Hearing the Shape of a Locally Symmetric Space and
 Arithmetic Groups

Andrei S. Rapinchuk
University of Virginia

GMU September 6, 2019
(1) Eigenvalue rigidity and hearing the shape of a drum

- Classical vs. Eigenvalue Rigidity
(2) Hearing the Shape
- 1-dimensional case
- Flat tori of dimension > 1
- Weyl's Law and its Consequences
(3) Locally symmetric spaces
- Laplace-Beltrami operator
- Isospectral non-isometric manifolds
- Our results
(1) Eigenvalue rigidity and hearing the shape of a drum
- Classical vs. Eigenvalue Rigidity
(2) Hearing the Shape
- 1-dimensional case
- Flat tori of dimension >1
- Weyl's Law and its Consequences
(3) Locally symmetric spaces
- Laplace-Beltrami operator
- Isospectral non-isometric manifolds
- Our results

Classical rigidity

For $i=1,2$, let \mathcal{G}_{i} be a semi-simple Lie group,
let $\Gamma_{i} \subset \mathcal{G}_{i}$ be a lattice (or some other "large" subgroup)

Classical rigidity

For $i=1,2$, let \mathcal{G}_{i} be a semi-simple Lie group,

$$
\text { let } \Gamma_{i} \subset \mathcal{G}_{i} \text { be a lattice } \begin{aligned}
& \text { (or some other } \\
& \text { "large" subgroup) }
\end{aligned}
$$

Then (under appropriate assumptions):

a homo/isomorphism $\phi: \Gamma_{1} \longrightarrow \Gamma_{2}$ (virtually) extends to a homo/isomorphism of Lie groups $\tilde{\phi}: \mathcal{G}_{1} \longrightarrow \mathcal{G}_{2}$

Classical rigidity

For $i=1,2$, let \mathcal{G}_{i} be a semi-simple Lie group,

$$
\text { let } \Gamma_{i} \subset \mathcal{G}_{i} \text { be a lattice } \begin{aligned}
& \text { (or some other } \\
& \text { "large" subgroup) }
\end{aligned}
$$

Then (under appropriate assumptions):
a homo/isomorphism $\phi: \Gamma_{1} \longrightarrow \Gamma_{2}$ (virtually) extends to a homo/isomorphism of Lie groups $\tilde{\phi}: \mathcal{G}_{1} \longrightarrow \mathcal{G}_{2}$

$$
\begin{array}{lll}
\mathcal{G}_{1} & & \mathcal{G}_{2} \\
U & & \bigcup \\
\Gamma_{1} & \xrightarrow{\phi} & \Gamma_{2}
\end{array}
$$

Classical rigidity

For $i=1,2$, let \mathcal{G}_{i} be a semi-simple Lie group,

$$
\text { let } \Gamma_{i} \subset \mathcal{G}_{i} \text { be a lattice } \begin{aligned}
& \text { (or some other } \\
& \text { "large" subgroup) }
\end{aligned}
$$

Then (under appropriate assumptions):
a homo/isomorphism $\phi: \Gamma_{1} \longrightarrow \Gamma_{2}$ (virtually) extends to a homo/isomorphism of Lie groups $\tilde{\phi}: \mathcal{G}_{1} \longrightarrow \mathcal{G}_{2}$

$$
\begin{array}{lll}
\mathcal{G}_{1} & \xrightarrow{\tilde{\phi}} & \mathcal{G}_{2} \\
\bigcup & & \bigcup \\
\Gamma_{1} & \xrightarrow{\phi} & \Gamma_{2}
\end{array}
$$

Consequence: let

- $\Gamma_{1}=\operatorname{SL}_{n}(\mathbb{Z}) \quad(n \geqslant 3)$,

Consequence: let

- $\Gamma_{1}=\operatorname{SL}_{n}(\mathbb{Z}) \quad(n \geqslant 3)$,
- $\Gamma_{2}=G(\mathcal{O}), G$ is an absolutely almost simple algebraic group over a number field K with ring of integers \mathcal{O}.

Consequence: let

- $\Gamma_{1}=\operatorname{SL}_{n}(\mathbb{Z}) \quad(n \geqslant 3)$,
- $\Gamma_{2}=G(\mathcal{O}), G$ is an absolutely almost simple algebraic group over a number field K with ring of integers \mathcal{O}.

