Then M̂ is a

rank r− 1 oriented matroid on [n]∪ {f, h} satisfying M̂\h =M/g. Because

h is in general position, every circuit of M̂ containing h has r elements.
We first note that one can define an alternate orientation Kh of the graph

of the Edmonds-Mandel sphere using M̂\f . Suppose v and v′ corresponding
to Y and Y ′ are adjacent nodes of Kf . Recall the cocircuit Y ′′ of M/g that
was used in defining the orientation of the arc between v and v′. If we remove
entry Y ′′f from Y ′′, we get a cocircuit of M\f/g which agrees with Y ′′ on

[n]. This cocircuit corresponds to a cocircuit Ŷ ′′ of M̂\f with an extra entry

indexed by h. If Ŷ ′′h = Ŷ ′′e for e ∈ v\v′, then the arc containing v and v′ is
directed from v to v′ in Kh.

Lemma 4.1 The orientation Kh has a unique sink.

Proof. This follows from part (i) of Lemma 4.6 of [20]. M̂\f is an
extension of M\f/g by the element h in general position, so h is covered

by a unique facet of the Las Vergnas sphere of M̂\f . By considering the

oriented matroid obtained from M̂\f by reversing the sign of h, it follows
that −h is also covered by a unique facet.

Each of the oriented matroids M̂\f and M̂\h =M/g is an extension of
M\f/g by an element in general position. The reason for using Lemma 4.6 of
[20] (rather than the fundamental theorem of oriented matroid programming)
to establish that Kh has a unique sink is that there is not necessarily an
oriented matroid program M′ on [n] ∪ {h, g} for which M′/g = M̂\f . The
extension ofM\f/g by h and the dual extension by g may be incompatible.

The proof in [20] of Lemma 4.6 goes on to construct a digraph G[p1,p2],
which we will call K[f,h]:

Definition 4.2 Let N ′ = N∪{f, h} be a two-element extension of N , where
each of N ′\f and N ′\h is an extension of N by an element in general posi-
tion. Form the digraph K[f,h] as follows.
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• A cell σ ∈ S is a vertex of the graph if and only if there is a vector X
of N ′ with X+ = σ and X− = {f, h}.

• Let τ be an (r − 2)-face of a cell of S for which there is a vector X of
N ′ with X+ = τ and X− = {f, h}. Then there are exactly two cells σ+

and σ− of S containing τ . Let Y be the cocircuit of N ′ vanishing on τ.
Then Yf = −Yh. Introduce an arc oriented from the vertex σ+ to the
vertex σ− if f ∪ (σ+\τ) ⊆ Y + and h ∪ (σ−\τ) ⊆ Y −.

In our application, let N be M\f/g, let N ′ be M̂, and let S be the set
of facets of the Las Vergnas sphere ofM\f . Then K[f,h] can be seen to be a
subdigraph of Kf .

Lemma 4.2 (From the proof of Lemma 4.6 of [20]) The component of K[f,h]

containing the source of Kf is a monotone path of Kf from the source of Kf

to the source of Kh.

We can adapt Definition 4.2 to construct two subdigraphs of Kf which
we call K[−h,−f ] and K[f,−h]. A node v of Kf is a node of K[−h,−f ] if there is a

nonnegative vector X of M̂ with X+ = v ∪ {f, h} and X− = ∅. A node v of

Kf is a node of K[f,−h] if there is a vector X of M̂ with X+ = v ∪ {h} and
X− = f .

Lemma 4.3 The component of K[−h,−f ] containing the sink of Kh is a mono-
tone path from the sink of Kh to the sink of Kf . The component of K[f,−h]
containing the sink of Kh is a monotone path from the source of Kf to the
sink of Kh. The only vertex that the paths have in common is the sink of Kh.

Proof.
The digraph K[f,−h] is defined similarly to K[f,h], except that the sign of

h is reversed. This makes the resulting monotone path go to the sink of Kh,
which is a vertex v where there is a positive vector of M̂ contained in v ∪ h.
In K[−h,−f ], the negative signs make the monotone path connect the sinks of
Kh and Kf , and because h precedes f in [−h,−f ], it goes from the sink of
Kh to the sink of Kf . If v and v′ are adjacent vertices of K[−h,−f ], the arc is

oriented from v to v′ if the cocircuit Y ′′ of M̂ with zero set v ∩ v′ has v\v′
disagreeing with h. Because h and f have different signs in Y ′′, this means
that it has v\v′ agreeing with f , so the orientation agrees with that of Kf .
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−h

−f

f

Figure 3: Path from source to sink
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Suppose that a vertex x of Kf is in both K[f,−h] and K[−h,−f ]. Then there
exist vectors X and X ′ such that x ∪ {h} ⊆ X+, X = X ′ = x ∪ {f, h},
Xf = −, X ′f = +. Eliminating f between X and X ′ shows that x is the sink
of Kh.

