Hyperbolicity of Jensen polynomials

The Jensen-Pólya Program for the Riemann Hypothesis and Related Problems

Ken Ono (U of Virginia)

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

イロト イヨト イヨト イヨト

RIEMANN'S ZETA-FUNCTION

DEFINITION (RIEMANN)

For $\operatorname{Re}(s) > 1$, define the **zeta-function** by

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

イロト イロト イヨト イヨト 三日

RIEMANN'S ZETA-FUNCTION

DEFINITION (RIEMANN)

For $\operatorname{Re}(s) > 1$, define the **zeta-function** by

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

THEOREM (FUNDAMENTAL THEOREM)

The function ζ(s) has an analytic continuation to C (apart from a simple pole at s = 1 with residue 1).

RIEMANN'S ZETA-FUNCTION

DEFINITION (RIEMANN)

For $\operatorname{Re}(s) > 1$, define the **zeta-function** by

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

THEOREM (FUNDAMENTAL THEOREM)

- The function ζ(s) has an analytic continuation to C (apart from a simple pole at s = 1 with residue 1).
- **2** We have the functional equation

$$\boldsymbol{\zeta(s)} = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \cdot \boldsymbol{\zeta(1-s)}.$$

HILBERT'S 8TH PROBLEM

CONJECTURE (RIEMANN HYPOTHESIS)

Apart from negative evens, the zeros of $\zeta(s)$ satisfy $\operatorname{Re}(s) = \frac{1}{2}$.

э

HILBERT'S 8TH PROBLEM

CONJECTURE (RIEMANN HYPOTHESIS)

Apart from negative evens, the zeros of $\zeta(s)$ satisfy $\operatorname{Re}(s) = \frac{1}{2}$.

"Without doubt, it would be desirable to have a rigorous proof of this proposition; however, I have left this research...because it appears to be unnecessary for the immediate goal of my study...."

Bernhard Riemann (1859)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

IMPORTANT REMARKS

FACT (RIEMANN'S MOTIVATION)

Proposed RH because of Gauss' Conjecture that $\pi(X) \sim \frac{X}{\log X}$.

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

・ロト ・聞 ト ・ ヨト ・ ヨト …

IMPORTANT REMARKS

FACT (RIEMANN'S MOTIVATION)

Proposed RH because of Gauss' Conjecture that $\pi(X) \sim \frac{X}{\log X}$.

WHAT IS KNOWN?

• The first "gazillion" zeros satisfy RH (van de Lune, Odlyzko).

イロト 不得 トイヨト イヨト

IMPORTANT REMARKS

FACT (RIEMANN'S MOTIVATION)

Proposed RH because of Gauss' Conjecture that $\pi(X) \sim \frac{X}{\log X}$.

WHAT IS KNOWN?

- The first "gazillion" zeros satisfy RH (van de Lune, Odlyzko).
- 2 > 41% of zeros satisfy RH (Selberg, Levinson, Conrey,...).

JENSEN-PÓLYA PROGRAM

J. W. L. Jensen (1859–1925)

George Pólya (1887–1985)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

э

JENSEN-PÓLYA PROGRAM

DEFINITION

The Riemann Xi-function is the entire function

$$\Xi(z) := \frac{1}{2} \left(-z^2 - \frac{1}{4} \right) \pi^{\frac{iz}{2} - \frac{1}{4}} \Gamma \left(-\frac{iz}{2} + \frac{1}{4} \right) \zeta \left(-iz + \frac{1}{2} \right).$$

JENSEN-PÓLYA PROGRAM

DEFINITION

The Riemann Xi-function is the entire function

$$\Xi(z) := \frac{1}{2} \left(-z^2 - \frac{1}{4} \right) \pi^{\frac{iz}{2} - \frac{1}{4}} \Gamma\left(-\frac{iz}{2} + \frac{1}{4} \right) \zeta\left(-iz + \frac{1}{2} \right).$$

Remark

RH is true \iff all of the zeros of $\Xi(z)$ are purely real.

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

・ロト ・四ト ・ヨト ・ヨト

Roots of Deg 100 Taylor Poly for $\Xi\left(\frac{1}{2}+z\right)$

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

Roots of Deg 200 Taylor Poly for $\Xi\left(\frac{1}{2}+z\right)$

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

Roots of Deg 400 Taylor Poly for $\Xi\left(\frac{1}{2}+z\right)$

TAKEAWAY ABOUT TAYLOR POLYNOMIALS

• Red points are good approximations of zeros of $\Xi(\frac{1}{2}+z)$.

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ○○○○

TAKEAWAY ABOUT TAYLOR POLYNOMIALS

- Red points are good approximations of zeros of $\Xi(\frac{1}{2}+z)$.
- The "spurious" blue points are annoying.

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ ヨ ● の ○ ○

TAKEAWAY ABOUT TAYLOR POLYNOMIALS

- Red points are good approximations of zeros of $\Xi(\frac{1}{2}+z)$.
- The "spurious" blue points are annoying.
- As $d \to +\infty$ the spurious points become more prevalent.

JENSEN POLYNOMIALS

DEFINITION (JENSEN)

The degree d and shift n Jensen polynomial for an arithmetic function $a : \mathbb{N} \mapsto \mathbb{R}$ is

$$J_a^{d,n}(X) := \sum_{j=0}^d a(n+j) \binom{d}{j} X^j$$

= $a(n+d)X^d + a(n+d-1)dX^{d-1} + \dots + a(n).$

(日)

JENSEN POLYNOMIALS

DEFINITION (JENSEN)

The degree d and shift n Jensen polynomial for an arithmetic function $a : \mathbb{N} \mapsto \mathbb{R}$ is

$$J_a^{d,n}(X) := \sum_{j=0}^d a(n+j) \binom{d}{j} X^j$$

= $a(n+d)X^d + a(n+d-1)dX^{d-1} + \dots + a(n).$

DEFINITION

A polynomial $f \in \mathbb{R}[X]$ is **hyperbolic** if all of its roots are real.