If Γ_{1} and Γ_{2} are virtually isomorphic, then

Consequence: let

- $\Gamma_{1}=\operatorname{SL}_{n}(\mathbb{Z}) \quad(n \geqslant 3)$,
- $\Gamma_{2}=G(\mathcal{O}), G$ is an absolutely almost simple algebraic group over a number field K with ring of integers \mathcal{O}.

If Γ_{1} and Γ_{2} are virtually isomorphic, then

- $K=\mathbb{Q}$ (hence $\mathcal{O}=\mathbb{Z}$), and

Consequence: let

- $\Gamma_{1}=\operatorname{SL}_{n}(\mathbb{Z}) \quad(n \geqslant 3)$,
- $\Gamma_{2}=G(\mathcal{O}), G$ is an absolutely almost simple algebraic group over a number field K with ring of integers \mathcal{O}.

If Γ_{1} and Γ_{2} are virtually isomorphic, then

- $K=\mathbb{Q}$ (hence $\mathcal{O}=\mathbb{Z}$), and
- $G \simeq \operatorname{SL}_{n}$ over Q.

Consequence: let

- $\Gamma_{1}=\operatorname{SL}_{n}(\mathbb{Z}) \quad(n \geqslant 3)$,
- $\Gamma_{2}=G(\mathcal{O}), G$ is an absolutely almost simple algebraic group over a number field K with ring of integers \mathcal{O}.

If Γ_{1} and Γ_{2} are virtually isomorphic, then

- $K=\mathbb{Q}$ (hence $\mathcal{O}=\mathbb{Z}$), and
- $G \simeq S L_{n}$ over Q.

Thus,

structure of a (higher rank) arithmetic group determines

Consequence: let

- $\Gamma_{1}=\operatorname{SL}_{n}(\mathbb{Z}) \quad(n \geqslant 3)$,
- $\Gamma_{2}=G(\mathcal{O}), G$ is an absolutely almost simple algebraic group over a number field K with ring of integers \mathcal{O}.

If Γ_{1} and Γ_{2} are virtually isomorphic, then

- $K=\mathbb{Q}$ (hence $\mathcal{O}=\mathbb{Z}$), and
- $G \simeq S L_{n}$ over Q.

Thus,

structure of a (higher rank) arithmetic group determines
field of definition \&

Consequence: let

- $\Gamma_{1}=\operatorname{SL}_{n}(\mathbb{Z}) \quad(n \geqslant 3)$,
- $\Gamma_{2}=G(\mathcal{O}), G$ is an absolutely almost simple algebraic group over a number field K with ring of integers \mathcal{O}.

If Γ_{1} and Γ_{2} are virtually isomorphic, then

- $K=\mathbb{Q}$ (hence $\mathcal{O}=\mathbb{Z}$), and
- $G \simeq S L_{n}$ over Q.

Thus,

structure of a (higher rank) arithmetic group determines
field of definition \& ambient algebraic group over this field.

- Structural approach to rigidity does not extend to
arbitrary Zariski-dense subgroups
as these may, for example, be free groups.
- Structural approach to rigidity does not extend to
arbitrary Zariski-dense subgroups
as these may, for example, be free groups.
- However,
- Structural approach to rigidity does not extend to
arbitrary Zariski-dense subgroups
as these may, for example, be free groups.
- However, one should be able to recover such data as
field of definition \& ambient algebraic group
- Structural approach to rigidity does not extend to arbitrary Zariski-dense subgroups
as these may, for example, be free groups.
- However, one should be able to recover such data as
field of definition \& ambient algebraic group
from any Zariski-dense subgroup
- Structural approach to rigidity does not extend to arbitrary Zariski-dense subgroups as these may, for example, be free groups.
- However, one should be able to recover such data as
field of definition \& ambient algebraic group
from any Zariski-dense subgroup if instead of

structural information

- Structural approach to rigidity does not extend to arbitrary Zariski-dense subgroups as these may, for example, be free groups.
- However, one should be able to recover such data as
field of definition \& ambient algebraic group
from any Zariski-dense subgroup if instead of structural information
one uses information about the eigenvalues of elements.
- Structural approach to rigidity does not extend to arbitrary Zariski-dense subgroups as these may, for example, be free groups.
- However, one should be able to recover such data as
field of definition \& ambient algebraic group
from any Zariski-dense subgroup if instead of structural information
one uses information about the eigenvalues of elements.
- We call this phenomenon eigenvalue rigidity.