Concatenation of the component of K[f,−h] containing the sink of Kh and
the component of K[−h,−f ] containing the sink of Kh yields a monotone path
in Kf from the source to the sink.

Geometric motivation for the path is provided in the realizable case by
Figure 3. Assume that M̂ on [n]∪{f, h} is realized by the (m+ 2)× (n+ 2)
matrix

T̂ =

 A 0 0
−cT 1 0
−c′T 0 1

 .
where the last two columns correspond to elements f and h. Let Ŝ be an
(n−m)× (n+2) matrix for which the rows span the orthogonal complement

of the row space of T̂ . For Figure 3 we assume that n−m = r− 1 = 3. The
columns of Ŝ, scaled to have length 1, are points on the unit sphere. For
every nonnegative cocircuit Y ofM\f , the elements of [n] not in the support
of Y generate a pointed convex cone in Rn−m. The cones intersecting the
great circle containing f and h correspond to the vertices of the path.

Proposition 4.1 Suppose that M is an oriented matroid program on E =
[n] ∪ {f, g} and e ∈ [n] is contained in both the source and the sink of the
oriented matroid program. Then there is a monotone path in Kf from the
source to the sink for which no intermediate vertex contains e.

Proof. One could let the extension h of the preceding construction be a
perturbation of an element e ∈ [n]. This means that every cocircuit of M̂
containing h and e in its support contains both with the same sign. The
property that each of the vectors X encountered in the path, other than the
source or sink, has Xh = + implies that Xe 6= +, so e /∈ v for any internal
node v of the path.

This implies, in particular, that the first digraph of Figure 1 is not the
digraph of an oriented matroid program. There is a facet e, containing the
source and the sink of the digraph, for which no monotone path from source
to sink has all of its internal nodes off the facet e.

13



−h

−f

f

Z1 Z2

ṽ1
ṽ2

Figure 4: Separating −h from cones

5 Conditions for avoiding a set of circuits

We want to determine conditions under which the digraph of M has r − 1
independent monotone paths from the source to the sink. We first recall
Menger’s Theorem:

Proposition 5.1 The digraph Kf has r − 1 independent monotone paths
from the source to the sink if and only if there do not exist nodes ṽ1, . . . , ṽr−2

of Kf , none of which is the source or the sink of Kf , such that every mono-
tone path from the source to the sink contains a node of {ṽ1, . . . , ṽr−2}.

We will assume that we have a set of nodes {ṽ1, . . . , ṽr−2} of Kf , none of
which is the source or the sink of Kf , and determine conditions under which
there exists a monotone path from the source to the sink that avoids the
nodes in this set.

The idea of the argument is illustrated for the realizable case with r−1 = 3
by Fig. 4. Figure 4 illustrates a typical pair of cones corresponding to facets
ṽ1, ṽ2 of the Las Vergnas sphere ofM\f . The extreme rays of these cones are
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zero sets of nonnegative cocircuits Ỹ 1 and Ỹ 2 of M\f . These two (= r − 2)
cones contain neither f nor −f , indicating that they do not correspond to
the source or the sink of the digraph Kf . Each of the cones corresponding to
Ỹ 1 and Ỹ 2 is separated from point −h by a great circle containing points f
and −f . These great circles correspond to cocircuits Z1 and Z2 of M̂. Note
that there is no point g in the Figure. The only way that g influences the
Figure is in the choices of the subsets of [n] that correspond to supports of
nonnegative cocircuits of M\f .

Lemma 5.1 Suppose that ṽ1, . . . , ṽr−2 are nodes of Kf , but none of them is

the sink or source of Kf . Suppose that we have an oriented matroid M̂ on

the set [n] ∪ {f, h} that has the property that M̂\h = M/g. Suppose that

for i = 1, . . . , r − 2 there is a cocircuit Zi of M̂/f that has Zi
h = + and

Zi
e ≥ 0 for all e ∈ ṽi. Then the monotone path from the source to the sink of

Kf created using M̂ as in the last section cannot contain any of the vertices
ṽ1, . . . , ṽr−2.