イロト イボト イヨト イヨト

JENSEN'S CRITERION

Theorem (Jensen-Pólya (1927)) If $\Lambda(s) := \pi^{-s/2} \Gamma(s/2) \zeta(s) = \Lambda(1-s),$

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

JENSEN'S CRITERION

THEOREM (JENSEN-PÓLYA (1927)) If $\Lambda(s) := \pi^{-s/2} \Gamma(s/2) \zeta(s) = \Lambda(1-s)$, then define $\gamma(n)$ by $\left(-1+4z^2\right) \Lambda\left(\frac{1}{2}+z\right) = \sum_{n=0}^{\infty} \frac{\gamma(n)}{n!} \cdot z^{2n}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三日 ろの⊙

JENSEN'S CRITERION

THEOREM (JENSEN-PÓLYA (1927)) If $\Lambda(s) := \pi^{-s/2} \Gamma(s/2) \zeta(s) = \Lambda(1-s)$, then define $\gamma(n)$ by $\left(-1+4z^2\right) \Lambda\left(\frac{1}{2}+z\right) = \sum_{n=0}^{\infty} \frac{\gamma(n)}{n!} \cdot z^{2n}.$

RH is equivalent to the hyperbolicity of all of the $J_{\gamma}^{d,n}(X)$.

イロト 不得下 イヨト イヨト 二日

JENSEN'S CRITERION

THEOREM (JENSEN-PÓLYA (1927)) If $\Lambda(s) := \pi^{-s/2} \Gamma(s/2) \zeta(s) = \Lambda(1-s)$, then define $\gamma(n)$ by $\left(-1+4z^2\right) \Lambda\left(\frac{1}{2}+z\right) = \sum_{n=0}^{\infty} \frac{\gamma(n)}{n!} \cdot z^{2n}.$

RH is equivalent to the hyperbolicity of all of the $J_{\gamma}^{d,n}(X)$.

WHAT WAS KNOWN?

The hyperbolicity for all n is known for $d \leq 3$ by work of Csordas, Norfolk and Varga, and Dimitrov and Lucas.

NEW THEOREMS

"THEOREM 1" (GRIFFIN, O, ROLEN, ZAGIER)

For each d at most finitely many $J^{d,n}_{\gamma}(X)$ are not hyperbolic.

NEW THEOREMS

"THEOREM 1" (GRIFFIN, O, ROLEN, ZAGIER)

For each d at most finitely many $J^{d,n}_{\gamma}(X)$ are not hyperbolic.

Theorem (O+)

Height T RH \implies hyperbolicity of $J^{d,n}(X)$ for all n if $d \ll T^2$.

イロト イロト イヨト イヨト 三日

NEW THEOREMS

"THEOREM 1" (GRIFFIN, O, ROLEN, ZAGIER)

For each d at most finitely many $J^{d,n}_{\gamma}(X)$ are not hyperbolic.

Theorem (O+)

Height $T \ RH \Longrightarrow$ hyperbolicity of $J^{d,n}(X)$ for all n if $d \ll T^2$. In particular, $J^{d,n}_{\gamma}(X)$ is hyperbolic for all n when $d \leq 10^{20}$.

NEW THEOREMS

"THEOREM 1" (GRIFFIN, O, ROLEN, ZAGIER)

For each d at most finitely many $J^{d,n}_{\gamma}(X)$ are not hyperbolic.

Theorem (O+)

Height $T \ RH \Longrightarrow$ hyperbolicity of $J^{d,n}(X)$ for all n if $d \ll T^2$. In particular, $J^{d,n}_{\gamma}(X)$ is hyperbolic for all n when $d \leq 10^{20}$.

THEOREM (O+) If $n \gg 3^d \cdot d^{\frac{25}{8}}$, then $J^{d,n}_{\gamma}(X)$ is hyperbolic.

イロト イポト イヨト イヨト

Some Remarks

Remarks

• Offers new evidence for RH.

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

イロト イヨト イヨト イヨト

臣

Some Remarks

Remarks

- Offers new evidence for RH.
- **2** We "locate" the real zeros of the $J^{d,n}_{\gamma}(X)$.

イロト イヨト イヨト イヨト

Some Remarks

Remarks

- Offers new evidence for RH.
- **2** We "locate" the real zeros of the $J^{d,n}_{\gamma}(X)$.
- 3 Wagner has extended the 1st theorem to other L-functions.

イロト 不得 トイヨト イヨト

HERMITE POLYNOMIALS

DEFINITION

The (modified) Hermite polynomials

 $\{H_d(X) \; : \; d \geq 0\}$

are the orthogonal polynomials with respect to $\mu(X) := e^{-\frac{X^2}{4}}$.

イロト 不得下 イヨト イヨト 二日

HERMITE POLYNOMIALS

DEFINITION

The (modified) Hermite polynomials

 $\{H_d(X) \; : \; d \geq 0\}$

are the orthogonal polynomials with respect to $\mu(X) := e^{-\frac{X^2}{4}}$.

EXAMPLE (THE FIRST FEW HERMITE POLYNOMIALS)

$$H_0(X) = 1$$

 $H_1(X) = X$
 $H_2(X) = X^2 - 2$
 $H_3(X) = X^3 - 6X$

HERMITE POLYNOMIALS

LEMMA

The Hermite polynomials satisfy:

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

イロト イヨト イヨト イヨト

HERMITE POLYNOMIALS

LEMMA

The Hermite polynomials satisfy:

• Each $H_d(X)$ is hyperbolic with d distinct roots.

・ロト ・四ト ・ヨト ・ヨト

HERMITE POLYNOMIALS

LEMMA

The Hermite polynomials satisfy:

- Each $H_d(X)$ is hyperbolic with d distinct roots.
- **2** If S_d denotes the "suitably normalized" zeros of $H_d(X)$, then

 $S_d \longrightarrow$ Wigner's Semicircle Law.

