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Abstract
We investigate the structure of the Minkowski sum of standard simplices in Rr. In particular,

we investigate the one-dimensional structure, the vertices, their degrees and the edges in the
Minkowski sum polytope.
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1 Introduction and Definitions

Let [r] = {1, 2, . . . , r}. The standard simplex ∆[r] of dimension r − 1 is given by

∆[r] = {(x1, . . . , xr) ∈ Rr : xi ≥ 0 for all i , x1 + · · ·+ xr = 1}.
Each subset F ⊆ [r] yields a face ∆F of ∆[r] given by

∆F = {(x1, . . . , xr) ∈ ∆[r] : xi = 0 for i 6∈ F}.
Clearly ∆F is itself a simplex embedded in Rr. If F is a family of subsets of [r], then we can form
the Minkowski sum of simplices

PF =
∑

F∈F
∆F =

{∑

F∈F
xF : xF ∈ ∆F for each F ∈ F

}
.

If |F | = 2 for all F ∈ F , then the polytope PF is called a graphical zonotope. The edge graphs of
graphical zonotopes were studied by West et. al. [?], [?], but several questions about them have gone
unanswered. For example, it is not known if the set of integers that are the degrees of the vertices
of a fixed graphical zonotope must be a set of consecutive integers. Minkowski sums of simplices
have more recently been studied by Feichtner and Sturmfels [?], and by Postnikov [?]. These later
papers focus on the case when the collection F is a building set, i.e. F contains all singletons, and
has the property that, for any F1, F2 ∈ F , F1 ∩ F2 6= ∅ implies that F1 ∪ F2 ∈ F . It turns out
(see Proposition ??) that this property implies that the polytope PF is simple. Applications of
Minkowski sums of simplices appear in the paper of Morton et. al. [?]. Minkowski sums of simplices
have also appeared in the work of Conca [?] and of Herzog and Hibi [?], under the name transversal
polymatroids.

In the remainder of this introductory section, we list some elementary properties of Minkowski
sums of simplices, some of which have been noted in the papers [?] and [?]. We will denote by ∆F
the simplicial complex with facets max(F).
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Proposition 1.1 If
⋃

F∈F = [r] and the simplicial complex ∆F is connected, then the dimension
of PF is r − 1.

Proof. Every point x ∈ PF satisfies
∑

i∈[r] xi = |F|. Suppose c ∈ Rr and there is a partition
[r] = I ∪ J of [r] into nonempty subsets so that ci < cj for all i ∈ I, j ∈ J . Because ∆F is
connected, there are i ∈ I, j ∈ J , G ∈ F so that {ei, ej} ⊆ G. For each F ∈ F\G, pick an
xF ∈ ∆F . The points z = (

∑
F∈F\G xF )+ ei and w = (

∑
F∈F\G xF )+ ej are in PF but cT z < cT w.

Thus
∑

i∈[r] xi = |F| is the only linear equation satisfied by all points of PF . ut

In what follows, it will be useful to define PF for F = ∅ and r > 0 to be 0 ∈ Rr. The next
Proposition follows directly from the definition of PF .

Proposition 1.2 Suppose that F = F1 ∪ F2, and there is a partition [r] = I ∪ J into subsets so
that F ⊆ I for all F ∈ F1 and F ⊆ J for all F ∈ F2. Then PF is the Cartesian product PF1 ×PF2.

Corollary 1.3 The dimension of the polytope PF is given by dim(PF ) = n− c where

n =

∣∣∣∣∣
⋃

F∈F
F

∣∣∣∣∣ ∈ [r]

and c is the number of connected components of ∆F .

From a more graph theoretic point of view we also can consider the following: Let ∆1(F) be
the 1-dimensional skeleton of ∆F .

Corollary 1.4 The dimension of the polytope PF is given by the number of edges in a spanning
forest of ∆1(F).

A face of PF is a subset of PF on which a linear function is maximized. A vector c = (c1, . . . , cr) ∈ Rr

defines a partition C = (C1, C2, . . . , Cs) of [r] into nonempty subsets, so that ci1 = ci2 when i1 and
i2 are in the same part of the partition, and ci1 < ci2 whenever i1 ∈ C`1 , i2 ∈ C`2 , `1 < `2.

Proposition 1.5 The face that maximizes cT x is the Minkowski sum of the simplices in the family

FC := {F ∩ C` : F ∈ F , ` = 1, . . . , s, F ∩ C` 6= ∅, F ∩ Cm = ∅ for m > `}.

Proof. An often cited fact about Minkowski sums is that if the face on which cT x is maximized
over P is G and the face on which cT x is maximized over Q is H, then the face on which cT x is
maximized over the Minkowski sum P +Q is G+H. The subset of ∆F over which cT x is maximized
is clearly conv({ei : i ∈ F ∩ C`}), where ` is max{j : Cj ∩ F 6= ∅}. The Proposition follows from
this fact. ut

By Corollary ?? and Proposition ??, the dimension of the face is determined by the number of
connected components of the simplicial complex ∆FC . If the face on which cT x is maximized is a
facet, then ∆FC has one more connected component than ∆F and can be obtained from ∆F by
splitting one of the components of ∆F in two. The coefficients of the vector c corresponding to C
can be assumed to be 0 and 1. Therefore, all facets of PF are of the form

∑
i∈D xi = t for some

subset D of [r] and integer t.
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On the other hand, if the face maximizing cT x is an edge, then ∆FC has exactly one component
of size two, say {i, j}, and otherwise all isolated elements. The corresponding face of PF is an
edge parallel to ei − ej . Vertices of PF are points that maximize linear functions cT x in which all
components of c are distinct. If c1 < c2 < · · · < cr then component vi of the vertex that maximizes
cT x equals the number of sets F for which i is the largest element. From this we see as well that
the vertices of PF have integer coordinates (which, in itself is clear, since it is a Minkowski sum of
lattice polytopes).

