The Jensen-Pólya Program for the Riemann Hypothesis and Related Problems

Ken Ono (U of Virginia)
Riemann’s zeta-function

Definition (Riemann)

For $\text{Re}(s) > 1$, define the zeta-function by

$$
\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}.
$$
Hyperbolicity of Jensen polynomials

Introduction

Riemann’s Zeta-Function

Definition (Riemann)
For $\text{Re}(s) > 1$, define the zeta-function by

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Theorem (Fundamental Theorem)

1. The function $\zeta(s)$ has an analytic continuation to \mathbb{C} (apart from a simple pole at $s = 1$ with residue 1).
Riemann’s Zeta-Function

Definition (Riemann)

For \(\text{Re}(s) > 1 \), define the *zeta-function* by

\[
\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}.
\]

Theorem (Fundamental Theorem)

1. The function \(\zeta(s) \) has an analytic continuation to \(\mathbb{C} \) (apart from a simple pole at \(s = 1 \) with residue 1).

2. We have the functional equation

\[
\zeta(s) = 2^s \pi^{s-1} \sin \left(\frac{\pi s}{2} \right) \Gamma(1 - s) \cdot \zeta(1 - s).
\]
Hilbert’s 8th Problem

Conjecture (Riemann Hypothesis)

Apart from negative evens, the zeros of $\zeta(s)$ satisfy $\text{Re}(s) = \frac{1}{2}$.

Introduction

Hilbert’s 8th Problem

Conjecture (Riemann Hypothesis)

Apart from negative evens, the zeros of \(\zeta(s) \) satisfy \(\text{Re}(s) = \frac{1}{2} \).

“Without doubt, it would be desirable to have a rigorous proof of this proposition; however, I have left this research...because it appears to be unnecessary for the immediate goal of my study....”

Bernhard Riemann (1859)
IMPORTANT REMARKS

Fact (Riemann’s Motivation)

Proposed RH because of Gauss’ Conjecture that $\pi(X) \sim \frac{X}{\log X}$.

What is known?

1. The first “gazillion” zeros satisfy RH (van de Lune, Odlyzko).
2. $\geq 41\%$ of zeros satisfy RH (Selberg, Levinson, Conrey,...).
IMPORTANT REMARKS

Fact (Riemann’s Motivation)

Proposed RH because of Gauss’ Conjecture that $\pi(X) \sim \frac{X}{\log X}$.

What is known?

1. The first “gazillion” zeros satisfy RH (van de Lune, Odlyzko).
IMPORTANT REMARKS

Fact (Riemann’s Motivation)

Proposed RH because of Gauss’ Conjecture that $\pi(X) \sim \frac{X}{\log X}$.

What is known?

1. The first “gazillion” zeros satisfy RH (van de Lune, Odlyzko).
2. > 41% of zeros satisfy RH (Selberg, Levinson, Conrey,...).
JENSEN-PÓLYA PROGRAM

J. W. L. Jensen
(1859–1925)

George Pólya
(1887–1985)
JENSEN-PÓLYA PROGRAM

DEFINITION

The **Riemann Xi-function** is the entire function

\[
\Xi(z) := \frac{1}{2} \left(-z^2 - \frac{1}{4} \right) \pi^{i z - \frac{1}{4}} \Gamma \left(-\frac{iz}{2} + \frac{1}{4} \right) \zeta \left(-iz + \frac{1}{2} \right).
\]
The **Riemann Xi-function** is the entire function

\[\Xi(z) := \frac{1}{2} \left(-z^2 - \frac{1}{4} \right) \pi^{\frac{i}{2} - \frac{1}{4}} \Gamma \left(-\frac{iz}{2} + \frac{1}{4} \right) \zeta \left(-iz + \frac{1}{2} \right). \]

Remark

RH is true \(\iff \) all of the zeros of \(\Xi(z) \) are purely real.
Roots of Deg 100 Taylor Poly for $\Xi \left(\frac{1}{2} + z \right)$
Hyperbolicity of Jensen polynomials

Introduction

Roots of Deg 200 Taylor Poly for $\Xi\left(\frac{1}{2} + z\right)$
Roots of Deg 400 Taylor Poly for $\Xi \left(\frac{1}{2} + z \right)$
Takeaway about Taylor Polynomials

- Red points are good approximations of zeros of $\Xi \left(\frac{1}{2} + z \right)$.

Ken Ono (U of Virginia)
Red points are good approximations of zeros of $\Xi \left(\frac{1}{2} + z \right)$.

The “spurious” blue points are annoying.
Takeaway about Taylor Polynomials

- **Red points** are good approximations of zeros of $\Xi \left(\frac{1}{2} + z \right)$.
- The “spurious” **blue** points are annoying.
- As $d \to +\infty$ the spurious points become more prevalent.
JENSEN POLYNOMIALS

Definition (Jensen)

The **degree** d and **shift** n **Jensen polynomial** for an arithmetic function $a : \mathbb{N} \mapsto \mathbb{R}$ is

$$J_{a,d,n}^d(X) := \sum_{j=0}^{d} a(n + j) \binom{d}{j} X^j$$

$$= a(n + d)X^d + a(n + d - 1)dX^{d-1} + \cdots + a(n).$$
JENSEN POLYNOMIALS

Definition (Jensen)

The **degree d and shift n Jensen polynomial** for an arithmetic function $a : \mathbb{N} \mapsto \mathbb{R}$ is

$$J_{a,n}^{d,n}(X) := \sum_{j=0}^{d} a(n + j) \binom{d}{j} X^j$$

$$= a(n + d)X^d + a(n + d - 1)dX^{d-1} + \cdots + a(n).$$

Definition

A polynomial $f \in \mathbb{R}[X]$ is **hyperbolic** if all of its roots are real.
JENSEN’S CRITERION

Theorem (Jensen-Pólya (1927))

If \(\Lambda(s) := \pi^{-s/2} \Gamma(s/2) \zeta(s) = \Lambda(1 - s) \),

What was known?
The hyperbolicity for all \(n \) is known for \(d \leq 3 \) by work of Csordas, Norfolk and Varga, and Dimitrov and Lucas.
JENSEN’S CRITERION

Theorem (Jensen-Pólya (1927))

If $\Lambda(s) := \pi^{-s/2}\Gamma(s/2)\zeta(s) = \Lambda(1 - s)$, then define $\gamma(n)$ by

$$(-1 + 4z^2) \Lambda\left(\frac{1}{2} + z\right) = \sum_{n=0}^{\infty} \frac{\gamma(n)}{n!} \cdot z^{2n}.$$
Hyperbolicity of Jensen polynomials