イロト 不得下 イヨト イヨト 二日

RH CRITERION AND HERMITE POLYNOMIALS

THEOREM 1 (GRIFFIN, O, ROLEN, ZAGIER) The renormalized Jensen polynomials $\widehat{J}_{\gamma}^{d,n}(X)$ satisfy $\lim_{n \to +\infty} \widehat{J}_{\gamma}^{d,n}(X) = H_d(X).$

イロト 不得下 イヨト イヨト 二日

RH CRITERION AND HERMITE POLYNOMIALS

THEOREM 1 (GRIFFIN, O, ROLEN, ZAGIER) The **renormalized** Jensen polynomials $\widehat{J}^{d,n}_{\gamma}(X)$ satisfy

$$\lim_{n \to +\infty} \widehat{J}_{\gamma}^{d,n}(X) = H_d(X).$$

For each d at most finitely many $J^{d,n}_{\gamma}(X)$ are not hyperbolic.

DEGREE 3 NORMALIZED JENSEN POLYNOMIALS

n	$\widehat{J_{\gamma}}^{3,n}(X)$
100	$\approx 0.9769X^3 + 0.7570X^2 - 5.8690X - 1.2661$
200	$\approx 0.9872X^3 + 0.5625X^2 - 5.9153X - 0.9159$
300	$\approx 0.9911X^3 + 0.4705X^2 - 5.9374X - 0.7580$
400	$\approx 0.9931X^3 + 0.4136X^2 - 5.9501X - 0.6623$
	: :
10^{8}	$\approx 0.9999X^3 + 0.0009X^2 - 5.9999X - 0.0014$
∞	$H_3(X) = X^3 - 6X$

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

RANDOM MATRIX MODEL PREDICTIONS

Freeman Dyson

Hugh Montgomery

Andrew Odlyzko

・ロト ・聞ト ・ヨト ・ヨト

RANDOM MATRIX MODEL PREDICTIONS

The nontrivial zeros of $\zeta(s)$ appear to be "distributed like" the eigenvalues of random Hermitian matrices.

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

"THEOREM" (GRIFFIN, O, ROLEN, ZAGIER)

GUE holds for Riemann's $\zeta(s)$ in derivative aspect.

イロト 不得下 イヨト イヨト 二日

"THEOREM" (GRIFFIN, O, ROLEN, ZAGIER)

GUE holds for Riemann's $\zeta(s)$ in derivative aspect.

Sketch of Proof

• The $J^{d,n}_{\gamma}(X)$ model the zeros of the nth derivative $\Xi^{(n)}(X)$.

イロト 不得 トイヨト イヨト

"THEOREM" (GRIFFIN, O, ROLEN, ZAGIER)

GUE holds for Riemann's $\zeta(s)$ in derivative aspect.

Sketch of Proof

- The $J^{d,n}_{\gamma}(X)$ model the zeros of the nth derivative $\Xi^{(n)}(X)$.
- ² The derivatives are predicted to satisfy GUE.

"THEOREM" (GRIFFIN, O, ROLEN, ZAGIER)

GUE holds for Riemann's $\zeta(s)$ in derivative aspect.

Sketch of Proof

- The $J^{d,n}_{\gamma}(X)$ model the zeros of the nth derivative $\Xi^{(n)}(X)$.
- **2** The derivatives are predicted to satisfy GUE.
- So For fixed d, we proved that

$$\lim_{n \to +\infty} \widehat{J}_{\gamma}^{d,n}(X) = H_d(X).$$

"THEOREM" (GRIFFIN, O, ROLEN, ZAGIER)

GUE holds for Riemann's $\zeta(s)$ in derivative aspect.

Sketch of Proof

- The $J^{d,n}_{\gamma}(X)$ model the zeros of the nth derivative $\Xi^{(n)}(X)$.
- ² The derivatives are predicted to satisfy GUE.
- So For fixed d, we proved that

$$\lim_{n \to +\infty} \widehat{J}_{\gamma}^{d,n}(X) = H_d(X).$$

• The zeros of the $\{H_d(X)\}$ and the eigenvalues in GUE both satisfy Wigner's Semicircle Distribution.

Computing derivatives Is not Easy

THEOREM (PUSTYLNIKOV (2001), COFFEY (2009)) As $n \to +\infty$, we have

$$\xi^{(2n)}(1/2) = \frac{(2n)(2n-1)(2n-2)^{\frac{-1}{4}}}{2^{2n-2}\ln(2n-2)^{\frac{1}{4}}} \left[\ln\left(\frac{2n-2}{\pi}\right) - \ln\ln\left(\frac{2n-2}{\pi}\right) + o(1)\right]^{2n-\frac{3}{2}} \\ \times \exp\left(-\frac{2n-2}{\ln(2n-2)}\right).$$

(日)

Computing derivatives Is not Easy

THEOREM (PUSTYLNIKOV (2001), COFFEY (2009)) As $n \to +\infty$, we have

$$\xi^{(2n)}(1/2) = \frac{(2n)(2n-1)(2n-2)^{\frac{-1}{4}}}{2^{2n-2}\ln(2n-2)^{\frac{1}{4}}} \left[\ln\left(\frac{2n-2}{\pi}\right) - \ln\ln\left(\frac{2n-2}{\pi}\right) + o(1)\right]^{2n-\frac{3}{2}} \\ \times \exp\left(-\frac{2n-2}{\ln(2n-2)}\right).$$

Remarks

• Derivatives essentially drop to 0 for "small" n before exhibiting exponential growth.

イロト イボト イヨト イヨト

Computing derivatives Is not Easy

THEOREM (PUSTYLNIKOV (2001), COFFEY (2009)) As $n \to +\infty$, we have

$$\xi^{(2n)}(1/2) = \frac{(2n)(2n-1)(2n-2)^{\frac{-1}{4}}}{2^{2n-2}\ln(2n-2)^{\frac{1}{4}}} \left[\ln\left(\frac{2n-2}{\pi}\right) - \ln\ln\left(\frac{2n-2}{\pi}\right) + o(1)\right]^{2n-\frac{3}{2}} \\ \times \exp\left(-\frac{2n-2}{\ln(2n-2)}\right).$$

Remarks

- Derivatives essentially drop to 0 for "small" n before exhibiting exponential growth.
- **2** This is insufficient for approximating $J^{d,n}_{\gamma}(X)$.