- How do we match the eigenvalues of elements of two Zariski-dense subgroups?

- How do we match the eigenvalues of elements of two Zariski-dense subgroups?

Note that the subgroups may be represented by matrices
of different sizes,

- How do we match the eigenvalues of elements of two Zariski-dense subgroups?

Note that the subgroups may be represented by matrices
of different sizes,
hence their elements may have different numbers
of eigenvalues.

- How do we match the eigenvalues of elements of two Zariski-dense subgroups?

Note that the subgroups may be represented by matrices of different sizes,
hence their elements may have different numbers
of eigenvalues.

- Why do we care about eigenvalues?

Let F be a field of characteristic zero (in applications, $F=\mathbb{C}$).

Let F be a field of characteristic zero (in applications, $F=\mathbb{C}$).

Definition.

(1) Let $\gamma_{1} \in \mathrm{GL}_{n_{1}}(F)$ and $\gamma_{2} \in \mathrm{GL}_{n_{2}}(F)$ be semi-simple (i.e., diagonalizable) matrices,

Let F be a field of characteristic zero (in applications, $F=\mathbb{C}$).

Definition.

(1) Let $\gamma_{1} \in \mathrm{GL}_{n_{1}}(F)$ and $\gamma_{2} \in \mathrm{GL}_{n_{2}}(F)$ be semi-simple (i.e., diagonalizable) matrices, let

$$
\lambda_{1}, \ldots, \lambda_{n_{1}} \quad \text { and } \quad \mu_{1}, \ldots, \mu_{n_{2}} \quad(\in \bar{F})
$$

be their eigenvalues.

Let F be a field of characteristic zero (in applications, $F=\mathbb{C}$).

Definition.

(1) Let $\gamma_{1} \in \mathrm{GL}_{n_{1}}(F)$ and $\gamma_{2} \in \mathrm{GL}_{n_{2}}(F)$ be semi-simple (i.e., diagonalizable) matrices, let

$$
\lambda_{1}, \ldots, \lambda_{n_{1}} \quad \text { and } \quad \mu_{1}, \ldots, \mu_{n_{2}} \quad(\in \bar{F})
$$

be their eigenvalues. Then γ_{1} and γ_{2} are weakly commensurable

Let F be a field of characteristic zero (in applications, $F=\mathbb{C}$).

Definition.

(1) Let $\gamma_{1} \in \mathrm{GL}_{n_{1}}(F)$ and $\gamma_{2} \in \mathrm{GL}_{n_{2}}(F)$ be semi-simple (i.e., diagonalizable) matrices, let

$$
\lambda_{1}, \ldots, \lambda_{n_{1}} \quad \text { and } \quad \mu_{1}, \ldots, \mu_{n_{2}} \quad(\in \bar{F})
$$

be their eigenvalues. Then γ_{1} and γ_{2} are weakly commensurable if $\exists a_{1}, \ldots, a_{n_{1}}, b_{1}, \ldots, b_{n_{2}} \in \mathbb{Z}$

Let F be a field of characteristic zero (in applications, $F=\mathbb{C}$).

Definition.

(1) Let $\gamma_{1} \in \mathrm{GL}_{n_{1}}(F)$ and $\gamma_{2} \in \mathrm{GL}_{n_{2}}(F)$ be semi-simple (i.e., diagonalizable) matrices, let

$$
\lambda_{1}, \ldots, \lambda_{n_{1}} \quad \text { and } \quad \mu_{1}, \ldots, \mu_{n_{2}} \quad(\in \bar{F})
$$

be their eigenvalues. Then γ_{1} and γ_{2} are weakly commensurable if $\exists a_{1}, \ldots, a_{n_{1}}, b_{1}, \ldots, b_{n_{2}} \in \mathbb{Z}$ such that

$$
\lambda_{1}^{a_{1}} \cdots \lambda_{n_{1}}^{a_{n_{1}}}=\mu_{1}^{b_{1}} \cdots \mu_{n_{2}}^{b_{n_{2}}} \neq 1
$$