Proof. If node ṽi were on the monotone path, there would be a vector X
of M̂ with X = ṽi ∪ {f, h} and Xe = + for e ∈ ṽi ∪ h. Removing the entry

of X indexed by f yields a vector X ′ of M̂/f . Existence of both the circuit

X ′ and the cocircuit Zi in M̂/f would violate orthogonality.

Lemma 5.2 Suppose that M̃ is an oriented matroid on [n] ∪ {h} that is
an extension of M/{f, g} by an element h in general position. Then there

exists an extension M̂ of M/g by an element h in general position such that

M̂/f = M̃.

Proof. We define a function σ : C∗(M/g) → {+,−, 0}, and for each
Y ∈ C∗(M/g) we define a sign vector Ŷ on [n] ∪ {f, h} such that Ŷe = Ye
for e 6= h and Ŷh = σ(Y ). By Theorem 7.1.8 of [3], the Ŷ thus defined are
cocircuits of an extension ofM/g if they define a single element extension on
every rank 2 contraction ofM/g. For each cocircuit Y ofM/g with Yf 6= 0,
define σ(Y ) = Yf . For each cocircuit Y ofM/g with Yf = 0, the sign vector

Y ′, which is Y with entry Yf removed, is a cocircuit of M/{f, g}. Let Ŷ ′

be the corresponding cocircuit of M̃ which is the same as Y ′ except for an
extra entry Ŷ ′h. Then let σ(Y ) = Ŷ ′h.
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This construction is similar to a lexicographic extension. The rank 2
minors of M/g contained in M/{f, g} by assumption yield rank 2 minors

of M̂, while the rank 2 minors of M/g not contained in M/{f, g} become

rank 2 minors of M̂ because Ŷh = Ŷf for each cocircuit Y with Yf 6= 0.

Corollary 5.1 Suppose that ṽ1, . . . , ṽr−2 are nodes of Kf , but none of them

is the sink or source of Kf . Suppose that we have an oriented matroid M̃
on the set [n] ∪ {h} that has the property that M̃\h = M/{f, g}. Suppose

that for i = 1, . . . , r − 2 there is a cocircuit Zi of M̃ that has Zi
h = + and

Zi
e ≥ 0 for all e ∈ ṽi. Then the monotone path from the source to the sink of

Kf created using M̂ as in the last section cannot contain any of the vertices
ṽ1, . . . , ṽr−2.

Lemma 5.3 For i = 1, . . . , r−2 and each e ∈ ṽi there exists a cocircuit Y e,i

of M/{f, g} such that Y e,i
e = +, Y e,i is nonnegative on ṽi. Composition of

the Y e,i for a given i yields a covector Y i of M/{g, f} that is positive on ṽi.

Proof. If there were no such cocircuit Y e,i, then there would be a circuit
X i ofM/g with support in ṽi∪{f} that is nonnegative on ṽi. (See Corollary

10.2.18 of [3].) Corresponding to X i there is a vector X
i

ofM such that X i

is obtained from X
i

by removing entry g. The support of X
i

is not contained
in [n], by acyclicity of M. There is a covector Y i of M for which ṽi is the

zero set. The supports of X
i

and Y i intersect, if at all, in a subset of {f, g}.
It is assumed that g ∈ Y i, so the support of X

i
must contain f as well as

g. Therefore, X i
f 6= 0. This is not possible due to the assumption that ṽi is

neither the source nor the sink of Kf .
We now show our main result under the assumption that M/{f, g} has

an adjoint. Existence of an adjoint means that the oriented matroid can
be faithfully depicted by a drawing such as those in Figures 3 and 4. Each
hyperplane of the oriented matroid can be replaced by a pseudohyperplane
such that the resulting set of regions of Rr−2 are the covectors of the adjoint
oriented matroid.