2 Minkowski sum of a fixed number of simplices

Suppose that F consists of k subsets F1, F2, . . . , Fk of [r]. We will for the most part write F =
(F1, F2, . . . , Fk) as an ordered k-tuple, since a lot will depend on the actual listing/order of the sets
F1, . . . , Fk, although the combinatorics will not be effected by a different ordering of them. For
each i ∈ [r], define NF (i) = {j ∈ [k] : i ∈ Fj}. Let A be a subset of [r] so that NF (i1) = NF (i2)
whenever i1 and i2 are in A. We would like to show how the combinatorial type of PF can be
inferred from that of PF ′ , where F ′ is obtained from F by replacing each appearance of A in a
set F by the one-element set m = max(A). Afterward, we will restrict our attention to families in
which all of the NF (i) are distinct.

Proposition 2.1 Suppose that F = F1 ∪ F2, F1 ∩ F2 = ∅, and there is an m ∈ [r] so that
Fi ∩ Fj ⊆ {m} whenever Fi ∈ F1, Fj ∈ F2. Define F ′1 = {(Fi\{m}) ∪ {r + 1} : m ∈ Fi ∈
F1} ∪ {Fi ∈ F1 : m /∈ Fi}. Then PF has the same combinatorial type as the Cartesian product
PF ′1 × PF2.

Proof. Let [r + 1] = A ∪ B be a partition of [r + 1] for which Fi ⊆ A for all Fi ∈ F ′1 and Fi ⊆ B
for all Fi ∈ F2. The linear transformation f : Rr+1 → Rr given by f(x)i = xi if i 6= m, and
f(x)m = xm + xr+1 sends the affine space {x ∈ Rr+1 :

∑
i∈A xi = |F ′1|,

∑
i∈B xi = |F2|} onto {x ∈

Rr :
∑

i∈[r] xi = |F|. In particular, this means that PF is an affine image of PF ′1∪F2
= PF ′1×PF2 . ut

Example 1: Let F = {{1, 2}, {2, 3}},F1 = {{1, 2}},F2 = {{2, 3}}. Then F ′1 = {{1, 4}} and
PF ′1∪F2

= PF ′1 × PF2 is the square conv({(1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)}) which gets
mapped to the rhombus PF = conv({(1, 1, 0, ), (1, 0, 1), (0, 2, 0), (0, 1, 1)}). We will subsequently
refer to this rhombus as P (2).

Now let A be a subset of [r] so that NF (i1) = NF (i2) whenever i1 and i2 are in A. For each
F ∈ F define F ′ = (F\A)∪{r +1} if A ⊆ F ∈ F and F ′ = F if A∩F = ∅. Let F ′ = {F ′ : F ∈ F}.
Consider the function gA : Rr+1 → Rr given by gA(x)i = xr+1xi if i ∈ A, gA(x)i = xi if i ∈ [r]\A.

Proposition 2.2 The function gA maps P{A} × PF ′ onto PF . The restriction of gA to {x ∈
P{A} × PF ′ : xr+1 6= 0} is one-to-one.

Proof. Let x ∈ P{A} × PF ′ . Then there exist xA ∈ ∆A and xF ′ ∈ ∆F ′ for each F ′ ∈ F ′ so
that x = xA +

∑
F ′∈F ′ xF ′ . Then gA(x) = (

∑
F ′∈F ′(xF ′))r+1xA +

∑
F ′∈F ′(xF ′ − (xF ′)r+1er+1) =∑

F ′∈F ′ [(xF ′)r+1xA + xF ′ − (xF ′)r+1er+1] =
∑

F∈F xF , where each xF ∈ ∆F . To show surjectivity,
let x =

∑
F∈F xF , where each xF ∈ ∆F . For each F ∈ F define xF ′ = xF − ∑

i∈A(xF )iei +
(
∑

i∈A(xF )i)er+1. If
∑

i∈A xi > 0, then let (xA)i = (
∑

i∈A xi)−1xi for all i ∈ A. If
∑

i∈A xi = 0
let xA be an arbitrary element of ∆A. Then xF = gA(xA +

∑
F ′∈F ′ xF ′). If gA(x) = gA(y) for
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x, y ∈ {x ∈ P{A} × PF ′ : xr+1 6= 0} then immediately xi = yi for i /∈ A ∪ {r + 1}. The requirement∑
i∈A xi =

∑
i∈A yi = 1 implies xr+1 = yr+1, and hence xi = yi for i ∈ A. ut

Let c ∈ Rr+1 be a nonnegative vector. Let CA = {i : ci ≥ cj for all j ∈ A} ⊆ A. Define a vector
c′ ∈ Rr by c′i = ci if i /∈ A, c′i = cr+1 if i ∈ CA, and c′i = 0 otherwise.

Proposition 2.3 If Q is the face of P{A}×PF ′ that maximizes cT x, then gA(Q) is the face of PF
that maximizes c′T x.

Proof. Suppose that x ∈ P{A}×PF ′ . Then c′T gA(x) =
∑

i∈CA
cr+1xr+1xi+

∑
i/∈A cixi ≤ cr+1xr+1+∑

i∈[r]\A cixi = cT x− cA, with equality holding for x ∈ Q. ut

Proposition 2.4 If |NF (i)| > 0 for all i ∈ A, then the dimension of P{A} × PF ′ equals the
dimension of PF . If |NF (i)| = 0 for all i ∈ A, then the dimension of PF ′ equals the dimension of
PF .

Proof. It is clear that in both cases, the simplicial complexes ∆F and ∆F ′ have the same number
of components. ut

Let PF ′′ be the face of PF where xi = 0 for all i ∈ A. Propositions 2.1 - 2.5 imply that the
combinatorial type of PF is that of ∆A×PF ′ , except that (if PF ′′ is nonempty) the face ∆A×PF ′′
is collapsed to a copy of PF ′′ . In the case that |A| = 2, PF is a wedge (see [?]) over PF ′ with foot
PF ′′ . When |A| > 2, we can obtain PF from PF ′ by iterating the wedge construction, adding one
element of A at a time.

Proposition 2.5 For every vertex x of PF\PF ′′ there is a unique i ∈ A with xi > 0. There are
two kinds of edges of PF :

1. conv({v, v + k(ei − ej)}), where i, j ∈ A, k is a positive integer and v is a vertex of PF\PF ′′ .
2. conv({v, v + k(ei− ej)}), where k is a positive integer and v is a vertex of PF for which there

exists (u,w) ∈ ∆A × PF ′ so that v = gA(u,w) and conv({w,w + k(ei − ej)}) is an edge of
PF ′.