(2) Subgroups $\Gamma_{1} \subset \mathrm{GL}_{n_{1}}(F)$ and $\Gamma_{2} \subset \mathrm{GL}_{n_{1}}(F)$ are weakly commensurable
(2) Subgroups $\Gamma_{1} \subset \mathrm{GL}_{n_{1}}(F)$ and $\Gamma_{2} \subset \mathrm{GL}_{n_{1}}(F)$ are weakly commensurable if
every semi-simple $\gamma_{1} \in \Gamma_{1}$ of infinite order
(2) Subgroups $\Gamma_{1} \subset \mathrm{GL}_{n_{1}}(F)$ and $\Gamma_{2} \subset \mathrm{GL}_{n_{1}}(F)$ are weakly commensurable if
every semi-simple $\gamma_{1} \in \Gamma_{1}$ of infinite order
is weakly commensurable to
some semi-simple $\gamma_{2} \in \Gamma_{2}$ of infinite order,
(2) Subgroups $\Gamma_{1} \subset \mathrm{GL}_{n_{1}}(F)$ and $\Gamma_{2} \subset \mathrm{GL}_{n_{1}}(F)$ are weakly commensurable if
every semi-simple $\gamma_{1} \in \Gamma_{1}$ of infinite order is weakly commensurable to
some semi-simple $\gamma_{2} \in \Gamma_{2}$ of infinite order, and vice versa.
(2) Subgroups $\Gamma_{1} \subset \mathrm{GL}_{n_{1}}(F)$ and $\Gamma_{2} \subset \mathrm{GL}_{n_{1}}(F)$ are weakly commensurable if
every semi-simple $\gamma_{1} \in \Gamma_{1}$ of infinite order is weakly commensurable to
some semi-simple $\gamma_{2} \in \Gamma_{2}$ of infinite order, and vice versa.

Example. Let

$$
A=\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1 / 24
\end{array}\right), \quad B=\left(\begin{array}{ccc}
4 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1 / 12
\end{array}\right) \in \mathrm{SL}_{3}(\mathbb{C})
$$

(2) Subgroups $\Gamma_{1} \subset \mathrm{GL}_{n_{1}}(F)$ and $\Gamma_{2} \subset \mathrm{GL}_{n_{1}}(F)$ are weakly commensurable if every semi-simple $\gamma_{1} \in \Gamma_{1}$ of infinite order is weakly commensurable to
some semi-simple $\gamma_{2} \in \Gamma_{2}$ of infinite order, and vice versa.

Example. Let

$$
A=\left(\begin{array}{ccc}
12 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1 / 24
\end{array}\right), \quad B=\left(\begin{array}{ccc}
4 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1 / 12
\end{array}\right) \in \mathrm{SL}_{3}(\mathbb{C})
$$

Then A and B are weakly commensurable because

$$
\lambda_{1}=12=4 \cdot 3=\mu_{1} \cdot \mu_{2} \quad\left(\text { or } \quad \lambda_{1}=\mu_{3}^{-1}\right) .
$$

However, no powers A^{m} and $B^{n}(m, n \neq 0)$ are conjugate,

However, no powers A^{m} and $B^{n}(m, n \neq 0)$ are conjugate, (i.e., subgroups $\langle A\rangle$ and $\langle B\rangle$ are not commensurable, even up to conjugation).

However, no powers A^{m} and $B^{n}(m, n \neq 0)$ are conjugate, (i.e., subgroups $\langle A\rangle$ and $\langle B\rangle$ are not commensurable, even up to conjugation).

The situation changes dramatically

However, no powers A^{m} and $B^{n}(m, n \neq 0)$ are conjugate, (i.e., subgroups $\langle A\rangle$ and $\langle B\rangle$ are not commensurable, even up to conjugation).

The situation changes dramatically if one considers
"big" subgroups,

However, no powers A^{m} and $B^{n}(m, n \neq 0)$ are conjugate, (i.e., subgroups $\langle A\rangle$ and $\langle B\rangle$ are not commensurable, even up to conjugation).

The situation changes dramatically if one considers
"big" subgroups,
viz. Zariski-dense, and particularly arithmetic, subgroups of (almost) simple algebraic groups.