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

イロト イボト イヨト イヨト

FIRST 10 TAYLOR COEFFICIENTS OF $\Xi(x)$

m	\hat{b}_m
0	6.214 009 727 353 926 (-2)
1	7.178 732 598 482 949 (-4)
2	2.314 725 338 818 463 (-5)
3	1.170 499 895 698 397 (-6)
4	7.859 696 022 958 770 (-8)
5	6.474 442 660 924 152 (-9)
6	6.248 509 280 628 118 (-10)
7	6.857 113 566 031 334 (-11)
8	8.379 562 856 498 463 (-12)
9	1.122 895 900 525 652 (-12)
10	1.630 766 572 462 173 (-13)

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

イロト イポト イヨト イヨト 二日

NOTATION

• We let
$$\theta_0(t) := \sum_{k=1}^{\infty} e^{-\pi k^2 t}$$

NOTATION

• We let
$$\theta_0(t) := \sum_{k=1}^{\infty} e^{-\pi k^2 t}$$
, and define

$$F(n) := \int_{1}^{\infty} (\log t)^{n} t^{-3/4} \theta_{0}(t) dt.$$

NOTATION

• We let
$$\theta_0(t) := \sum_{k=1}^{\infty} e^{-\pi k^2 t}$$
, and define

$$F(n) := \int_1^{\infty} (\log t)^n t^{-3/4} \theta_0(t) dt.$$

2 Following Riemann, we have

$$\Xi^{(n)}(0) = (-1)^{n/2} \cdot \frac{32\binom{n}{2}F(n-2) - F(n)}{2^{n+2}}$$

NOTATION

• We let
$$\theta_0(t) := \sum_{k=1}^{\infty} e^{-\pi k^2 t}$$
, and define
 $F(n) := \int_1^{\infty} (\log t)^n t^{-3/4} \theta_0(t) dt.$

2 Following Riemann, we have

$$\Xi^{(n)}(0) = (-1)^{n/2} \cdot \frac{32\binom{n}{2}F(n-2) - F(n)}{2^{n+2}}$$

So Let $L = L(n) \approx \log(\frac{n}{\log n})$ be the unique positive solution of the equation $n = L \cdot (\pi e^L + \frac{3}{4}).$

ARBITRARY PRECISION ASYMPTOTICS

THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

To all orders, as $n \to +\infty$, there are $b_k \in \mathbb{Q}(L)$ such that

$$F(n) \sim \sqrt{2\pi} \frac{L^{n+1}}{\sqrt{(1+L)n - \frac{3}{4}L^2}} e^{L/4 - n/L + 3/4} \left(1 + \frac{b_1}{n} + \frac{b_2}{n^2} + \cdots\right),$$

where $b_1 = \frac{2L^4 + 9L^3 + 16L^2 + 6L + 2}{24(L+1)^3}.$

3

ARBITRARY PRECISION ASYMPTOTICS

THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

To all orders, as $n \to +\infty$, there are $b_k \in \mathbb{Q}(L)$ such that

$$F(n) \sim \sqrt{2\pi} \frac{L^{n+1}}{\sqrt{(1+L)n - \frac{3}{4}L^2}} e^{L/4 - n/L + 3/4} \left(1 + \frac{b_1}{n} + \frac{b_2}{n^2} + \cdots\right),$$

where $b_1 = \frac{2L^4 + 9L^3 + 16L^2 + 6L + 2}{24(L+1)^3}.$

Remarks

1 Using two terms (i.e. b_1) suffices for our RH application.

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

ARBITRARY PRECISION ASYMPTOTICS

THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

To all orders, as $n \to +\infty$, there are $b_k \in \mathbb{Q}(L)$ such that

$$F(n) \sim \sqrt{2\pi} \frac{L^{n+1}}{\sqrt{(1+L)n - \frac{3}{4}L^2}} e^{L/4 - n/L + 3/4} \left(1 + \frac{b_1}{n} + \frac{b_2}{n^2} + \cdots\right),$$

where $b_1 = \frac{2L^4 + 9L^3 + 16L^2 + 6L + 2}{24(L+1)^3}.$

Remarks

• Using two terms (i.e. b_1) suffices for our RH application.

2 Analysis + Computer \implies hyperbolicity for $d \le 10^{20}$.

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

イロト イポト イヨト イヨト

EXAMPLE: $\widehat{\gamma}(n) :=$ TWO-TERM APPROXIMATION

n	$\widehat{\gamma}(n)$		$\gamma(n)$		$\gamma(n)/\widehat{\gamma}(n)$	
		$1.6313374394\times\!10^{-17}$	\approx	$1.6323380490 \times 10^{-17}$	\approx	1.000613367
100	\approx	$6.5776471904 \times 10^{-205}$		$6.5777263785 \times 10^{-205}$	\approx	1.000012038
		$3.8760333086 \times 10^{-2567}$	\approx	$3.8760340890 imes 10^{-2567}$	\approx	1.00000201
10000	\approx	$3.5219798669 \times 10^{-32265}$		$3.5219798773 \times 10^{-32265}$	\approx	1.00000002
100000	\approx	$6.3953905598\times\!10^{-397097}$	\approx	$6.3953905601 \times 10^{-397097}$	\approx	1.000000000

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

How do these asymptotics imply Theorem 1?

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

How do these asymptotics imply Theorem 1?

Theorem 1 is an example of a general phenomenon!

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

(日本)(周本)(日本)(日本)

HYPERBOLIC POLYNOMIALS IN MATHEMATICS

Remark

Hyperbolicity of "generating polynomials" is studied in enumerative combinatorics in connection with log-concavity

$$a(n)^2 \ge a(n-1)a(n+1).$$

・ロト ・ 一日 ト ・ 日 ト

Hyperbolic Polynomials in Mathematics

Remark

Hyperbolicity of "generating polynomials" is studied in enumerative combinatorics in connection with log-concavity

$$a(n)^2 \ge a(n-1)a(n+1).$$

- Group theory (lattice subgroup enumeration)
- Graph theory
- Symmetric functions
- Additive number theory (partitions)

• . . .