Proof. Every vertex x of PF is the image under gA of a vertex (u,w) of ∆A × PF ′ . A vertex u of
∆A has a unique nonzero coordinate. If wr+1 > 0 then gA(u,w) is in PF\PF ′′ . Every edge of PF
is the image under gA of a pair (e, w) where e is an edge of ∆A and w is a vertex of PF ′ , or a pair
(u, f), where u is a vertex of ∆A and f is an edge of PF ′ . Every edge of ∆A is conv({ei, ej}) for
i, j ∈ A. ut

Example 2: Consider the family F = ({1, 2, 3}, {1, 2, 4}) of subsets of [4]. Then NF (i) = {1, 2}
for all i in A = {1, 2}. The polytope PF is drawn in Figure 1. The polytope PF ′ is the rhombus
that is the top face of the drawing. PF ′′ is the vertex (0, 0, 1, 1).

In applying Proposition 2.1, we consider first the case in which F consists of two sets, F and
F ′. In the special case where each of the sets F \ F ′, F ∩ F ′ and F ′ \ F has exactly one element,
say 1,2 and 3 respectively, then F = {1, 2} and F ′ = {2, 3}, we have the rhombus P (2) of Example
1.
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(0,0,1,1)
(2,0,0,0)

(0,2,0,0)

(0,0,2,0)

(0,0,0,2)

Figure 1: A sum of two triangles

We now argue that the generic Minkowski sum of two simplices roughly has the structure of
such a rhombus if each of F \ F ′, F ∩ F ′, and F ′ \ F is nonempty.

By assigning the 1st, 2nd and 3d coordinate axis of R3 to these parts respectively, we can assign
vertices of PF = ∆F +∆F ′ to the vertices of the rhombus of Example 1 the following way: A vertex
ei + ej of PF is of type (1, 1, 0) if i ∈ F \F ′ and j ∈ F ∩F ′, of type (0, 2, 0) if i, j ∈ F ∩F ′, of type
(0, 1, 1) if i ∈ F ∩F ′ and j ∈ F ′ \F and of type (1, 0, 1) if i ∈ F \F ′ and j ∈ F ′ \F . The following
corollary that describes the structure of a Minkowski sum of two standard simplices to be roughly
that of the rhombus mentioned above.

Corollary 2.6 If F, F ⊆ [r] then the edges, or one-dimensional faces, of P = ∆F +∆F ′ are of the
following types:

1. Internal edges, where both the endpoints are of the same type X ∈ {(1, 1, 0), (0, 2, 0), (0, 1, 1), (1, 0, 1)}.
2. Edges joining vertices of types X and Y , where X and Y are adjacent in P (2).

Proof. Each of the sets F \F ′, F ∩F ′ and F ′ \F can play the role of the set A in Proposition ??.
The two kinds of edges correspond to the two kinds of edges in the Proposition. ut

Theorem 2.7 Let F, F ′ ⊆ [r] and let u be a vertex of the polytope PF .

1. If u is of type (1, 1, 0), (0, 2, 0) or (0, 1, 1), then deg(u) = |F ∪ F ′| − 1.

2. If u is of type (1, 0, 1), then deg(u) = |F |+ |F ′| − 2.

Proof. If u is of type (0, 2, 0), say u = 2ei, then u is adjacent to all |F ∩F ′|−1 other vertices of type
(0, 2, 0), and all type (1, 1, 0) and (0, 1, 1) vertices of the form ei + ej , where j ∈ (F \F ′)∪ (F ′ \F ).
If u is of type (1, 1, 0), say u = ei + ej , with i ∈ F \ F ′ and j ∈ F ∩ F ′, then u is adjacent to two
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kinds of type (1, 1, 0) vertices: |F ∩F ′| − 1 vertices ei + ek with k ∈ (F ∩ F ′) \ {j} and |F \ F ′| − 1
vertices ek + ej with k ∈ F \ (F ′ ∩ {i}). Also, u is adjacent to |F ′ \ F | type (1, 0, 1) vertices ei + ek

with k ∈ F ′ \ F , and finally u is adjacent to the vertex 2ej . If u is of type (1, 0, 1), say u = ei + ej

with i ∈ F \ F ′ and j ∈ F ′ \ F , then u is adjacent to |(F \ F ′) ∪ (F \ F ′)| − 2 vertices of type
(1, 0, 1) obtained by replacing either ei or ej by an ek for k ∈ (F \F ′)∪ (F \F ′), and u is adjacent
to |F ∩ F ′| vertices of each type (1, 1, 0) and (0, 1, 1), obtained by replacing ei or ej by an ek for
k ∈ F ∩ F ′. ut

Corollary 2.8 Let F, F ′ ⊆ [r] and P = ∆F + ∆F ′.

1. The number of vertices of P is |F | · |F ′| − |F ∩ F ′|(|F ∩ F ′| − 1).

2. The number of edges of P is given by

1
2

[|F \ F ′| · |F ′ \ F |(|F |+ |F ′| − 2) + |F ∩ F ′|(|F ∪ F ′| − 1)(|F \ F ′|+ |F ′ \ F |+ 1)
]
.

Proof. The number of vertices of degree |F |+ |F ′| − 2 in P is |F \ F ′| · |F ′ \ F |. By Theorem ??
the remaining vertices of P all have degree |F ∪ F ′| − 1. The total number of edges is one half of
the sum of the vertex degrees. ut

Assuming that F ∪F ′ = [r], then the maximum value of |F |+ |F ′| − 2 (provided F \F ′ and F ′ \F
are nonempty) is 2r − 4, which occurs when F = [r − 1] and F ′ = [r] \ {1}. Considering the
distribution of the two possible degrees of P = ∆F + ∆F ′ , we have the following.

Proposition 2.9 Let r ∈ N be fixed. If F, F ′ ⊆ [r] and P = ∆F + ∆F ′ is of dimension r− 1, then
the average degree deg(P ) satisfies

r − 1 ≤ deg(P ) <
10
9

(r − 1).