Proposition 5.2 Suppose that ṽ1, . . . , ṽr−2 are nodes of Kf , but none of
them is the sink or source of Kf . Suppose that the oriented matroidM/{f, g}
has an adjoint. Then there exists an extension M̃ ofM/{f, g} by an element

h such that for i = 1, . . . , r− 2 there is a cocircuit Zi of M̃ that has Zi
h = +

and Zi
e ≥ 0 for all e ∈ ṽi.
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Proof. Suppose that M/{f, g} has an adjoint A. By Definition 5.3.5 of
[3], A is an oriented matroid, also of rank r − 2, and there is an injection
α from the ground set Ead of A to the set of cocircuits of M, so that the
image of α contains exactly one element of each pair of opposite cocircuits
of M/{f, g}. For each element e of the ground set of M/{f, g}, there is a
cocircuit Ze of A with Ze

e′ = α(e′)e for all e′ ∈ Ead.
Each of the sets ṽ1, . . . , ṽr−2 is a set of rank r − 2 in M/{f, g}. For

i = 1, 2, . . . , r − 2, let Ei be the set of elements e′ of Ead for which α(e′)
is nonnegative on ṽi or nonpositive on ṽi. Because ṽi has rank r − 2 in
M/{f, g}, it follows from Lemma 5.3 that Ei has rank r− 2 in A. Let B be
a basis for A obtained by taking elements (e′)i ∈ Ei, for i = 1, 2, . . . , r − 2.

Because B is a basis for A, there exists a covector H of A such that
H(e′)i = + for each i for which α((e′)i) is nonnegative on ṽi and H(e′)i = −
for each i for which α((e′)i) is nonpositive on ṽi. By Theorem 7.5.8 of [3], the
covector H implies the existence of an extension M̃ of M/{f, g} by an ele-
ment h so that for each i with α((e′)i) nonnegative on ṽi we have α((e′)i)h = +
and for each i with α((e′)i) nonpositive on ṽi we have α((e′)i)h = −. For i in
the first case, let Zi be α((e′)i), and in the second case, let Zi be −α((e′)i).

This proof was inspired by the proof of Theorem 4.3 in [13]. The proof
allows for great flexibility in constructing the basis B. On the other hand,
the assumption thatM/{f, g} has an adjoint is a very strong assumption in
oriented matroid theory.

Corollary 5.2 Suppose that ṽ1, . . . , ṽr−2 are nodes of Kf , but none of them
is the sink or source of Kf . Suppose that the oriented matroid M/{f, g} has

rank r−2 ≤ 3. Then there exists an extension M̃ ofM/{f, g} by an element

h such that for i = 1, . . . , r− 2 there is a cocircuit Zi of M̃ that has Zi
h = +

and Zi
e ≥ 0 for all e ∈ ṽi.

Proof. Proposition 6.3.6 of [3] states that every oriented matroid of rank
3 has an adjoint.

Theorem 5.1 The Holt-Klee condition holds for rank 4 and rank 5 ori-
ented matroid programs, generalizing the Holt-Klee condition for 3- and 4-
dimensional polytopal digraphs.

Proof. The Theorem follows from Menger’s Theorem, Lemma 5.1 and
Proposition 5.2
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6 A weaker condition on M/{f, g}
In the previous section, we were given nodes ṽ1, ṽ2, . . . , ṽr−2 of Kf , none of
which are the source and sink of Kf , and are asked if there is an extension

M̃ of M/{f, g} by an element h such that for i = 1, 2, . . . , r − 2 there is a

cocircuit Zi of M̃ such that Zi
h = + and Zi

e ≥ 0 for all e ∈ ṽi.
We would like to compare the existence of such an extension to Levi’s

Intersection Property (See Definition 7.5.2 of [3]): Given an oriented matroid
N of rank r−2 and cocircuits Y 1, Y 2, . . . , Y r−3 ofN , there exists an extension
N̂ of N by an element h and cocircuits Z1, Z2, . . . , Zr−3 of N̂ such that for
i = 1, 2, . . . , r − 3, Zi

h = 0 and Zi
e = Y i

e for all e 6= h.
The two conditions differ in three major ways:

• Levi’s intersection property requires r−3 cocircuits Zi rather than the
r − 2 of the previous section.

• The cocircuits Y 1, Y 2, . . . , Y r−3 in Levi’s intersection property are re-
placed by rank r − 2 sets ṽ1, ṽ2, . . . , ṽr−2.

• The cocircuits Zi of the extension of the previous section must have
Zh = +, rather than Zh = 0 as in Levi’s intersection property.

We introduce a generalized Levi’s intersection property:

Definition 6.1 Suppose N is an oriented matroid of rank r − 2. N sat-
isfies the generalized Levi’s intersection property if for any set of covectors
{Y 1, Y 2, . . . , Y r−3}, there exists an extension N̂ of N by an element h and

covectors W 1,W 2, . . . ,W r−3 of N̂ such that for i = 1, 2, . . . , r − 3, W i
h = 0

and W i
e = Y i

e for all e 6= h.