・ロト ・ 一日 ト ・ 日 ト

APPROPRIATE GROWTH

DEFINITION

A real sequence a(n) has **appropriate growth** if

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

3

APPROPRIATE GROWTH

DEFINITION

A real sequence a(n) has **appropriate growth** if

$$a(n+j) \sim a(n) e^{A(n)j - \delta(n)^2 j^2} \quad (n \to +\infty)$$

for each j for real sequences $\{A(n)\}\$ and $\{\delta(n)\}\rightarrow 0$.

イロト 不得下 イヨト イヨト 二日

APPROPRIATE GROWTH

DEFINITION

A real sequence a(n) has appropriate growth if

$$a(n+j) \sim a(n) e^{A(n)j - \delta(n)^2 j^2} \quad (n \to +\infty)$$

for each j for real sequences $\{A(n)\}\$ and $\{\delta(n)\}\rightarrow 0$.

WHAT DO WE MEAN?

For fixed d and $0 \leq j \leq d$, as $n \to +\infty$ we have

APPROPRIATE GROWTH

DEFINITION

A real sequence a(n) has appropriate growth if

$$a(n+j) \sim a(n) e^{A(n)j - \delta(n)^2 j^2} \quad (n \to +\infty)$$

for each j for real sequences $\{A(n)\}\$ and $\{\delta(n)\}\rightarrow 0$.

WHAT DO WE MEAN?

For fixed d and $0 \leq j \leq d$, as $n \to +\infty$ we have

$$\log\left(\frac{a(n+j)}{a(n)}\right)$$

= $A(n)j - \delta(n)^2 j^2 + \sum_{i=0}^d o_{i,d}(\delta(n)^i)j^i + O_d\left(\delta(n)^{d+1}\right).$

GENERAL THEOREM

DEFINITION

If a(n) has appropriate growth, then the **renormalized Jensen** polynomials are defined by

$$\widehat{J}_a^{d,n}(X) := \frac{1}{a(n) \cdot \delta(n)^d} \cdot J_a^{d,n}\left(\frac{\delta(n)X - 1}{\exp(A(n))}\right).$$

イロト イロト イヨト イヨト 三日

GENERAL THEOREM

DEFINITION

If a(n) has appropriate growth, then the **renormalized Jensen** polynomials are defined by

$$\widehat{J}_a^{d,n}(X) := \frac{1}{a(n) \cdot \delta(n)^d} \cdot J_a^{d,n}\left(\frac{\delta(n)X - 1}{\exp(A(n))}\right).$$

GENERAL THEOREM (GRIFFIN, O, ROLEN, ZAGIER) Suppose that a(n) has appropriate growth.

GENERAL THEOREM

DEFINITION

If a(n) has appropriate growth, then the **renormalized Jensen** polynomials are defined by

$$\widehat{J}_a^{d,n}(X) := \frac{1}{a(n) \cdot \delta(n)^d} \cdot J_a^{d,n}\left(\frac{\delta(n)X - 1}{\exp(A(n))}\right).$$

GENERAL THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

Suppose that a(n) has appropriate growth. For each degree $d \ge 1$ we have

$$\lim_{n \to +\infty} \widehat{J}_a^{d,n}(X) = H_d(X).$$

GENERAL THEOREM

DEFINITION

If a(n) has appropriate growth, then the **renormalized Jensen** polynomials are defined by

$$\widehat{J}_a^{d,n}(X) := \frac{1}{a(n) \cdot \delta(n)^d} \cdot J_a^{d,n}\left(\frac{\delta(n)X - 1}{\exp(A(n))}\right).$$

GENERAL THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

Suppose that a(n) has appropriate growth. For each degree $d \ge 1$ we have

$$\lim_{n \to +\infty} \widehat{J}_a^{d,n}(X) = H_d(X).$$

For each d at most finitely many $J_a^{d,n}(X)$ are not hyperbolic.

Hyperbolicity of Jensen polynomials Hermite Distributions Another Application

MOTIVATION FOR OUR WORK

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

Hyperbolicity of Jensen polynomials Hermite Distributions Another Application

MOTIVATION FOR OUR WORK

DEFINITION

A partition is any nonincreasing sequence of integers.

p(n) := #partitions of size n.

・ロト ・聞ト ・ヨト ・ヨト

3

MOTIVATION FOR OUR WORK

DEFINITION

A partition is any nonincreasing sequence of integers.

p(n) := #partitions of size n.

EXAMPLE

We have that p(4) = 5 because the partitions of 4 are

 $4, \quad 3+1, \quad 2+2, \quad 2+1+1, \quad 1+1+1+1.$

イロト 不得下 イヨト イヨト 二日

LOG CONCAVITY OF
$$p(n)$$

EXAMPLE

The roots of the quadratic $J_p^{2,n}(X)$ are

$$\frac{-p(n+1) \pm \sqrt{p(n+1)^2 - p(n)p(n+2)}}{p(n+2)}$$

It is hyperbolic if and only if $p(n+1)^2 > p(n)p(n+2)$.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

LOG CONCAVITY OF
$$p(n)$$

EXAMPLE

The roots of the quadratic $J_p^{2,n}(X)$ are

$$\frac{-p(n+1)\pm\sqrt{p(n+1)^2-p(n)p(n+2)}}{p(n+2)}$$

It is **hyperbolic** if and only if $p(n+1)^2 > p(n)p(n+2)$.

THEOREM (NICOLAS (1978), DESALVO AND PAK (2013)) If $n \ge 25$, then $J_p^{2,n}(X)$ is hyperbolic.

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

CHEN'S CONJECTURE

Theorem (Chen, Jia, Wang (2017))

If $n \ge 94$, then $J_p^{3,n}(X)$ is hyperbolic.

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

(日)

CHEN'S CONJECTURE

Theorem (Chen, Jia, Wang (2017))

If $n \ge 94$, then $J_p^{3,n}(X)$ is hyperbolic.

CONJECTURE (CHEN)

There is an N(d) where $J_p^{d,n}(X)$ is hyperbolic for all $n \ge N(d)$.

CHEN'S CONJECTURE

Theorem (Chen, Jia, Wang (2017))

If $n \ge 94$, then $J_p^{3,n}(X)$ is hyperbolic.

CONJECTURE (CHEN)

There is an N(d) where $J_p^{d,n}(X)$ is hyperbolic for all $n \ge N(d)$.