Introduction

JENSEN’S CRITERION

Theorem (Jensen-Pólya (1927))

If \(\Lambda(s) := \pi^{-s/2}\Gamma(s/2)\zeta(s) = \Lambda(1 - s) \), then define \(\gamma(n) \) by

\[
(-1 + 4z^2) \Lambda\left(\frac{1}{2} + z\right) = \sum_{n=0}^{\infty} \frac{\gamma(n)}{n!} \cdot z^{2n}.
\]

RH is equivalent to the hyperbolicity of all of the \(J_{\gamma}^{d,n}(X) \).
JENSEN’S CRITERION

Theorem (Jensen-Pólya (1927))

If \(\Lambda(s) := \pi^{-s/2} \Gamma(s/2) \zeta(s) = \Lambda(1 - s) \), then define \(\gamma(n) \) by

\[
(-1 + 4z^2) \Lambda \left(\frac{1}{2} + z \right) = \sum_{n=0}^{\infty} \frac{\gamma(n)}{n!} \cdot z^{2n}.
\]

RH is equivalent to the hyperbolicity of all of the \(J_{d,n}^{\gamma}(X) \).

What was known?

The hyperbolicity for all \(n \) is known for \(d \leq 3 \) by work of Csordas, Norfolk and Varga, and Dimitrov and Lucas.
New Theorems

“Theorem 1” (Griffin, O, Rolen, Zagier)

For each d at most finitely many $J_d^{n,\gamma}(X)$ are not hyperbolic.
NEW THEOREMS

"Theorem 1" (Griffin, O, Rolen, Zagier)

For each d at most finitely many $J^{d,n}_\gamma(X)$ are not hyperbolic.

Theorem (O+)

Heights $T \ RH \implies$ hyperbolicity of $J^{d,n}(X)$ for all n if $d \ll T^2$.
NEW THEOREMS

“Theorem 1” (Griffin, O, Rolen, Zagier)

For each d at most finitely many $J_{\gamma}^{d,n}(X)$ are not hyperbolic.

Theorem (O+)

Height $T \RH \implies$ hyperbolicity of $J_{d,n}^{X}$ for all n if $d \ll T^2$.

In particular, $J_{\gamma}^{d,n}(X)$ is hyperbolic for all n when $d \leq 10^{20}$.

Ken Ono (U of Virginia)
NEW THEOREMS

“Theorem 1” (Griffin, O, Rolen, Zagier)

For each d at most finitely many $J_{d,n}^\gamma(X)$ are not hyperbolic.

Theorem (O+)

Height T RH \implies hyperbolicity of $J_{d,n}^\gamma(X)$ for all n if $d \ll T^2$.
In particular, $J_{d,n}^\gamma(X)$ is hyperbolic for all n when $d \leq 10^{20}$.

Theorem (O+)

If $n \gg 3^d \cdot d\frac{25}{8}$, then $J_{d,n}^\gamma(X)$ is hyperbolic.
Some Remarks

Remarks

1. Offers new evidence for RH.
SOME REMARKS

REMARKS

1. Offers new evidence for RH.

2. We “locate” the real zeros of the $J_{d,n}^\gamma(X)$.
Some Remarks

Remarks

1. Offers new evidence for RH.
2. We “locate” the real zeros of the $J_{d,n}^{\gamma}(X)$.
3. Wagner has extended the 1st theorem to other L-functions.
Hermite Polynomials

Definition

The (modified) **Hermite polynomials**

\[
\{ H_d(X) : d \geq 0 \}
\]

are the orthogonal polynomials with respect to \(\mu(X) := e^{-\frac{x^2}{4}} \).
Hermite Polynomials

Definition

The (modified) **Hermite polynomials**

\[\{ H_d(X) : d \geq 0 \} \]

are the orthogonal polynomials with respect to \(\mu(X) := e^{-\frac{x^2}{4}} \).

Example (The first few Hermite Polynomials)

\[H_0(X) = 1 \]
\[H_1(X) = X \]
\[H_2(X) = X^2 - 2 \]
\[H_3(X) = X^3 - 6X \]
Lemma

The Hermite polynomials satisfy:

1. Each $H_d(X)$ is hyperbolic with d distinct roots.
2. If S_d denotes the "suitably normalized" zeros of $H_d(X)$, then $S_d \rightarrow$ Wigner's Semicircle Law.
Hermite Polynomials

Lemma

The Hermite polynomials satisfy:

1. Each \(H_d(X) \) is hyperbolic with \(d \) distinct roots.
Hermite Polynomials

Lemma

The Hermite polynomials satisfy:

1. Each $H_d(X)$ is **hyperbolic** with d distinct roots.

2. If S_d denotes the “suitably normalized” zeros of $H_d(X)$, then

 $$S_d \rightarrow \text{Wigner’s Semicircle Law}.$$
Theorem 1 (Griffin, O, Rolen, Zagier)

The renormalized Jensen polynomials \(\hat{J}^{d,n}_\gamma(X) \) satisfy

\[
\lim_{n \to +\infty} \hat{J}^{d,n}_\gamma(X) = H_d(X).
\]
The renormalized Jensen polynomials $\hat{J}^{d,n}_\gamma(X)$ satisfy
$$\lim_{n \to +\infty} \hat{J}^{d,n}_\gamma(X) = H_d(X).$$

For each d at most finitely many $J^{d,n}_\gamma(X)$ are not hyperbolic.
Degree 3 Normalized Jensen Polynomials

<table>
<thead>
<tr>
<th>n</th>
<th>$\hat{J}_{\gamma}^{3,n}(X)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>$\approx 0.9769X^3 + 0.7570X^2 - 5.8690X - 1.2661$</td>
</tr>
<tr>
<td>200</td>
<td>$\approx 0.9872X^3 + 0.5625X^2 - 5.9153X - 0.9159$</td>
</tr>
<tr>
<td>300</td>
<td>$\approx 0.9911X^3 + 0.4705X^2 - 5.9374X - 0.7580$</td>
</tr>
<tr>
<td>400</td>
<td>$\approx 0.9931X^3 + 0.4136X^2 - 5.9501X - 0.6623$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>10^8</td>
<td>$\approx 0.9999X^3 + 0.0009X^2 - 5.9999X - 0.0014$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>∞</td>
<td>$H_3(X) = X^3 - 6X$</td>
</tr>
</tbody>
</table>
Random Matrix Model Predictions

Freeman Dyson
Hugh Montgomery
Andrew Odlyzko

Ken Ono (U of Virginia)
Random Matrix Model Predictions

Gaussian Unitary Ensemble (GUE) (1970s)

The nontrivial zeros of $\zeta(s)$ appear to be “distributed like” the eigenvalues of random Hermitian matrices.
Relation to our work

“Theorem” (Griffin, O, Rolen, Zagier)

GUE holds for Riemann’s $\zeta(s)$ in derivative aspect.
Relation to our work

"Theorem" (Griffin, O, Rolen, Zagier)

GUE holds for Riemann’s $\zeta(s)$ in derivative aspect.