Moreover, the lower bound is attained iff P is simple, that is if (i) F ⊆ F ′, (ii) F ′ ⊆ F or (iii)
|F ∩ F ′| = 1. Also, deg(P )/(r − 1) can become arbitrarily close to 10/9 for large r.

Proof. We introduce the variables x, y and z by x = |F \F ′|, y = |F ′\F | and z = |F ∩F ′|. Here we
have the boundary condition x, y ≥ 0 and x + y + z = r, and since P is assumed to have dimension
r − 1 we have z ≥ 1 or 0 ≤ x + y ≤ r − 1. By Corollary ?? we obtain that

deg(P ) = 2
|E(∆1(F))|
|V (∆1(F))|

=
|F \ F ′| · |F ′ \ F |(|F |+ |F ′| − 2) + |F ∩ F ′|(|F ∪ F ′| − 1)(|F \ F ′|+ |F ′ \ F |+ 1)

|F | · |F ′| − |F ∩ F ′|(|F ∩ F ′| − 1)

=
xy(2r − 2− x− y) + (r − 1)(r − x− y)(x + y + 1)

(r − y)(r − x)− (r − x− y)(r − x− y − 1)
.

As a function of x and y we note that deg(P ) = deg(x, y) is symmetric, has the value of r − 1 on
the boundary of the triangle bounded by x = 0, y = 0 and x + y = r − 1. By Theorem ?? the
value deg(x, y) is strictly larger than r − 1 inside the triangle. The maximum value degmax(r) of
deg(x, y) occurs when x = y = (r− 1)/3, and we have (10r− 13)/9 < degmax(r) < 10(r− 1)/9, but
degmax(r)− (10r − 13)/9 tends to zero when r tends to infinity. ut
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Remark: For any ε > 0 there is an r0 such that for any r ≥ r0 we have

r − 1 ≤ deg(P ) <
10r − 13

9
+ ε.

The f-polynomial fP (q) of a d-dimensional polytope P is
∑d

i=0 fiq
i, where fi is the number

of i-dimensional faces of P . It is easy to see that fP×Q(q) = fP (q)fQ(q). Postnikov [?] gives an
elegant formula for fPF (q) in the case that F is a building set. If we assume that A, F ′ and F ′′
are as in the discussion preceding Proposition ??, the f -polynomial can be decomposed as follows:

Proposition 2.10 fPF (q) = f∆A
(q)fPF′ (q)− f∆A

(q)fPF′′ (q) + fPF′′ (q).

In Example 2, fPF (q) = 7 + 11q + 6q2 + q3 = (2 + q)(4 + 4q + q2)− (2 + q)(1) + 1.
If PF is the sum of two simplices ∆F and ∆F ′ , then Proposition ?? shows that PF has the

same combinatorial type as ∆F × ∆F ′ when |F ∩ F ′| is 0 or 1. This allows us to describe the
f -polynomials of sums of two simplices quite easily, using the proposition with A = F ∩ F ′.

Corollary 2.11 If F = {F, F ′}, where F ∩ F ′ = {1, 2, . . . , m}, then

fPF (q) = f∆F∩F ′ (q)f∆(F\F ′)∪m×∆(F ′\F )∪m
(q)− f∆F∩F ′ (q)f∆(F\F ′)×∆(F ′\F )

(q) + f∆(F\F ′)×∆(F ′\F )
(q).

We will now generalize the results that we obtained for the sum of two simplices to larger sums.

Definition 2.12 For k ∈ N let H(k) be the family of k subsets of [2k−1] so that for i = 1, 2, . . . , 2k−
1, NH(k)(i) is the ith (in lexicographic order) nonempty subset of [k]. Then P (k) := PH(k) is called
the kth master polytope.

Remark: There is no direct benefit to our choice of the lexicographic ordering on the subsets
[k] since any ordering of the subsets of [k] will work just as well. Although Definition ?? of the
master polytope does depend on the ordering of the subsets of [k], any different ordering will clearly
yield an equivalent polytope to the master polytope, obtained by a permutation of the coordinates.
Hence, we will henceforth not distinguish between P (k), as defined in Definition ??, and any other
polytope obtained in the same way with a different ordering of the subsets of [k].

Regarding the lexicographical ordering itself, it here denotes the order induced by the binary
k-tuples corresponding to the subsets of [k]. For example, if k = 2 the lexicographic ordering of
the nonempty subsets of {1, 2} is here {1, 2} > {1} > {2}, since the lexicographic order of the
corresponding binary tuples is given by (1, 1) > (1, 0) > (0, 1). Hence, we have that H(2) =
({1, 2}, {1, 3}) so that NH(2)(1) = {1, 2}, NH(2)(2) = {1} and NH(2)(3) = {2}.
Definition 2.13 Let F = (F1, . . . , Fk) and let u be a point in PF . Then hF (u) is the point v in
P (k) for which, for i = 1, 2, . . . , 2k − 1, we set

vi =

{ ∑
j:NF (j)=NH(k)(i)

uj if there is a j with NF (j) = NH(k)(i),
0 otherwise

Theorem 2.14 For F = (F1, . . . , Fk) the point u ∈ PF is a vertex of PF if, and only if, the
following conditions are met.

1. Each instance of uiαuiβ > 0, NF (iα) = NF (iβ) implies that iα = iβ.
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2. hF (u) is a vertex of the polytope P (k).

Proof. For a point u of PF we first note that if NF (iα) = NF (iβ) and iα 6= iβ, then u is a
convex combination of v and w in PF given by viα = uiα + uiα , viβ = 0, vi = ui otherwise, wiβ =
uiα + uiβ , wiα = 0, wi = ui otherwise. Hence, the first condition is necessary for u to be a vertex of
PF .

Let u be a point of PF that satisfies the first condition. In this case the cardinality |{i ∈ [r] :
ui > 0}| is at most 2k − 1. Also, if u = ui1 + · · · + uim where m ∈ [2k − 1] and each ui` = ai`ei`

where ai` > 0, then hF (u) has the form hF (u) = ai1ei′1 + · · · + aimei′m , where i′` is the position in
the lexicographic order of the subset NF (i`) ⊆ [2k − 1].