TABLE 1. Conjectured minimal values of N(d)

d	1	2	3	4	5	6	7	8	9
N(d)	1	25	94	206	381	610	908	1269	1701

THEOREM 2 (GRIFFIN, O, ROLEN, ZAGIER)

Chen's Conjecture is true.

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

イロト イヨト イヨト イヨト

臣

THEOREM 2 (GRIFFIN, O, ROLEN, ZAGIER)

Chen's Conjecture is true.

Remarks

• The proof can be refined case-by-case to prove the minimality of the claimed N(d) (Larson, Wagner).

イロト イボト イヨト イヨト

THEOREM 2 (GRIFFIN, O, ROLEN, ZAGIER)

Chen's Conjecture is true.

Remarks

- The proof can be refined case-by-case to prove the minimality of the claimed N(d) (Larson, Wagner).
- **2** This is a consequence of the **General Theorem**.

イロト イボト イヨト イヨト

MODULAR FORMS

DEFINITION

A weight k weakly holomorphic modular form is a function f on \mathbb{H} satisfying:

イロト イヨト イヨト イヨト

MODULAR FORMS

DEFINITION

A weight k weakly holomorphic modular form is a function f on \mathbb{H} satisfying:

• For all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ we have

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(\tau).$$

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

MODULAR FORMS

DEFINITION

A weight k weakly holomorphic modular form is a function f on \mathbb{H} satisfying:

• For all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ we have

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(\tau).$$

2 The poles of f (if any) are at the cusp ∞ .

(日)

MODULAR FORMS

DEFINITION

A weight k weakly holomorphic modular form is a function f on \mathbb{H} satisfying:

• For all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ we have

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(\tau).$$

2 The poles of f (if any) are at the cusp ∞ .

EXAMPLE (PARTITION GENERATING FUNCTION)

We have the weight -1/2 modular form

$$f(\tau) = \sum_{n=0}^{\infty} p(n) e^{2\pi i \tau (n - \frac{1}{24})}.$$

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

JENSEN POLYNOMIALS FOR MODULAR FORMS

THEOREM 3 (GRIFFIN, O, ROLEN, ZAGIER)

Let f be a weakly holomorphic modular form on $SL_2(\mathbb{Z})$ with real coefficients and a pole at $i\infty$. Then for each degree $d \ge 1$

$$\lim_{n \to +\infty} \widehat{J}_{a_f}^{d,n}(X) = H_d(X).$$

For each d at most finitely many $J_{a_f}^{d,n}(X)$ are not hyperbolic.

JENSEN POLYNOMIALS FOR MODULAR FORMS

THEOREM 3 (GRIFFIN, O, ROLEN, ZAGIER)

Let f be a weakly holomorphic modular form on $SL_2(\mathbb{Z})$ with real coefficients and a pole at $i\infty$. Then for each degree $d \ge 1$

$$\lim_{n \to +\infty} \widehat{J}_{a_f}^{d,n}(X) = H_d(X).$$

For each d at most finitely many $J_{a_f}^{d,n}(X)$ are not hyperbolic.

Sketch of Proof. Sufficient asymptotics are known for $a_f(n)$ in terms of Kloosterman sums and Bessel functions.

イロト イボト イヨト イヨト

NATURAL QUESTIONS

QUESTION

What is special about the Hermite polynomials?

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

イロト イヨト イヨト イヨト

NATURAL QUESTIONS

QUESTION

What is special about the Hermite polynomials?

QUESTION

Is there an even more general theorem?

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

イロト イボト イヨト イヨト

HERMITE POLYNOMIAL GENERATING FUNCTION

LEMMA (GENERATING FUNCTION)

We have that

$$e^{-t^2 + Xt} =: \sum_{d=0}^{\infty} H_d(X) \cdot \frac{t^d}{d!} = 1 + X \cdot t + (X^2 - 2) \cdot \frac{t^2}{2} + \dots$$

・ロト ・聞ト ・ヨト ・ヨト

HERMITE POLYNOMIAL GENERATING FUNCTION

LEMMA (GENERATING FUNCTION)

We have that

$$e^{-t^2 + Xt} =: \sum_{d=0}^{\infty} H_d(X) \cdot \frac{t^d}{d!} = 1 + X \cdot t + (X^2 - 2) \cdot \frac{t^2}{2} + \dots$$

Remark

The rough idea of the proof is to show for large fixed n that

$$\sum_{d=0}^{\infty} \widehat{J}_a^{d,n}(X) \cdot \frac{t^d}{d!} \approx e^{-t^2 + Xt} = e^{-t^2} \cdot e^{Xt}.$$

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

More General Theorem

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

・ロト ・四ト ・ヨト ・ヨト 三日

More General Theorem

DEFINITION

A real sequence a(n) has appropriate growth for a formal power series $F(t) := \sum_{i=0}^{\infty} c_i t^i$ if

イロト 不得 トイヨト イヨト

More General Theorem

DEFINITION

A real sequence a(n) has appropriate growth for a formal power series $F(t) := \sum_{i=0}^{\infty} c_i t^i$ if

 $a(n+j) \sim a(n) E(n)^j F(\delta(n)j) \quad (n \to +\infty)$

イロト 不得下 イヨト イヨト 二日

More General Theorem

DEFINITION

A real sequence a(n) has appropriate growth for a formal power series $F(t) := \sum_{i=0}^{\infty} c_i t^i$ if

 $a(n+j) \sim a(n) E(n)^j F(\delta(n)j) \quad (n \to +\infty)$

for each j with positive sequences $\{E(n)\}\$ and $\{\delta(n)\}\rightarrow 0$.

イロト 不得下 イヨト イヨト 二日

More General Theorem

DEFINITION

A real sequence a(n) has appropriate growth for a formal power series $F(t) := \sum_{i=0}^{\infty} c_i t^i$ if

 $a(n+j) \sim a(n) E(n)^j F(\delta(n)j) \quad (n \to +\infty)$

for each j with positive sequences $\{E(n)\}\$ and $\{\delta(n)\}\rightarrow 0$.

QUESTION

In the Hermite case we have

$$E(n) := e^{A(n)}$$
 and $F(t) := e^{-t^2}$.