Sketch of Proof

1. The $J_{\gamma,n}^d(X)$ model the zeros of the nth derivative $\Xi^{(n)}(X)$.

Ken Ono (U of Virginia)
Relation to our work

“Theorem” (Griffin, O, Rolen, Zagier)

GUE holds for Riemann’s $\zeta(s)$ in derivative aspect.

Sketch of Proof

1. The $J_{d,n}^\gamma(X)$ model the zeros of the nth derivative $\Xi^{(n)}(X)$.
2. The derivatives are predicted to satisfy GUE.
Relation to our work

"Theorem" (Griffin, O, Rolen, Zagier)

GUE holds for Riemann’s $\zeta(s)$ in derivative aspect.

Sketch of Proof

1. The $J_{d,n}^{\gamma}(X)$ model the zeros of the nth derivative $\Xi^{(n)}(X)$.
2. The derivatives are predicted to satisfy GUE.
3. For fixed d, we proved that

$$\lim_{n \to +\infty} \tilde{J}_{\gamma}^{d,n}(X) = H_d(X).$$
Relation to our work

“Theorem” (Griffin, O, Rolen, Zagier)

GUE holds for Riemann’s $\zeta(s)$ in derivative aspect.

Sketch of Proof

1. The $J_{\gamma}^{d,n}(X)$ model the zeros of the nth derivative $\Xi^{(n)}(X)$.
2. The derivatives are predicted to satisfy GUE.
3. For fixed d, we proved that
 \[
 \lim_{n \to +\infty} \hat{J}_{\gamma}^{d,n}(X) = H_d(X).
 \]
4. The zeros of the $\{H_d(X)\}$ and the eigenvalues in GUE both satisfy Wigner’s Semicircle Distribution.
Theorem (Pustylnikov (2001), Coffey (2009))

As \(n \to +\infty \), we have

\[
\xi^{(2n)}(1/2) = \frac{(2n)(2n - 1)(2n - 2)^{-1/4}}{2^{2n-2} \ln(2n-2)^{1/4}} \left[\ln \left(\frac{2n - 2}{\pi} \right) - \ln \ln \left(\frac{2n - 2}{\pi} \right) + o(1) \right]^{2n-3/2} \\
\times \exp \left(-\frac{2n - 2}{\ln(2n-2)} \right).
\]
Computing derivatives is not easy

Theorem (Pustylnikov (2001), Coffey (2009))

As $n \to +\infty$, we have

$$
\xi^{(2n)}(1/2) = \frac{(2n)(2n-1)(2n-2)^{-1}}{2^{2n-2} \ln(2n-2)^{1/4}} \left[\ln \left(\frac{2n-2}{\pi} \right) - \ln \ln \left(\frac{2n-2}{\pi} \right) + o(1) \right]^{2n-3/2} \\
\times \exp \left(- \frac{2n-2}{\ln(2n-2)} \right).
$$

Remarks

1. Derivatives essentially drop to 0 for “small” n before exhibiting exponential growth.
Our Results on RH

Computing derivatives is not easy

Theorem (Pustylnikov (2001), Coffey (2009))

As $n \to +\infty$, we have

\[
\xi^{(2n)}(1/2) = \frac{(2n)(2n-1)(2n-2)^{\frac{-1}{4}}}{2^{2n-2} \ln(2n-2)^{\frac{1}{4}}} \left[\ln \left(\frac{2n-2}{\pi} \right) - \ln \ln \left(\frac{2n-2}{\pi} \right) + o(1) \right]^{2n^{3/2}} \times \exp \left(-\frac{2n-2}{\ln(2n-2)} \right).
\]

Remarks

1. Derivatives essentially drop to 0 for "small" n before exhibiting exponential growth.
2. This is insufficient for approximating $J_{\gamma,n}^d(X)$.

Ken Ono (U of Virginia) | Hyperbolicity of Jensen polynomials
First 10 Taylor coefficients of $\Xi(x)$

<table>
<thead>
<tr>
<th>m</th>
<th>\hat{b}_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6.214 009 727 353 926 (-2)</td>
</tr>
<tr>
<td>1</td>
<td>7.178 732 598 482 949 (-4)</td>
</tr>
<tr>
<td>2</td>
<td>2.314 725 338 818 463 (-5)</td>
</tr>
<tr>
<td>3</td>
<td>1.170 499 895 698 397 (-6)</td>
</tr>
<tr>
<td>4</td>
<td>7.859 696 022 958 770 (-8)</td>
</tr>
<tr>
<td>5</td>
<td>6.474 442 660 924 152 (-9)</td>
</tr>
<tr>
<td>6</td>
<td>6.248 509 280 628 118 (-10)</td>
</tr>
<tr>
<td>7</td>
<td>6.857 113 566 031 334 (-11)</td>
</tr>
<tr>
<td>8</td>
<td>8.379 562 856 498 463 (-12)</td>
</tr>
<tr>
<td>9</td>
<td>1.122 895 900 525 652 (-12)</td>
</tr>
<tr>
<td>10</td>
<td>1.630 766 572 462 173 (-13)</td>
</tr>
</tbody>
</table>
NOTATION

1. We let \(\theta_0(t) := \sum_{k=1}^{\infty} e^{-\pi k^2 t} \),
ARBITRARY PRECISION ASYMPTOTICS FOR \(\Xi^{(2n)}(0) \)

NOTATION

1. We let \(\theta_0(t) := \sum_{k=1}^{\infty} e^{-\pi k^2 t} \), and define

\[
F(n) := \int_{1}^{\infty} (\log t)^n t^{-3/4} \theta_0(t) \, dt.
\]
NOTATION

1. We let \(\theta_0(t) := \sum_{k=1}^{\infty} e^{-\pi k^2 t} \), and define

\[
F(n) := \int_{1}^{\infty} (\log t)^n t^{-3/4} \theta_0(t) \, dt.
\]