If cT x is a linear function on PF that is maximized at u, then we define the linear function c′

by c′ := ci1xi1 + · · ·+ cimxim . It is clear that c′ is also maximized over PF at u. This implies that
the linear function ci1xi′1 + · · ·+ cimxi′m over P (k) is maximized at hF (u).

Assume that hF (u) is a vertex of P (k). Since hF (u) is an extreme point of P (k) there is a
functional ci1xi′1 + · · ·+ cimxi′m on P (k) that is maximized at hF (u). In this case the corresponding
functional ci1xi1 + · · ·+ cimxim on PF is maximized at u, showing that u is a vertex of PF . ut

Let X1, . . . , Xh be the vertices of the polytope P (k). Similar to the case when k = 2 in Corollary ??
we have the following.

Theorem 2.15 If F = (F1, . . . , Fk), then the edges of PF are of the following types:

1. Internal edges, where both the endpoints are of type Xi for some i ∈ {1, . . . , m}.
2. Edges joining vertices of types Xi and Xj, where Xi and Xj are adjacent in P (k).

Proof. We can partition [r] into
⋃

A`, where A` = {j ∈ [r] : NF (j) = NH(k)(`)}. Then PF is the
image of the Cartesian product

∏
A`⊆[r] ∆A`

× P (k) under the composition of all of the maps gA`
,

possibly followed by reordering the columns. An edge of the product corresponds to the product
of an edge of one of the factors and vertices from the other factors, as in Proposition ??. ut

Theorems ?? and ?? both reduce the structure of PF ⊆ Rr to considerations of the master polytope
P (k) ⊆ R2k−1.

We conclude this section by investigating the polytope P (3). Let

H := ({1, 2, 4, 5}, {1, 2, 3, 6}, {1, 3, 4, 7}).

Here we have that NH(1) = {1, 2, 3}, NH(2) = {1, 2}, NH(3) = {2, 3}, NH(4) = {1, 3}, NH(5) =
{1}, NH(6) = {2} and NH(7) = {3}, so all of the nonempty subsets of [3] are represented and hence
P (3) = PH. (Note! Although H(3) = ({1, 2, 3, 4}, {1, 2, 5, 6}, {1, 3, 5, 7}) and P (3) = PH(3) by
Definition ??, the polytope PH is equivalent to PH(3) as remarked earlier.) The case of k = |F| = 3
is the first interesting case for the mere reason that the polytope P (3) does not have 2k(k−1) = 64
vertices, as was the case for k = 2, where the rhombus P (2) had precisely 2k(k−1) = 4 vertices.

Example 2: The point A = (0, 1, 1, 1, 0, 0, 0) in P (3) is not a vertex, because A = (B+C+D)/3,
where B = (0, 2, 1, 0, 0, 0, 0), C = (0, 0, 2, 1, 0, 0, 0) and D = (0, 1, 0, 2, 0, 0, 0) and all the points B,C
and D are points in the polytope P (3).
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Observation 2.16 The polytope P (3) has 41 vertices in R7 given by the column vectors (without
the last entry) in the following 7× 10, 7× 21 and 7× 10 matrices. The last entry in each column
is the degree of the vertex.

3 1 1 0 0 1 0 0 0 0
0 0 2 2 1 0 1 2 0 0
0 2 0 1 2 0 0 0 2 1
0 0 0 0 0 2 2 1 1 2
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
6 6 6 6 6 6 6 6 6 6

2 1 1 0 0 0 0 2 1 1 0 0 0 0 2 1 1 0 0 0 0
0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 2
0 0 0 1 0 1 2 0 1 0 1 0 1 0 0 0 1 1 0 1 0
0 1 0 0 1 1 0 0 0 0 0 1 1 2 0 1 0 0 1 1 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
6 6 6 6 8 6 8 6 6 6 8 6 6 8 6 6 6 6 6 8 8

1 0 0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0
1 1 1 0 0 0 1 1 1 1
1 1 1 1 1 1 0 0 0 1
0 0 0 1 1 1 1 1 1 1
7 8 8 7 8 8 7 8 8 9

These computations were verified using the computer program POLYMAKE [?]. Using POLY-
MAKE, we determined that the polytope P (4) had vertices of all degrees in the set {14, 15, . . . , 28}
except for {16, 23, 26, 27}.

3 Function Representation of Integer Points of PF

The purpose of this section is to prove Theorem 3.5, a technical result that is useful for enumerating
the vertices of PF . We have not found this specific result in the literature, but Proposition 3.4 is
due to Edmonds [?] (see Proposition 1.4 of [?].) In order to keep the presentation self-contained,
we provide a detailed proof.

As in the previous section, we assume that F = (F1, . . . , Fk), an ordered collection of k subsets
of [r]. A function f : [k] → [r] that satisfies f(i) ∈ Fi for each i will be called a representation
function or a rep-function for short. For any function (and hence for a rep-function) f : [k] → [r]
we define u(f) := ef(1) + · · ·+ ef(k). The following proposition is important and easily verified.

Proposition 3.1 For functions f, g : [k] → [r] we have
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1. u(f) + u(g) = u(min{f, g}) + u(max{f, g}).
2. If f 6= g and u(f) = u(g), then u(f) 6= u(min{f, g}).

If u(f) = u(g), then we get by Proposition ?? that u(f) = u(g) = (u(min{f, g})+u(max{f, g}))/2.
Hence, if an integer point u ∈ PF can be represented by two distinct functions f and g, then it is
not a vertex of PF . The interesting part is the converse, which we will prove in the rest of this
section. First we prove the following two lemmas.

Lemma 3.2 If v is an integer point in PF that is not a vertex of PF , and an edge of the inclusion-
minimal face of PF containing v is parallel to ei1 − ei2, then PF contains the points v + ei1 − ei2

and v − ei1 + ei2.