More General Theorem

DEFINITION

A real sequence a(n) has appropriate growth for a formal power series $F(t) := \sum_{i=0}^{\infty} c_i t^i$ if

 $a(n+j) \sim a(n) E(n)^j F(\delta(n)j) \quad (n \to +\infty)$

for each j with positive sequences $\{E(n)\}\$ and $\{\delta(n)\}\rightarrow 0$.

QUESTION

In the Hermite case we have

$$E(n) := e^{A(n)}$$
 and $F(t) := e^{-t^2}$.

How does the shape of F(t) impact "limiting polynomials"?

More General Theorem

MOST GENERAL THEOREM (GRIFFIN, O, ROLEN, ZAGIER) If a(n) has appropriate growth for the power series

$$F(t) = \sum_{i=0}^{\infty} \frac{c_i}{c_i} t^i,$$

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

イロト イポト イヨト イヨト

More General Theorem

MOST GENERAL THEOREM (GRIFFIN, O, ROLEN, ZAGIER) If a(n) has appropriate growth for the power series

$$F(t) = \sum_{i=0}^{\infty} \frac{c_i}{c_i} t^i$$

then for each degree $d \ge 1$ we have

$$\lim_{n \to +\infty} \frac{1}{a(n) \cdot \delta(n)^d} \cdot J_a^{d,n}\left(\frac{\delta(n) X - 1}{E(n)}\right) = d! \sum_{k=0}^d (-1)^{d-k} \frac{C_{d-k}}{k!} \cdot \frac{X^k}{k!}.$$

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Some Remarks

Remark (Limit Polynomials)

If $a : \mathbb{N} \mapsto \mathbb{R}$ is appropriate for F(t), then

$$F(-t) \cdot e^{Xt} = \sum_{d=0}^{\infty} \widehat{H}_d(X) \cdot \frac{t^d}{d!}.$$

イロト イヨト イヨト イヨト

Some Remarks

REMARK (LIMIT POLYNOMIALS)

If $a : \mathbb{N} \mapsto \mathbb{R}$ is appropriate for F(t), then

$$F(-t) \cdot e^{Xt} = \sum_{d=0}^{\infty} \widehat{H}_d(X) \cdot \frac{t^d}{d!}.$$

EXAMPLES (SPECIAL EXAMPLES)

Suppose that $a : \mathbb{N} \mapsto \mathbb{R}$ has appropriate growth for F(t).

イロト イボト イヨト イヨト

Some Remarks

Remark (Limit Polynomials)

If $a : \mathbb{N} \mapsto \mathbb{R}$ is appropriate for F(t), then

$$F(-t) \cdot e^{Xt} = \sum_{d=0}^{\infty} \widehat{H}_d(X) \cdot \frac{t^d}{d!}.$$

EXAMPLES (SPECIAL EXAMPLES)

Suppose that $a : \mathbb{N} \to \mathbb{R}$ has appropriate growth for F(t). (1) $F(t) = \frac{-t}{e^{-t}-1} \Longrightarrow \widehat{H}_d(X) = B_d(X)$ Bernoulli poly.

イロト イボト イヨト イヨト

Some Remarks

Remark (Limit Polynomials)

If $a : \mathbb{N} \mapsto \mathbb{R}$ is appropriate for F(t), then

$$F(-t) \cdot e^{Xt} = \sum_{d=0}^{\infty} \widehat{H}_d(X) \cdot \frac{t^d}{d!}.$$

EXAMPLES (SPECIAL EXAMPLES)

Suppose that $a : \mathbb{N} \to \mathbb{R}$ has appropriate growth for F(t). (1) $F(t) = \frac{-t}{e^{-t}-1} \Longrightarrow \widehat{H}_d(X) = B_d(X)$ Bernoulli poly. (2) $F(t) = \frac{2}{e^{-t}+1} \Longrightarrow \widehat{H}_d(X) = E_d(X)$ Euler poly.

イロト イボト イヨト イヨト

Some Remarks

Remark (Limit Polynomials)

If $a : \mathbb{N} \mapsto \mathbb{R}$ is appropriate for F(t), then

$$F(-t) \cdot e^{Xt} = \sum_{d=0}^{\infty} \widehat{H}_d(X) \cdot \frac{t^d}{d!}.$$

EXAMPLES (SPECIAL EXAMPLES)

Suppose that $a : \mathbb{N} \to \mathbb{R}$ has appropriate growth for F(t). (1) $F(t) = \frac{-t}{e^{-t}-1} \implies \widehat{H}_d(X) = B_d(X)$ Bernoulli poly. (2) $F(t) = \frac{2}{e^{-t}+1} \implies \widehat{H}_d(X) = E_d(X)$ Euler poly. (3) $F(t) = e^{-t^2} \implies \widehat{H}_d(X) = H_d(X)$ Hermite poly.

Theorem (O+)

Height T RH \implies hyperbolicity of $J^{d,n}(X)$ for all n if $d \gg T^2$.

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

(日本)(周本)(日本)(日本)

LOOSE END

Theorem (O+)

Height $T \ RH \Longrightarrow$ hyperbolicity of $J^{d,n}(X)$ for all n if $d \gg T^2$. In particular, $J^{d,n}_{\gamma}(X)$ is hyperbolic for all n when $d \leq 10^{20}$.

イロト 不得下 イヨト イヨト 二日

LOOSE END

Theorem (O+)

Height $T \ RH \Longrightarrow$ hyperbolicity of $J^{d,n}(X)$ for all n if $d \gg T^2$. In particular, $J^{d,n}_{\gamma}(X)$ is hyperbolic for all n when $d \leq 10^{20}$.

Sketch of Proof.

• Derivatives causes zeros to line up nicely.

LOOSE END

Theorem (O+)

Height $T \ RH \Longrightarrow$ hyperbolicity of $J^{d,n}(X)$ for all n if $d \gg T^2$. In particular, $J^{d,n}_{\gamma}(X)$ is hyperbolic for all n when $d \leq 10^{20}$.

Sketch of Proof.

- Derivatives causes zeros to line up nicely.
- Truth of RH for low height interfaces well with differentiation.