Proposition 6.1 If M/{f, g} satisfies the generalized Levi’s intersection
property, then M has the Holt-Klee property.

Proof. Suppose ṽ1, ṽ2, . . . , ṽr−2 are nodes of Kf and none is the source or
the sink of Kf . For i = 1, 2, . . . , r − 2, Lemma 5.3 produces a covector Y i

of M/{f, g} with ṽi ⊆ Y i
+. By the generalized Levi’s intersection property,

there exists an extension M̃ of M/{f, g} by an element h and covectors

W 1,W 2, . . . ,W r−3 of M̃ such that for i = 1, 2, . . . , r−3, W i
h = 0 andW i

e = Ỹ i
e

for all e 6= h.
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Let Ỹ r−2 be a covector of M̃ that agrees with Y r−2 on [n]. If Ỹ r−2
h = 0,

we can replace Ỹ r−2 by the composition of Ỹ r−2 with a covector of M̃ that is
positive on element h. If Ỹ r−2

h = −, get a new extension by reversing element

h in M̃. Thus we can assume that ṽr−2 ∪ {h} ⊆ Y r−2
+ . By Proposition 3.7.2

of [3], there is a cocircuit Zr−2 of M̃ such that e ∈ Zr−2 and Zr−2 agrees with
Y r−2 wherever it is nonzero. Because the rank of ṽr−2 is r−2, Zr−2∩ṽr−2 6= ∅.

Note that even if h was negated in the construction of Zr−2, the vectors
W 1,W 2, . . .W r−3 are still covectors of M̃. For each i = 1, 2, . . . , r − 3, We
can replace each W i with the composition of W i with a covector of M̃ that is
positive on element h. As before, there is a cocircuit Zi of M̃ that is positive
on element h and agrees with W i on Zi.

The existence of the extension implies thatM has the Holt-Klee property,
as in the last section.

7 Non-lifting subdivisions and P-cubes

The digraph Kf of an oriented matroid program can be derived from the
pair (M/g,V), where V is the set of vertices of the Edmonds-Mandel sphere
of M\f . In this section, we work with a similar pair (N ∪ f, S), where S
is a collection of subsets of the ground set of a rank r − 1 oriented matroid
N , but we will not assume that the members of this pair are obtained from
a larger oriented matroid M. The role of the oriented matroid M\f/g will
in this section be played by the oriented matroid N . Recall Definition 4.1,
taken from section 4 of [20].

A subdivision S of an oriented matroid N is called a lifting subdivision
if there is an oriented matroid N̂ on a set E ∪ g so that N = N̂ /g and the
subsets in S are the complements of the supports of nonnegative cocircuits
of N̂ .

We will also make the following assumption on N : There are no nonneg-
ative cocircuits (facets) of N . This implies in the realizable case that subsets
of the columns of a matrix realizing N indexed by elements of S form a
complete pointed fan.

A subdivision defines a graph G for which the vertices are the cells of S,
and two cells σ1 and σ2 are adjacent if the rank of σ1 ∩ σ2 has rank r − 2.
An extension of N by an element f in general position defines an orientation
Kf of G. Whenever two cells σ1 and σ2 are adjacent, there is a cocircuit Y
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of N ∪ f for which Ye = 0 for e ∈ σ1 ∩ σ2 and Yf = +. The edge is directed
from σ1 to σ2 if Ye = + for all e ∈ σ1\σ2.

The paper [20] notes that the definition of subdivision implies: Every
extension N ∪ f in general position is covered by exactly one cell of S. This
means that there is a unique cell σ1 such that there is a vector C1 for which
C1

f = − and C1
+ = σ1, and there is a unique cell C2 for which C2

f = + and
C2

+ = σ2. The cell σ1 is the source of the digraph Kf and σ2 is the sink.
The monotone paths constructed in Section 4 are defined in the greater

generality of subdivisions in [20], using Lemma 4.2
The arguments of Section 5 only use the properties of Kf implied by the

definition of a subdivision of an oriented matroid, so we get the following.

Proposition 7.1 Let N be an oriented matroid of rank r − 1 on a set E,
and suppose that N has no nonnegative cocircuits. Suppose Kf is a digraph
obtained from a subdivision of N and a one-element extension N ∪ f of N .
If r ≤ 5, then Kf has r− 1 independent monotone paths from source to sink.