Proof. If v is on a facet of PF given by
∑

i∈T xi = t for some T ⊂ [r] and integer t, then this
equation is satisfied by all points in the inclusion-minimal face of PF containing v. That means that
i1 and i2 are either both in or both outside of T . Thus v + ei1 − ei2 and v− ei1 + ei2 will satisfy any
linear equations that v satisfies. Furthermore, any inequality

∑
i∈T xi ≤ t that v satisfies strictly

will also be satisfied by v + ei1 − ei2 and v − ei1 + ei2 , because only one component is increased by
1 and one component is decreased by 1. ut

Lemma 3.3 If f and g are rep-functions and u(g) = u(f)+ tei1 − tei2 for i1 6= i2 in [r], then there
exist rep-functions f1, f2, . . . ft−1 so that u(f) + lei1 − lei2 = u(fl) for l = 1, 2, . . . , t− 1.

Proof. Define GF to be the bipartite graph with vertex set {wj : j ∈ [k]} ∪ {vi : i ∈ [r]} and edges
{(wj , vi)} for all (i, j) with i ∈ Fj . For any rep-function h, let Mh be the set of edges (wj , vi) for
which h(j) = i. For every i ∈ [r]\{i1, i2}, the number of edges of Mg meeting vi equals the number
of edges of Mf meeting vi. For every j ∈ [k], wj is met by exactly one edge from each of Mf and
Mg. On the other hand, vi1 is adjacent to t more edges of Mg than Mf , and vi2 is adjacent to t more
edges of Mf than Mg. There therefore exists a path P from vi2 to vi1 that alternates between edges
of Mf and Mg. Let M1 be the set of edges obtained from Mf by replacing the edges of Mf in the
path by the edges of Mg in the path. Then, for j = 1, 2, . . . , k, define f1(j) = i, where (wj , vi) is an
edge of M1. Then u(f1) = u(f) + ei1 − ei2 . We can continue this way to get u(f2), . . . , u(ft−1). ut

Proposition 3.4 Every integer point v in PF is u(f) for some rep-function f .

Proof. The proof is by induction on the dimension of the inclusion-minimal face of PF containing
v. From the first section, we know that the statement is true if true if v is a vertex. Suppose v is
not a vertex. Suppose that there is an edge of the inclusion-minimal face of PF containing v that is
parallel to ei1−ei2 . Then Lemma ?? allows us to build a segment parallel to ei1−ei2 , containing v in
its interior, and with endpoints on faces of PF that are of lower dimension than the one containing
v. By induction, the endpoints of the interval are u(f) and u(g) for some rep-functions f and g.
Lemma ?? then gives us a rep-function for v. ut

Theorem 3.5 An integer point v in PF is a vertex of PF if, and only if, there is a unique rep-
function f so that u(f) = v.
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Proof. Let v be an integer point in PF that is not a vertex of PF . By Lemma ?? there are i1 and
i2 in [r] so that PF contains the points v−ei1 +ei2 and v−ei1 +ei2 . Letf and g be the rep-functions
guaranteed by Proposition ?? for v − ei1 + ei2 and v − ei1 + ei2 , respectively. Let GF ,Mf and Mg

be as in the proof of Lemma ??. Then there are two edges of Mf adjacent to vi2 that are not in
Mg. Therefore we can use these edges as initial edges in two different paths from vi2 to vi1 that
alternate between edges of Mf and Mg. Swapping edges of Mf for edges of Mg along each of these
alternating paths leads to two different rep-functions for v. ut

The number of rep-functions for a given F is easy to count, it is ΠF∈F |F |. By listing the rep-
functions and the corresponding integer points u(f), and striking out those u(f) that appear more
than once, one can list the vertices of PF . This was done by Bernd Sturmfels [?] for the polytopes
P (k) in the special cases of k = 3, 4, 5. He then conjectured that P (3) had 41 vertices (consistent
with Observation ??), P (4) had 1015 vertices, and that P (5) had 59072 vertices.

4 Max-degree as a function of r and k

In this section we determine the function d : N→ N given by

d(r) = max
F

{degmax(PF )} ,

where the maximum is taken over all multi-subsets (F1, . . . , Fk) of P([r]), where k ∈ N can be any
integer but r is fixed. Moreover, for each fixed k ∈ N we determine the function dk : N→ N defined
by

dk(r) = max
|F|≤k

{degmax(PF )} ,

where the maximum is here taken over all multi-subsets (F1, . . . , Fk) of P([r]) where both k and r
are fixed. Clearly d(r) = maxk∈N{dk(r)}.

We start with the following lower bound for dk(r) and d(r).

Lemma 4.1 For k, r ∈ N we have dk(r) ≥ k(r − k), and therefore d(r) ≥ br2/4c.

Proof. Let k ∈ [r] and let for each i ∈ [k] let Fi = {i, k + 1, k + 2, . . . , r}. Let v = e1 + e2 + · · · ek.
Let 1 ≤ i2 ≤ k and k + 1 ≤ i1 ≤ r and c ∈ Rr satisfy ci = 2 if i ∈ [k]\{i2}, ci1 = ci2 = 1, and
ci = 0 otherwise. Then cT x is maximized over PF on the line segment from v to v + (ei1 − ei2) so
v and v + (ei1 − ei2) are vertices of PF and the line segment joining them is an edge. Therefore
dk(r) ≥ k(r − k), so we have in particular that d(r) ≥ br/2cdr/2e = br2/4c. ut

Another polytope that has vertices of degree br2/4c is the graphical zonotope for the complete
bipartite graph with br/2c vertices on one side of the bipartition and dr/2e vertices on the other
side. West [?] proved that the graphical zonotope for the complete bipartite graph has vertices of
degree ` for all r − 1 ≤ ` ≤ br2/4c. On the other hand, every vertex of the polytope of Lemma ??
other than v has degree r − 1.

For a fixed vertex u, each edge of P incident to u can be identified with a multiple of a
difference ei − ej of some pair of unit vectors, where i, j ∈ [r] are distinct. Since the collection
{α(ei − ej) : α ∈ N} is a set of parallel vectors, at most one multiple of ei − ej can possibly
correspond to an edge incident to u. From this alone we see that the maximum number of edges
incident to u is at most

(
r
2

)
. However, more can be said:
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For a vertex u of P , let ~G(u) be the directed graph with the vertex set V (~G(u)) = [r] where a
directed edge (i, j) is present if and only if u + α(ei − ej) is a neighbor of u in P for some α ∈ N.