2. Following Riemann, we have

\[
\Xi^{(n)}(0) = (-1)^{n/2} \cdot \frac{32 \binom{n}{2} F(n - 2) - F(n)}{2^{n+2}}
\]
Notation

1. We let \(\theta_0(t) := \sum_{k=1}^{\infty} e^{-\pi k^2 t} \), and define
 \[
 F(n) := \int_1^{\infty} (\log t)^n t^{-3/4} \theta_0(t) \, dt.
 \]

2. Following Riemann, we have
 \[
 \Xi^{(n)}(0) = (-1)^{n/2} \cdot \frac{32 \binom{n}{2} F(n - 2) - F(n)}{2^{n+2}}
 \]

3. Let \(L = L(n) \approx \log \left(\frac{n}{\log n} \right) \) be the unique positive solution of the equation \(n = L \cdot (\pi e^L + \frac{3}{4}) \).
Theorem (Griffin, O, Rolen, Zagier)

To all orders, as $n \to +\infty$, there are $b_k \in \mathbb{Q}(L)$ such that

$$F(n) \sim \sqrt{2\pi} \frac{L^{n+1}}{\sqrt{(1 + L)n - \frac{3}{4}L^2}} e^{L/4-n/L+3/4} \left(1 + \frac{b_1}{n} + \frac{b_2}{n^2} + \cdots \right),$$

where $b_1 = \frac{2L^4 + 9L^3 + 16L^2 + 6L + 2}{24 (L+1)^3}$.

Remarks

1. Using two terms (i.e. b_1) suffices for our RH application.
2. Analysis + Computer \Rightarrow hyperbolicity for $d \leq 10$.

Ken Ono (U of Virginia)
\textbf{THEOREM (GRiffin, O, ROLEn, ZAGIER)}

\textit{To all orders, as } n \to +\infty, \textit{there are } b_k \in \mathbb{Q}(L) \textit{such that}

\[F(n) \sim \sqrt{2\pi} \frac{L^{n+1}}{\sqrt{(1 + L)n - \frac{3}{4}L^2}} e^{L/4 - n/L + 3/4} \left(1 + b_1 \frac{1}{n} + b_2 \frac{1}{n^2} + \cdots \right), \]

\textit{where } b_1 = \frac{2L^4 + 9L^3 + 16L^2 + 6L + 2}{24(L+1)^3}.

\textbf{REMARKS}

1. \textit{Using two terms (i.e. } b_1 \textit{) suffices for our RH application.}
Theorem (Griffin, O, Rolen, Zagier)

To all orders, as $n \to +\infty$, there are $b_k \in \mathbb{Q}(L)$ such that

$$F(n) \sim \sqrt{2\pi} \frac{L^{n+1}}{\sqrt{(1 + L)n - \frac{3}{4}L^2}} e^{L/4-n/L+3/4} \left(1 + \frac{b_1}{n} + \frac{b_2}{n^2} + \cdots\right),$$

where $b_1 = \frac{2L^4 + 9L^3 + 16L^2 + 6L + 2}{24(L+1)^3}.$

Remarks

1. Using two terms (i.e. b_1) suffices for our RH application.
2. Analysis + Computer \implies hyperbolicity for $d \leq 10^{20}$.
Example: $\hat{\gamma}(n) := \text{TWO-TERM APPROXIMATION}$

<table>
<thead>
<tr>
<th>n</th>
<th>$\hat{\gamma}(n)$</th>
<th>$\gamma(n)$</th>
<th>$\gamma(n)/\hat{\gamma}(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>$\approx 1.6313374394 \times 10^{-17}$</td>
<td>$\approx 1.6323380490 \times 10^{-17}$</td>
<td>≈ 1.000613367</td>
</tr>
<tr>
<td>100</td>
<td>$\approx 6.5776471904 \times 10^{-205}$</td>
<td>$\approx 6.5777263785 \times 10^{-205}$</td>
<td>≈ 1.000012038</td>
</tr>
<tr>
<td>1000</td>
<td>$\approx 3.8760333086 \times 10^{-2567}$</td>
<td>$\approx 3.8760340890 \times 10^{-2567}$</td>
<td>≈ 1.000000201</td>
</tr>
<tr>
<td>10000</td>
<td>$\approx 3.5219798669 \times 10^{-32265}$</td>
<td>$\approx 3.5219798773 \times 10^{-32265}$</td>
<td>≈ 1.000000002</td>
</tr>
<tr>
<td>100000</td>
<td>$\approx 6.3953905598 \times 10^{-397097}$</td>
<td>$\approx 6.3953905601 \times 10^{-397097}$</td>
<td>≈ 1.000000000</td>
</tr>
</tbody>
</table>
How do these asymptotics imply Theorem 1?
How do these asymptotics imply Theorem 1?

Theorem 1 is an example of a general phenomenon!
Hyperbolicity of Jensen polynomials
Hermite Distributions

Remark

Hyperbolicity of “generating polynomials” is studied in enumerative combinatorics in connection with log-concavity

\[a(n)^2 \geq a(n - 1)a(n + 1). \]
Hyperbolicity of Jensen polynomials

Hermite Distributions

Hyperbolic Polynomials in Mathematics

Remark

Hyperbolicity of “generating polynomials” is studied in enumerative combinatorics in connection with log-concavity

\[a(n)^2 \geq a(n - 1)a(n + 1). \]

- Group theory (lattice subgroup enumeration)
- Graph theory
- Symmetric functions
- Additive number theory (partitions)
- ...
Definition

A real sequence $a(n)$ has **appropriate growth** if

$$a(n + j) \sim a(n) e^{A(n) j - \delta(n) j^2}$$

for each j for real sequences $\{A(n)\}$ and $\{\delta(n)\} \to 0$.

What do we mean?

For fixed d and $0 \leq j \leq d$, as $n \to +\infty$ we have

$$\log \frac{a(n + j)}{a(n)} = A(n) j - \delta(n) j^2 + \sum_{i=0}^{d} o_{i,d}(\delta(n)) j^i + O_{d}(\delta(n)^{d+1})$$
Appropriate Growth

Definition

A real sequence \(a(n) \) has **appropriate growth** if

\[
a(n + j) \sim a(n) e^{A(n) j - \delta(n)^2 j^2} \quad (n \to +\infty)
\]

for each \(j \) for real sequences \(\{A(n)\} \) and \(\{\delta(n)\} \to 0 \).
Appropriate Growth

Definition

A real sequence $a(n)$ has **appropriate growth** if

$$a(n + j) \sim a(n) e^{A(n)j - \delta(n)^2 j^2} \quad (n \to +\infty)$$

for each j for real sequences $\{A(n)\}$ and $\{\delta(n)\} \to 0$.