Hyperbolicity of Jensen polynomials Most General Theorem

LOOSE ENDS

THEOREM (O+) If $n \gg 3^d \cdot d^{\frac{25}{8}}$, then $J^{d,n}_{\gamma}(X)$ is hyperbolic.

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

イロト イポト イヨト イヨト 二日

Hyperbolicity of Jensen polynomials Most General Theorem

LOOSE ENDS

THEOREM (O+) If $n \gg 3^d \cdot d^{\frac{25}{8}}$, then $J^{d,n}_{\gamma}(X)$ is hyperbolic.

Sketch of Proof.

Sturm sequence method with our estimates.

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

イロト イロト イヨト イヨト 三日

THE FUTURE

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

THE FUTURE

DEFINITION

A sequence with appropriate growth for $F(t) = e^{-t^2}$ has type $Z : \mathbb{N} \to \mathbb{R}^+$ if $J_a^{d,n}(X)$ is hyperbolic for $n \ge Z(d)$.

The Future

DEFINITION

A sequence with appropriate growth for $F(t) = e^{-t^2}$ has type $Z : \mathbb{N} \to \mathbb{R}^+$ if $J_a^{d,n}(X)$ is hyperbolic for $n \ge Z(d)$.

Remarks

• RH is equivalent to $\gamma(n)$ having type Z = 0.

< ロト (母) (き) (き) (

The Future

DEFINITION

A sequence with appropriate growth for $F(t) = e^{-t^2}$ has type $Z : \mathbb{N} \to \mathbb{R}^+$ if $J_a^{d,n}(X)$ is hyperbolic for $n \ge Z(d)$.

Remarks

- RH is equivalent to $\gamma(n)$ having type Z = 0.
- **2** For $\gamma(n)$ we have proved that $Z(d) = O(3^d \cdot d^{\frac{25}{8}})$.

The Future

DEFINITION

A sequence with appropriate growth for $F(t) = e^{-t^2}$ has type $Z : \mathbb{N} \to \mathbb{R}^+$ if $J_a^{d,n}(X)$ is hyperbolic for $n \ge Z(d)$.

Remarks

- RH is equivalent to $\gamma(n)$ having type Z = 0.
- For $\gamma(n)$ we have proved that $Z(d) = O(3^d \cdot d^{\frac{25}{8}})$.
- **3** Have heuristics for Z(d) for modular form coefficients.

Special Case of p(n)

Ken Ono (U of Virginia) Hyperbolicity of Jensen polynomials

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Special Case of p(n)

SPECULATION (GRIFFIN, O, ROLEN, ZAGIER)

If $n \leq 32$, then we have $Z(d) \sim 10d^2 \log d$.

< ロト (母) (き) (き) (

Special Case of p(n)

SPECULATION (GRIFFIN, O, ROLEN, ZAGIER)

If $n \leq 32$, then we have $Z(d) \sim 10d^2 \log d$. Does this continue for larger n?

э

Special Case of p(n)

SPECULATION (GRIFFIN, O, ROLEN, ZAGIER)

If $n \leq 32$, then we have $Z(d) \sim 10d^2 \log d$. Does this continue for larger n?

EVIDENCE

If we let $\widehat{Z}(d) := 10d^2 \log d$, then we have

d	N(d)	$\widehat{Z}(d)$	$N(d)/\widehat{Z}(d)$
1	1	≈ 1	≈ 1.00
2	25	≈ 27.72	≈ 0.90
4	206	≈ 221.80	≈ 0.93
8	1269	≈ 1330.84	≈ 0.95
16	6917	≈ 7097.82	≈ 0.97
32	35627	≈ 35489.13	≈ 1.00

Ken Ono (U of Virginia)

Hyperbolicity of Jensen polynomials

) < (~

OUR RESULTS

GENERAL THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

If a(n) has appropriate growth, then for $d \ge 1$ we have

$$\lim_{n \to +\infty} \widehat{J}_a^{d,n}(X) = H_d(X).$$

For each d at most finitely many $J_a^{d,n}(X)$ are not hyperbolic.

OUR RESULTS

GENERAL THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

If a(n) has appropriate growth, then for $d \ge 1$ we have

$$\lim_{n \to +\infty} \widehat{J}_a^{d,n}(X) = H_d(X).$$

For each d at most finitely many $J_a^{d,n}(X)$ are not hyperbolic.

MOST GENERAL THEOREM (GRIFFIN, O, ROLEN, ZAGIER) If a(n) has appropriate growth for $F(t) = \sum_{i=0}^{\infty} c_i t^i$, then for each degree $d \ge 1$ we have

$$\lim_{n \to +\infty} \frac{1}{a(n) \cdot \delta(n)^d} \cdot J_a^{d,n}\left(\frac{\delta(n) X - 1}{E(n)}\right) = d! \sum_{k=0}^d (-1)^{d-k} \frac{X^k}{k!}.$$

APPLICATIONS

Hermite Distributions

- Jensen-Pólya criterion for RH whenever $n \gg 3^d \cdot d^{\frac{25}{8}}$.
- **2** Jensen-Pólya criterion for RH for all n if $1 \le d \le 10^{20}$.
- **③** Height $T \text{ RH} \Rightarrow$ Jensen-Pólya criterion for all n if $d \ll T^2$.
- **()** The **derivative aspect** GUE model for Riemann's $\Xi(x)$.
- Oceffs of suitable modular forms are log concave and satisfy the higher Turán inequalities (e.g. Chen's Conjecture).

APPLICATIONS

Hermite Distributions

- Jensen-Pólya criterion for RH whenever $n \gg 3^d \cdot d^{\frac{25}{8}}$.
- **2** Jensen-Pólya criterion for RH for all n if $1 \le d \le 10^{20}$.
- **③** Height $T \text{ RH} \Rightarrow$ Jensen-Pólya criterion for all n if $d \ll T^2$.
- **()** The **derivative aspect** GUE model for Riemann's $\Xi(x)$.
- Oceffs of suitable modular forms are log concave and satisfy the higher Turán inequalities (e.g. Chen's Conjecture).
- + general theory including Bernoulli and Eulerian distributions.