Proposition 4.2 For r ∈ N and F = (F1, . . . , Fk) ⊆ P([r]), the digraph ~G(u) is acyclic and its
underlying graph G(u) is simple and triangle-free.

Proof. Assume there is a cycle (i1, i2, . . . , ih) in ~G(u). Then u, v1, . . . vh are all vertices of P , where
v` = u + α`(ei` − ei`+1

) (here we compute cyclically, so eih+1
= ei1). This is however impossible

since
h∑

`=1

1
α`

(v` − u) = 0,

which means that there is no hyperplane containing u alone and having all the v`’s strictly on one
side of it. In particular for h = 2, there are no directed 2-cycles and hence the underlying graph
G(u) is simple. Also for h = 3, there are no directed triangles in ~G(u) either.

Assume now that G(u) has a triangle, which then does not correspond to a directed triangle in
~G(u), say v = u + α(ei − ej), v′ = u + β(ej − el) and v′′ = u + γ(ei − el). In this case we have

v′′ − u =
γ

α
(v − u) +

γ

β

(
v′ − u

)
,

which means that the vector v′′ − u is in the cone spanned by v − u and v′ − u. This contradicts
the fact that uv′′ is an edge of P . Hence, the underlying graph G(u) of ~G(u) has no triangles. ut

Theorem 4.3 For r ∈ N we have d(r) ≤ br2/4c.

Proof. The maximum degree of a vertex u of P is by Proposition ?? the maximum number of
edges the simple triangle free graph G(u) can have. By a theorem of Mantel [?] (a special case of
Turán’s Theorem [?]), the maximum number of edges of a simple triangle-free graph on r vertices
is br2/4c, hence the theorem. ut

By Lemma ?? and Theorem ?? we have the following corollary.

Corollary 4.4 For r ∈ N we have d(r) = br2/4c.
We now turn our attention to the computation of dk(r). Note that the Minkowski sum PF provided
in the proof of Lemma ?? that attains the overall maximum degree d(r) has k = |F| = br/2c.
Therefore when computing dk(r) we can assume 1 ≤ k ≤ r/2.

First we need a variation of the theorem by Mantel [?].

Theorem 4.5 Let n ∈ N and 1 ≤ k ≤ n/2. If G is a triangle free simple graph on n vertices with
a vertex cover of cardinality at most k, then |E(G)| ≤ k(n − k). Moreover, if |E(G)| = k(n − k),
then G is a complete bipartite graph with parts of cardinalities k and n− k.

Proof. For n ∈ {1, 2} the theorem is trivial. We proceed by induction and assume that G is a
triangle free simple graph on n > 2 vertices with a vertex cover of cardinality at most k, and that
|E(G)| is the maximum number of edges for such graphs. Let uv ∈ E(G) be an edge and since
either u or v is in the vertex cover U of size k, we assume that u ∈ U . Since G is triangle-free the
set of neighbors N(u) and N(v) are disjoint. Let G′ = G − {u, v} be the simple graph obtained
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from G by removing the vertices u and v from G. By the disjointness of N(u) and N(v) we have
|E(G)| = |E(G′)|+ d(u) + d(v)− 1.

Assume first that v ∈ U . In this case G′ has a vertex cover of cardinality at most k−2, and by the
induction hypothesis we have |E(G)| = |E(G′)|+d(u)+d(v)−1 ≤ (k−2)[(n−2)−(k−2)]+n−1 <
k(n− k).

Now assume that v 6∈ U . In this case G′ has a vertex cover of cardinality at most k−1, and by the
induction hypothesis we have |E(G)| = |E(G′)|+d(u)+d(v)−1 ≤ (k−1)[(n−2)−(k−1)]+n−1 =
k(n−k). Also by the induction hypothesis, |E(G)| = k(n−k) can hold iff G′ is a complete bipartite
graph with parts of cardinalities k−1 and n−k−1, and d(u)+d(v) = n (i.e. N(u)∪N(v) = V (G)).
This means that |E(G)| = k(n − k) can hold iff N(v) = U and N(u) = V (G) \ U , that is, G is a
complete bipartite graph with parts of sizes k and n− k. This completes the proof. ut

From Theorem ?? we obtain the following corollary.

Corollary 4.6 For r ∈ N and k ∈ {1, . . . , br/2c}, we have dk(r) = k(r − k).

Proof. Consider a vertex u of PF . Then u can be represented uniquely as u = ei1 + · · ·+ eik with
ij ∈ Fj for j = 1, . . . , k (note that some indices might coincide). As noted before, a neighbor v of
u in P must have the form v = u + α(ei − ej) for some α ∈ N, and i ∈ [r] and j ∈ {i1, . . . , ik}.
Since each directed edge (i, j) ∈ V (~G(u)) has its head in {i1, . . . , ik}, of cardinality at most k, the
underlying graph G(u) has a vertex cover of size at most k. Hence by Theorem ?? G(u) has at
most k(r − k) edges.

In the proof of Lemma ?? an example of PF with |F| ≤ k and a vertex of degree k(r − k) was
given. This completes the argument. ut

5 Simple Vertices

A simple vertex of a polytope is a vertex that is adjacent to exactly d other vertices of the polytope,
where d is the dimension of the polytope. If F is a collection of distinct two-element sets, i.e. PF
is a graphical zonotope, then it is known from Shannon’s theorem (see [?], p.208), that PF has at
least 2|F| simple vertices. The family F = ({1, 2}, {1, 3}, {1, 2, 3}), for which PF is a pentagon,
shows that this zonotopal theorem does not hold for more general Minkowski sums of simplices.

West [?] points out that simple vertices for graphical zonotopes can be obtained from depth
first searches (DFS) on the graph. We will generalize this to set systems other than graphs and
show that there are at least d + 1 simple vertices, where d is the dimension of the polytope.

Let J ⊆ [r]. In what follows F \ J will denote the subcollection of F consisting of those sets
whose intersection with J is empty.