What do we mean?

For fixed d and $0 \leq j \leq d$, as $n \to +\infty$ we have
APPROPRIATE GROWTH

Definition
A real sequence \(a(n)\) has **appropriate growth** if

\[
a(n + j) \sim a(n) e^{A(n)j - \delta(n)^2 j^2} \quad (n \to +\infty)
\]

for each \(j\) for real sequences \(\{A(n)\}\) and \(\{\delta(n)\} \to 0\).

What do we mean?
For fixed \(d\) and \(0 \leq j \leq d\), as \(n \to +\infty\) we have

\[
\log \left(\frac{a(n + j)}{a(n)} \right) = A(n)j - \delta(n)^2 j^2 + \sum_{i=0}^{d} o_{i,d}(\delta(n)^i) j^i + O_d \left(\delta(n)^{d+1} \right).
\]
Hyperbolicity of Jensen polynomials
Hermite Distributions

GENERAL THEOREM

DEFINITION

If \(a(n) \) has appropriate growth, then the renormalized Jensen polynomials are defined by

\[
\hat{J}_{d,n}^{a,n}(X) := \frac{1}{a(n) \cdot \delta(n)^d} \cdot J_{d,n}^{a,n} \left(\frac{\delta(n)X - 1}{\exp(A(n))} \right).
\]
Hyperbolicity of Jensen polynomials
Hermite Distributions

GENERAL THEOREM

DEFINITION

If $a(n)$ has appropriate growth, then the **renormalized Jensen polynomials** are defined by

$$
\widehat{J}^{d,n}_a(X) := \frac{1}{a(n) \cdot \delta(n)^d} \cdot J^{d,n}_a \left(\frac{\delta(n)X - 1}{\exp(A(n))} \right).
$$

GENERAL THEOREM (Griffin, O, Rolen, Zagier)

*Suppose that $a(n)$ has **appropriate growth**.*
GENERAL THEOREM

DEFINITION

If \(a(n) \) has appropriate growth, then the *renormalized Jensen polynomials* are defined by

\[
\hat{J}^{d,n}_a(X) := \frac{1}{a(n) \cdot \delta(n)^d} \cdot J^{d,n}_a \left(\frac{\delta(n)X - 1}{\exp(A(n))} \right).
\]

GENERAL THEOREM (GRIFFIN, O, ROLEN, ZAGIER)

Suppose that \(a(n) \) has *appropriate growth*. For each degree \(d \geq 1 \) we have

\[
\lim_{n \to +\infty} \hat{J}^{d,n}_a(X) = H_d(X).
\]
General Theorem

Definition

If \(a(n) \) has appropriate growth, then the *renormalized Jensen polynomials* are defined by

\[
\hat{J}^d_{a,n}(X) := \frac{1}{a(n) \cdot \delta(n)^d} \cdot J^d_{a,n} \left(\frac{\delta(n)X - 1}{\exp(A(n))} \right).
\]

General Theorem (Griffin, O, Rolen, Zagier)

Suppose that \(a(n) \) has appropriate growth. For each degree \(d \geq 1 \) we have

\[
\lim_{n \to +\infty} \hat{J}^d_{a,n}(X) = H_d(X).
\]

For each \(d \) at most finitely many \(J^d_{a,n}(X) \) are not hyperbolic.
Motivation for our work
Motivation for our work

Definition

A partition is any nonincreasing sequence of integers.

\[p(n) := \# \text{partitions of size } n. \]
Motivation for our work

Definition

A *partition* is any nonincreasing sequence of integers.

\[p(n) := \#\text{partitions of size } n. \]

Example

We have that \(p(4) = 5 \) because the partitions of 4 are

\[4, \ 3 + 1, \ 2 + 2, \ 2 + 1 + 1, \ 1 + 1 + 1 + 1. \]
Log Concavity of \(p(n) \)

Example

The roots of the quadratic \(J_{p,n}^2(X) \) are

\[
-p(n+1) \pm \sqrt{p(n+1)^2 - p(n)p(n+2)}
\]

\[
p(n+2)
\]

It is **hyperbolic** if and only if \(p(n+1)^2 > p(n)p(n+2) \).
LOG CONCAVITY OF $p(n)$

Example

The roots of the quadratic $J_{p}^{2,n}(X)$ are

$$-p(n + 1) \pm \frac{\sqrt{p(n + 1)^2 - p(n)p(n + 2)}}{p(n + 2)}.$$

It is hyperbolic if and only if $p(n + 1)^2 > p(n)p(n + 2)$.

Theorem (Nicolas (1978), DeSalvo and Pak (2013))

If $n \geq 25$, then $J_{p}^{2,n}(X)$ is hyperbolic.
Chen’s Conjecture

Theorem (Chen, Jia, Wang (2017))

If \(n \geq 94 \), then \(J_p^{3,n}(X) \) is hyperbolic.
CHEN’S CONJECTURE

Theorem (Chen, Jia, Wang (2017))

If \(n \geq 94 \), then \(J_{p}^{3,n}(X) \) is hyperbolic.

Conjecture (Chen)

There is an \(N(d) \) where \(J_{p}^{d,n}(X) \) is hyperbolic for all \(n \geq N(d) \).
Hyperbolicity of Jensen polynomials
Hermite Distributions
Another Application

CHEN’S CONJECTURE

Theorem (Chen, Jia, Wang (2017))

If \(n \geq 94 \), then \(J_p^{3,n}(X) \) is hyperbolic.

Conjecture (Chen)

There is an \(N(d) \) where \(J_p^{d,n}(X) \) is hyperbolic for all \(n \geq N(d) \).

Table 1. Conjectured minimal values of \(N(d) \)

<table>
<thead>
<tr>
<th>(d)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N(d))</td>
<td>1</td>
<td>25</td>
<td>94</td>
<td>206</td>
<td>381</td>
<td>610</td>
<td>908</td>
<td>1269</td>
<td>1701</td>
</tr>
</tbody>
</table>
Our result

Theorem 2 (Griffin, O, Rolen, Zagier)

Chen’s Conjecture is true.
Our result

Theorem 2 (Griffin, O, Rolen, Zagier)

Chen’s Conjecture is true.

Remarks

1. The proof can be refined case-by-case to prove the minimality of the claimed $N(d)$ (Larson, Wagner).
Our result

Theorem 2 (Griffin, O, Rolen, Zagier)

Chen’s Conjecture is true.