An application of this proposition concerns P-oriented matroid comple-
mentarity problems, introduced by Todd [22] and studied by Klaus and Miy-
ata [15]. Here N is a rank n oriented matroid on the set [2n], satisfying the
condition:

For each circuit Y of N , there is i ∈ {1, 2, . . . , n} with Yi = Yn+i 6= 0. (P)

If N satisfying the condition above is realized by an n× 2n matrix of the
form [M, I], then the matrix M must be a P-matrix, i.e. its principal minors
are all positive (see [22]). If N satisfies property (P), then a subdivision of
N is given by S = {B ⊆ [2n] : |B ∩ {i, n + i}| = 1 for i = 1, 2, . . . , n}. The
undirected graph of such a subdivision is that of an n-cube. An extension
of the oriented matroid realized by an n × 2n matrix [M, I] gives rise to a
P-matrix linear complementarity problem, which is to find the unique sink in
the digraph Kf defined by the subdivision and the extension.

In [13], it was shown that for a realizable extension of an oriented ma-
troid satisfying property (P), the Holt-Klee property holds for the resulting
digraph.

If we require N to satisfy property P , but do not require the extension
N ∪ f to be realizable, we get what Klaus and Miyata [15] call a POMCP,
where OMCP stands for oriented matroid complementarity problem. Our
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results imply that for such POMCP with the rank of N at most 4, the
digraph satisfies the Holt-Klee property. Klaus and Miyata were able to
enumerate all the 6910 combinatorially distinct orientations Kf of the 4-
cube obtained from POMCPs. They found the surprising fact that each of
these 6910 orientations was obtainable from a realizable oriented matroid.

The example of Section 4.4 of [13] can be shown by the same argument
given there to be an example of an orientation of the 4-cube that has a
unique source and sink on every face and satisfies the Holt-Klee condition
but is not given by an POMCP. As POMCP orientations of the cube are,
in theory, more general than those obtained from oriented matroid programs
with Edmonds-Mandel spheres combinatorially equivalent to the cube, this
example also shows that the Holt-Klee property, together with the condition
that there is a unique source and unique sink for each face, are not sufficient
to imply that an orientation is obtainable from an oriented matroid program.

The existing literature does not yet contain an example of a POMCP for
which the digraph is the digraph of an oriented matroid program. There also
appears to be no example known of an acyclic realizable POMCP digraph
that cannot be obtained from a linear program over a cube.

8 Rank 6 oriented matroid programs

IfM is a rank 6 oriented matroid on [n]∪{f, g}, and we are given 4 feasible
cocircuits, none of which is the source or the sink of Kf , then we do not
know if there exists a path from the source of Kf to the sink that avoids
all four given cocircuits. It seems doubtful that an extension h of M/{f, g}
guaranteeing such a path, as in section 5, can always be found. However,
there may be completely different approaches to proving that the Holt-Klee
property holds, if it indeed does. As inspiration, one could consider the proof
of Balinski’s theorem due to Barnette [2].

The author would like to express his appreciation for the careful reading
and helpful comments of the referee. A preliminary version of this material
was first presented in a talk at Casa Matematicás Oaxaca in November, 2015.

http://videos.birs.ca/2015/15w5006/201511021203-MorrisJr..mp4

21



References

[1] M. Balinski, “On the graph structure of convex polyhedra in n-space,”
Pacific J. Math. 11, 431–434 (1961).

[2] D. Barnette, “Graph theorems for manifolds,” Israel J. Math. 16, 62–72
(1973).

[3] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, G. M. Ziegler,
“Oriented matroids,” Second edition. Encyclopedia of Mathematics and
its Applications, 46. Cambridge University Press, Cambridge, 1999.

[4] R. G. Bland, “A combinatorial abstraction of linear programming,” J.
Combinatorial Theory, Ser. B 23, 33–57 (1977).

[5] D. Bremner, L. Schewe, “Edge-Graph Diameter Bounds for Convex
Polytopes with Few Facets,” Experiment. Math. 20, (2011), 229–237.

[6] D. Bremner, A. Deza, W. Hua, and L. Schewe, “More bounds on the
diameters of convex polytopes.” Optimization Methods and Software 28
(2013) 442 – 450.

[7] J. Edmonds, K. Fukuda, “Oriented Matroid Programming,” Ph.D. the-
sis of K. Fukuda, University of Waterloo, 223 pages (1982).

[8] J. Edmonds, A. Mandel, “Topology of Oriented Matroids,” Ph.D. thesis
of A. Mandel, University of Waterloo, 333 pages (1982).
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