Definition 5.1 If F consists of a single set F , then for every j ∈ F , the vertex ej of PF will be
called a DFS vertex with root j. In general, if F is connected, then a vertex v of PF is called a
DFS vertex with root j if

1. vj = |NF (j)| > 0

2. If F \ {j} is nonempty and is the union of connected components F1 ∪ F2 ∪ · · · ∪ Ft, then
v = vjej + w1 + w2 + · · ·+ wt, where, for all k ∈ [t], wk is a DFS vertex of PFk

with root jk

so that {jk, j} ⊆ F for some F ∈ F .
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Example 3: Let F = ({1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 3, 4, 5}). The point v = (0, 1, 0, 1, 2) is
a DFS vertex with root 5, because v = 2e5 + w, where w is a DFS vertex of F \ {5} with root 4.
Note that F \ {5} is the set system of Example 2. On the other hand, v′ = (0, 0, 1, 1, 2) is not a
DFS vertex. The root for v′ would have to be 5. Then the root of w′ = v′− 2e5 would have to be 3
or 4, but {3, 4} is not contained in any set of F \ {5}. This implies that w′ cannot be decomposed
further.

Note that conditions 1 and 2 of the definition of a DFS vertex and the connectivity of F imply
that the root is unique, since if a DFS vertex had two roots, say i and j, then both vi = |NF (i)|
and vj = |NF (j)| which is impossible. We state this formally.

Proposition 5.2 The root of a DFS vertex is unique.

For a DFS vertex v of a connected family F , we define the directed graph ~Γ(v) with vertex set [r]
recursively as follows: If F consists of a single set F , and v = ej for some j ∈ F , then ~Γ(v) contains
edges from j to all the other elements of F . Otherwise, if j is the root of v, ~Γ(v) contains edges
from j to each of the roots of the DFS vertices of the connected components of F \{j}. The digraph
~Γ(v) also contains edges from j to every i for which NF (i) ⊆ NF (j). After this definition has been
applied recursively, we see that every vertex other than j is the head of exactly one directed edge
of ~Γ(v) and that ~Γ(v) is a tree. If |F | = 2 for every F ∈ F , then ~Γ(v) is a depth-first search tree,
hence the name DFS vertex.

Proposition 5.3 If v is a DFS vertex, then ~Γ(v) is ~G(v), the digraph of Proposition ??, with all
directed edges reversed.

Since ~Γ(v) is a tree with at most r− 1 edges, Proposition ?? implies that a DFS vertex is a simple
vertex.

Proof. (Proposition ??) Suppose (k, l) is an edge in ~Γ(v). Let a = (a1, a2, . . . , ar) be a permutation
of [r] that is an extension of the partial order defined by ~Γ(v). That is, if there is a directed path
in ~Γ(v) from s to t, then as > at. Then it is clear that aT x is maximized over PF at v. We can
assume that the permutation a has been chosen so that ak = al + 1. There is a subcollection G of
F consisting of the sets that contain only elements of [r] that can be reached from k by a directed
path of ~Γ(v). Let m = |NG(k) ∩ NG(l)|, and consider the point w = v + m(el − ek). Let a′ be
obtained from a by interchanging ak and al. Then a′T x is maximized over PF at w, so w is a vertex
of PF . Furthermore, if we let a′′ = 1

2(a + a′), then the line segment from v to w is the subset of PF
on which a′′T x is maximized over PF , so (l, k) is an edge of ~G(v).

To show that the reversed edges of ~G(v) are contained in ~Γ(v), suppose that (l, k) is an edge
of ~G(v). Then vk > 0, so k is one of the vertices that is a tail of an edge of ~Γ(v). If there is a
directed path (k = i1, i2, . . . , it = l) with t > 2 in ~Γ(v), then the vector el− ek = (ei2 − ei1) + (ei3 −
ei2) + . . . + (eit − eit−1) is in the cone generated by ei2 − ei1 , ei3 − ei2 , . . . , eit − eit−1 . Because these
latter vectors correspond to edges of PF leaving v, the vector el − ek is not parallel to an edge of
PF leaving v, so (l, k) is not an edge of ~G(v). If there is a directed path (l = i1, i2, . . . , it = k) in
~Γ(v), then the reversed path appears in ~G(v) which together with the edge (l, k) makes a directed
cycle. If k and l are not contained in a directed path of ~Γ(v), let J be the set of elements of [r] from
which there are directed paths in ~Γ(v) to both k and l. Then k and l are in different components
of F \ J , so there is no edge in PF\J in the direction el − ek. Therefore, the only way for (l, k) to
be an edge of ~G(v) is for (k, l) to be an edge of ~Γ(v). ut
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Proposition 5.4 If F is a building set, i.e. has the property that F1 ∩F2 6= ∅ implies F1 ∪F2 ∈ F
for all F1, F2 ∈ F , then every vertex of PF is a DFS vertex.

Proof. Assume that F is connected. Suppose v is a vertex of PF that maximizes cT x. Let cm :=
max{ci : i ∈ [r], |NF (i)| > 0}. Then vm = |NF (m)| and we can write v = vmem+w1+w2+· · ·+wt,
where, for all k ∈ [t], wk is a vertex of PFk

. By induction, we can assume that each wk is a DFS
vertex of PFk

, because each Fk is a building set. The final condition, that {mk,m} ⊆ F for some
F ∈ F , for the root mk of each DFS vertex wk, follows from connectivity and the building set
property of F . ut

Proposition 5.5 If F is connected and
⋃

F∈F = [r], then each j ∈ [r] is a root of some DFS vertex
of PF .

Proof. By Definition ?? it is clear that we can for each j ∈ [r] recursively obtain at least one DFS
vertex v of PF with root j. ut

By Propositions ??, ?? and ?? we have the following.

Corollary 5.6 If F is connected, and
⋃

F∈F = [r], then PF has at least r simple vertices.

By Observation ?? we therefore have our main conclusion of this section.

Corollary 5.7 If PF has dimension d, then PF has at least d + 1 simple vertices.

Proof. Suppose that F is the disconnected union of components F1 and F2, and that the dimension
of PF1 is d1 and the dimension of PF2 is d2. If v1 is a simple vertex of PF1 and v2 is a simple vertex
of PF2 , then v1 +v2 is a simple vertex of PF . The dimension of PF is d1 +d2 and (d1 +1)(d2 +1) ≥
d1 + d2 + 1. ut
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