Remarks

1. The proof can be refined case-by-case to prove the minimality of the claimed $N(d)$ (Larson, Wagner).

2. This is a consequence of the General Theorem.
MODULAR FORMS

Definition

A weight k weakly holomorphic modular form is a function f on \mathbb{H} satisfying:

1. For all \((a \ b \ c \ d) \in \text{SL}_2(\mathbb{Z})\) we have
 $$f(a\tau + b \ c\tau + d) = (c\tau + d)^k f(\tau).$$
2. The poles of f (if any) are at the cusp ∞.

Example (Partition Generating Function)

We have the weight $-1/2$ modular form $f(\tau) = \sum_{n=0}^{\infty} p(n) e^{2\pi i \tau (n - 1/24)}$.

Ken Ono (U of Virginia)
MODULAR FORMS

Definition

A **weight k weakly holomorphic modular form** is a function f on \mathbb{H} satisfying:

1. For all $(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}) \in \text{SL}_2(\mathbb{Z})$ we have

 $$f\left(\frac{a\tau + b}{c\tau + d}\right) = (c\tau + d)^k f(\tau).$$
DEFINITION

A **weight k weakly holomorphic modular form** is a function f on \mathbb{H} satisfying:

1. For all $(a \ b \ c \ d) \in \text{SL}_2(\mathbb{Z})$ we have

 $$f\left(\frac{a\tau + b}{c\tau + d}\right) = (c\tau + d)^k f(\tau).$$

2. The poles of f (if any) are at the cusp ∞.

Example (Partition Generating Function)

We have the weight $-1/2$ modular form $f(\tau) = \sum_{n=0}^{\infty} p(n) e^{2\pi i \tau (n - 1/24)}$.

Ken Ono (U of Virginia)
MODULAR FORMS

Definition

A **weight** k **weakly holomorphic modular form** is a function f on \mathbb{H} satisfying:

1. For all $(\begin{array}{cc}a & b \\ c & d \end{array}) \in \text{SL}_2(\mathbb{Z})$ we have

 $$f\left(\frac{a\tau + b}{c\tau + d} \right) = (c\tau + d)^k f(\tau).$$

2. The poles of f (if any) are at the cusp ∞.

Example (Partition Generating Function)

We have the weight $-1/2$ modular form

$$f(\tau) = \sum_{n=0}^{\infty} p(n) e^{2\pi i \tau (n - \frac{1}{24})}.$$
Theorem 3 (Griffin, O, Rolen, Zagier)

Let f be a weakly holomorphic modular form on $\text{SL}_2(\mathbb{Z})$ with real coefficients and a pole at $i\infty$. Then for each degree $d \geq 1$

$$\lim_{n \to +\infty} \hat{J}_{a_f}^{d,n}(X) = H_d(X).$$

For each d at most finitely many $J_{a_f}^{d,n}(X)$ are not hyperbolic.
JENSEN POLYNOMIALS FOR MODULAR FORMS

Theorem 3 (Griffin, O, Rolen, Zagier)

Let f be a weakly holomorphic modular form on $SL_2(\mathbb{Z})$ with real coefficients and a pole at $i\infty$. Then for each degree $d \geq 1$

$$\lim_{n \to +\infty} \hat{J}_{a_f}^{d,n}(X) = H_d(X).$$

For each d at most finitely many $J_{a_f}^{d,n}(X)$ are not hyperbolic.

Sketch of Proof. Sufficient asymptotics are known for $a_f(n)$ in terms of Kloosterman sums and Bessel functions.
NATURAL QUESTIONS

Question
What is special about the Hermite polynomials?
Natural Questions

Question

What is special about the Hermite polynomials?

Question

Is there an even more general theorem?
Lemma (Generating Function)

We have that

\[e^{-t^2 + Xt} =: \sum_{d=0}^{\infty} H_d(X) \cdot \frac{t^d}{d!} = 1 + X \cdot t + (X^2 - 2) \cdot \frac{t^2}{2} + \ldots \]
Hermite Polynomial Generating Function

Lemma (Generating Function)

We have that

\[
e^{-t^2 + xt} =
\sum_{d=0}^{\infty} H_d(X) \cdot \frac{t^d}{d!} = 1 + X \cdot t + (X^2 - 2) \cdot \frac{t^2}{2} + \ldots
\]

Remark

The rough idea of the proof is to show for large fixed \(n \) that

\[
\sum_{d=0}^{\infty} \hat{J}_{a,n}^d (X) \cdot \frac{t^d}{d!} \approx e^{-t^2 + xt} = e^{-t^2} \cdot e^{Xt}.
\]
More General Theorem
More General Theorem

Definition

A real sequence \(a(n)\) has appropriate growth for a formal power series \(F(t) := \sum_{i=0}^{\infty} c_i t^i\) if

In the Hermite case we have \(E(n) := e^{A(n)}\) and \(F(t) := e^{-t^2}\).

How does the shape of \(F(t)\) impact “limiting polynomials”?
More General Theorem

Definition

A real sequence $a(n)$ has **appropriate growth** for a formal power series $F(t) := \sum_{i=0}^{\infty} c_i t^i$ if

$$a(n + j) \sim a(n) E(n)^j F(\delta(n)j) \quad (n \to +\infty)$$
More General Theorem

Definition

A real sequence $a(n)$ has appropriate growth for a formal power series $F(t) := \sum_{i=0}^{\infty} c_i t^i$ if

$$a(n + j) \sim a(n) E(n)^j F(\delta(n)j) \quad (n \to +\infty)$$

for each j with positive sequences $\{E(n)\}$ and $\{\delta(n)\} \to 0$.

More General Theorem

Definition

A real sequence $a(n)$ has appropriate growth for a formal power series $F(t) := \sum_{i=0}^{\infty} c_i t^i$ if

$$a(n + j) \sim a(n) E(n)^j F(\delta(n)j) \quad (n \to +\infty)$$

for each j with positive sequences $\{E(n)\}$ and $\{\delta(n)\} \to 0$.

Question

In the Hermite case we have

$$E(n) := e^{A(n)} \quad \text{and} \quad F(t) := e^{-t^2}.$$
More General Theorem

Definition

A real sequence \(a(n) \) has **appropriate growth** for a formal power series \(F(t) := \sum_{i=0}^{\infty} c_i t^i \) if

\[
a(n + j) \sim a(n) E(n)^j F(\delta(n)j) \quad (n \to +\infty)
\]

for each \(j \) with positive sequences \(\{E(n)\} \) and \(\{\delta(n)\} \to 0 \).

Question

In the Hermite case we have

\[
E(n) := e^{A(n)} \quad \text{and} \quad F(t) := e^{-t^2}.
\]

How does the shape of \(F(t) \) impact “limiting polynomials”?
More General Theorem

Most General Theorem (Griffin, O, Rolen, Zagier)

If $a(n)$ has appropriate growth for the power series

$$F(t) = \sum_{i=0}^{\infty} c_i t^i,$$

then for each degree $d \geq 1$ we have

$$\lim_{n \to +\infty} a(n) \cdot \delta(n) \cdot J_d,n a(\delta(n)X - 1) = d! \sum_{k=0}^{d} (-1)^{d-k} c_{d-k} \cdot X^k.$$
More General Theorem

Most General Theorem (Griffin, O, Rolen, Zagier)

If $a(n)$ has appropriate growth for the power series

$$F(t) = \sum_{i=0}^{\infty} c_i t^i,$$

then for each degree $d \geq 1$ we have

$$\lim_{n \to +\infty} \frac{1}{a(n) \cdot \delta(n)^d} \cdot J_n^{d,n} \left(\frac{\delta(n) X - 1}{E(n)} \right) = d! \sum_{k=0}^{d} (-1)^{d-k} c_{d-k} \cdot \frac{X^k}{k!}.$$
Some Remarks

Remark (Limit Polynomials)

If $a : \mathbb{N} \mapsto \mathbb{R}$ is appropriate for $F(t)$, then

$$F(-t) \cdot e^{Xt} = \sum_{d=0}^{\infty} \hat{H}_d(X) \cdot \frac{t^d}{d!}.$$
Some Remarks

Remark (Limit Polynomials)

If \(a : \mathbb{N} \rightarrow \mathbb{R} \) is appropriate for \(F(t) \), then

\[
F(-t) \cdot e^{Xt} = \sum_{d=0}^{\infty} \hat{H}_d(X) \cdot \frac{t^d}{d!}.
\]

Examples (Special Examples)

Suppose that \(a : \mathbb{N} \rightarrow \mathbb{R} \) has appropriate growth for \(F(t) \).

1. \(F(t) = -t e^{-t} - 1 \Rightarrow \hat{H}_d(X) = B_d(X) \) Bernoulli poly
2. \(F(t) = 2 e^{-t} + 1 \Rightarrow \hat{H}_d(X) = E_d(X) \) Euler poly
3. \(F(t) = e^{-2t} \Rightarrow \hat{H}_d(X) = H_d(X) \) Hermite poly
Hyperbolicity of Jensen polynomials

Most General Theorem

Some Remarks

Remark (Limit Polynomials)

If \(a : \mathbb{N} \mapsto \mathbb{R} \) is appropriate for \(F(t) \), then

\[
F(-t) \cdot e^{Xt} = \sum_{d=0}^{\infty} \hat{H}_d(X) \cdot \frac{t^d}{d!}.
\]

Examples (Special Examples)

Suppose that \(a : \mathbb{N} \mapsto \mathbb{R} \) has appropriate growth for \(F(t) \).

1. \(F(t) = \frac{-t}{e^{-t} - 1} \implies \hat{H}_d(X) = B_d(X) \text{ Bernoulli poly.} \)
Some Remarks

Remark (Limit Polynomials)

If \(a : \mathbb{N} \rightarrow \mathbb{R} \) is appropriate for \(F(t) \), then

\[
F(-t) \cdot e^{Xt} = \sum_{d=0}^{\infty} \hat{H}_d(X) \cdot \frac{t^d}{d!}.
\]

Examples (Special Examples)

Suppose that \(a : \mathbb{N} \rightarrow \mathbb{R} \) has appropriate growth for \(F(t) \).

(1) \(F(t) = \frac{-t}{e^{-t} - 1} \Rightarrow \hat{H}_d(X) = B_d(X) \) Bernoulli poly.

(2) \(F(t) = \frac{2}{e^{-t} + 1} \Rightarrow \hat{H}_d(X) = E_d(X) \) Euler poly.
Remark (Limit Polynomials)

If $a : \mathbb{N} \mapsto \mathbb{R}$ is appropriate for $F(t)$, then

$$F(-t) \cdot e^{Xt} = \sum_{d=0}^{\infty} \hat{H}_d(X) \cdot \frac{t^d}{d!}.$$

Examples (Special Examples)

Suppose that $a : \mathbb{N} \mapsto \mathbb{R}$ has appropriate growth for $F(t)$.

1. $F(t) = \frac{-t}{e^{-t} - 1} \implies \hat{H}_d(X) = B_d(X)$ Bernoulli poly.
2. $F(t) = \frac{2}{e^{-t} + 1} \implies \hat{H}_d(X) = E_d(X)$ Euler poly.
3. $F(t) = e^{-t^2} \implies \hat{H}_d(X) = H_d(X)$ Hermite poly.
Hyperbolicity of Jensen polynomials
Most General Theorem

LOOSE END

Theorem (O+)

\[\text{Height } T \quad \text{RH} \implies \text{hyperbolicity of } J^{d,n}(X) \text{ for all } n \text{ if } d \gg T^2. \]
Hyperbolicity of Jensen polynomials
Most General Theorem

Theorem (O+)

\[\text{Height } T \; \text{RH} \implies \text{hyperbolicity of } J_{d,n}^d(X) \text{ for all } n \text{ if } d \gg T^2. \]

In particular, \(J_{\gamma,n}^d(X) \) is hyperbolic for all \(n \) when \(d \leq 10^{20} \).
Theorem (O+)

Height T RH \implies hyperbolicity of $J_{d,n}^n(X)$ for all n if $d \gg T^2$. In particular, $J_{\gamma,n}^d(X)$ is hyperbolic for all n when $d \leq 10^{20}$.

Sketch of Proof.

- Derivatives causes zeros to line up nicely.
Hyperbolicity of Jensen polynomials
Most General Theorem

LOOSE END

Theorem (O+)

\[\text{Height } T \text{ RH} \implies \text{hyperbolicity of } J^{d,n}(X) \text{ for all } n \text{ if } d \gg T^2. \]

In particular, \(J^{d,n}_\gamma(X) \) is hyperbolic for all \(n \) when \(d \leq 10^{20} \).

Sketch of Proof.

- Derivatives causes zeros to line up nicely.
- Truth of RH for low height interfaces well with differentiation.
Hyperbolicity of Jensen polynomials
Most General Theorem

LOOSE ENDS

Theorem (O+)

If \(n \gg 3^d \cdot d^{25/8} \), then \(J_{\gamma,n}^d(X) \) is hyperbolic.
LOOSE ENDS

Theorem (O+)

If $n \gg 3^d \cdot d^{25/8}$, then $J_{d,n}^{d,n}(X)$ is hyperbolic.

Sketch of Proof.

Sturm sequence method with our estimates.
The Future
The Future

Definition

A sequence with appropriate growth for $F(t) = e^{-t^2}$ has type $Z : \mathbb{N} \to \mathbb{R}^+$ if $J_{a,n}^d(X)$ is hyperbolic for $n \geq Z(d)$.

Remarks

1. RH is equivalent to $\gamma(n)$ having type $Z = 0$.
2. For $\gamma(n)$ we have proved that $Z(d) = O(3^d \cdot d^{25/8})$.
3. Have heuristics for $Z(d)$ for modular form coefficients.
THE FUTURE

Definition

A sequence with appropriate growth for \(F(t) = e^{-t^2} \) has type \(Z : \mathbb{N} \to \mathbb{R}^+ \) if \(J_{a,n}^d(X) \) is hyperbolic for \(n \geq Z(d) \).

Remarks

1. RH is equivalent to \(\gamma(n) \) having type \(Z = 0 \).
THE FUTURE

DEFINITION

A sequence with appropriate growth for \(F(t) = e^{-t^2} \) has type \(Z : \mathbb{N} \rightarrow \mathbb{R}^+ \) if \(J_{\alpha,n}^d(X) \) is hyperbolic for \(n \geq Z(d) \).

REMARKS

1. RH is equivalent to \(\gamma(n) \) having type \(Z = 0 \).
2. For \(\gamma(n) \) we have proved that \(Z(d) = O(3^d \cdot d^{25/8}) \).
THE FUTURE

DEFINITION

A sequence with appropriate growth for \(F(t) = e^{-t^2} \) has type \(Z : \mathbb{N} \to \mathbb{R}^+ \) if \(J_{a,n}^d(X) \) is hyperbolic for \(n \geq Z(d) \).

REMARKS

1. RH is equivalent to \(\gamma(n) \) having type \(Z = 0 \).
2. For \(\gamma(n) \) we have proved that \(Z(d) = O(3^d \cdot d^{25/8}) \).
3. Have heuristics for \(Z(d) \) for modular form coefficients.
Wrap Up

Special Case of $p(n)$
Special Case of $p(n)$

Speculation (Griffin, O, Rolen, Zagier)

If $n \leq 32$, then we have $Z(d) \sim 10d^2 \log d$.
Special Case of $p(n)$

Speculation (Griffin, O, Rolen, Zagier)

If $n \leq 32$, then we have $Z(d) \sim 10d^2 \log d$.
Does this continue for larger n?
Special Case of $p(n)$

Speculation (Griffin, O, Rolen, Zagier)

If $n \leq 32$, then we have $Z(d) \sim 10d^2 \log d$.
Does this continue for larger n?

Evidence

If we let $\hat{Z}(d) := 10d^2 \log d$, then we have

<table>
<thead>
<tr>
<th>d</th>
<th>$N(d)$</th>
<th>$\hat{Z}(d)$</th>
<th>$N(d)/\hat{Z}(d)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>≈ 1</td>
<td>≈ 1.00</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>≈ 27.72</td>
<td>≈ 0.90</td>
</tr>
<tr>
<td>4</td>
<td>206</td>
<td>≈ 221.80</td>
<td>≈ 0.93</td>
</tr>
<tr>
<td>8</td>
<td>1269</td>
<td>≈ 1330.84</td>
<td>≈ 0.95</td>
</tr>
<tr>
<td>16</td>
<td>6917</td>
<td>≈ 7097.82</td>
<td>≈ 0.97</td>
</tr>
<tr>
<td>32</td>
<td>35627</td>
<td>≈ 35489.13</td>
<td>≈ 1.00</td>
</tr>
</tbody>
</table>
Our Results

General Theorem (Griffin, O, Rolen, Zagier)

If $a(n)$ has appropriate growth, then for $d \geq 1$ we have

$$\lim_{n \to +\infty} \hat{J}_{a}^{d,n}(X) = H_{d}(X).$$

For each d at most finitely many $J_{a}^{d,n}(X)$ are not hyperbolic.
Our Results

General Theorem (Griffin, O, Rolen, Zagier)

If \(a(n) \) has appropriate growth, then for \(d \geq 1 \) we have

\[
\lim_{n \to +\infty} \hat{J}^{d,n}_a(X) = H_d(X).
\]

For each \(d \) at most finitely many \(J^{d,n}_a(X) \) are not hyperbolic.

Most General Theorem (Griffin, O, Rolen, Zagier)

If \(a(n) \) has appropriate growth for \(F(t) = \sum_{i=0}^{\infty} c_i t^i \), then for each degree \(d \geq 1 \) we have

\[
\lim_{n \to +\infty} \frac{1}{a(n) \cdot \delta(n)^d} \cdot J^{d,n}_a \left(\frac{\delta(n) X - 1}{E(n)} \right) = d! \sum_{k=0}^{d} (-1)^{d-k} c_{d-k} \cdot \frac{X^k}{k!}.
\]
APPLICATIONS

Hermite Distributions

1. Jensen-Pólya criterion for RH whenever $n \gg 3^d \cdot d^{25/8}$.
2. Jensen-Pólya criterion for RH for all n if $1 \leq d \leq 10^{20}$.
3. Height T RH \Rightarrow Jensen-Pólya criterion for all n if $d \ll T^2$.
4. The derivative aspect GUE model for Riemann’s $\Xi(x)$.
5. Coeffs of suitable modular forms are log concave and satisfy the higher Turán inequalities (e.g. Chen’s Conjecture).
Applications

Hermite Distributions

1. Jensen-Pólya criterion for RH whenever \(n \gg 3^d \cdot d^{25/8} \).
2. Jensen-Pólya criterion for RH for all \(n \) if \(1 \leq d \leq 10^{20} \).
3. Height \(T \) RH \(\Rightarrow \) Jensen-Pólya criterion for all \(n \) if \(d \ll T^2 \).
4. The derivative aspect GUE model for Riemann’s \(\Xi(x) \).
5. Coeffs of suitable modular forms are log concave and satisfy the higher Turán inequalities (e.g. Chen’s Conjecture).

+ general theory including Bernoulli and Eulerian distributions.