However, no powers A^{m} and $B^{n}(m, n \neq 0)$ are conjugate, (i.e., subgroups $\langle A\rangle$ and $\langle B\rangle$ are not commensurable, even up to conjugation).

The situation changes dramatically if one considers
"big" subgroups,
viz. Zariski-dense, and particularly arithmetic, subgroups of (almost) simple algebraic groups.

- Reason: these subgroups contain special elements, called generic.

M. Kac, Amer. Math. Monthly, 73(1966), 1-23

M. Kac, Amer. Math. Monthly, 73(1966), 1-23

Abstract

CAN ONE HEAR THE SHAPE OF A DRUM? MARK KAC, The Rockefeller University, New York To George Eugene Uhlenbeck on the occasion of his sixty-fifth birthday "La Physique ne nous donne pas seulement l'occasion de résoudre des problèmes elle nous fait presentir la solution." H. Poincare.

Before I explain the title and introduce the theme of the lecture I should like to state that my presentation will be more in the nature of a leisurely excursion than of an organized tour. It will not be my purpose to reach a specified destination at a scheduled time. Rather I should like to allow myself on many occasions the luxury of stopping and looking around. So much effort is being spent on streamlining mathematics and in rendering it more efficient, that a solitary transgression against the trend could perhaps be forgiven.

FIG. 1

1. And now to the theme and the title.

It has been known for well over a century that if a membrane Ω, held fixed along its boundary Γ (see Fig. 1), is set in motion its displacement (in the direction perpendicular to its original plane)

$$
F(x, y ; t) \equiv F(\vec{\rho} ; t)
$$

obeys the wave equation

$$
\frac{\partial^{2} F}{\partial t^{2}}=c^{2} \nabla^{2} F
$$

where c is a certain constant depending on the physical properties of the membrane and on the tension under which the membrane is held,

I shall choose units to make $c^{2}=\frac{1}{2}$.

M. Kac, Amer. Math. Monthly, 73(1966), 1-23

CAN ONE HEAR THE SHAPE OF A DRUM?
 MARK KAC, The Rockefeller University, New York
 To George Eugene Uhlenbeck on the occasion of his sixty-fifth birthday

"La Physique ne nous donne pas seulement l'occasion de résoudre des problèmes elle nous fait presentir la solution." H. Poincare.

Before I explain the title and introduce the theme of the lecture I should like to state that my presentation will be more in the nature of a leisurely excursion than of an organized tour. It will not be my purpose to reach a specified destination at a scheduled time. Rather I should like to allow myself on many occasions the luxury of stopping and looking around. So much effort is being spent on streamlining mathematics and in rendering it more efficient, that a solitary transgression against the trend could perhaps be forgiven.

Fig. 1

1. And now to the theme and the title.

It has been known for well over a century that if a membrane Ω, held fixed along its boundary Γ (see Fig. 1), is set in motion its displacement (in the direction perpendicular to its original plane)

$$
F(x, y ; t) \equiv F(\vec{\rho} ; t)
$$

obeys the wave equation

$$
\frac{\partial^{2} F}{\partial t^{2}}=c^{2} \nabla^{2} F
$$

where c is a certain constant depending on the physical properties of the membrane and on the tension under which the membrane is held,

I shall choose units to make $c^{2}=\frac{1}{2}$.
(1) Eigenvalue rigidity and hearing the shape of a drum

- Classical vs. Eigenvalue Rigidity
(2) Hearing the Shape
- 1-dimensional case
- Flat tori of dimension > 1
- Weyl's Law and its Consequences
(3) Locally symmetric spaces
- Laplace-Beltrami operator
- Isospectral non-isometric manifolds
- Our results

Hearing the Shape

- Consider a membrane in $x y$-plane attached along boundary;
- Make it vibrate;
- Let $z(x, y, t)$ denote displacement of (x, y) at time t :

Hearing the Shape

- Consider a membrane in $x y$-plane attached along boundary; - Make it vibrate;
- Let $z(x, y, t)$ denote displacement of (x, y) at time t :

Hearing the Shape

- Consider a membrane in $x y$-plane attached along boundary;
- Make it vibrate;
- Let $z(x, y, t)$ denote displacement of (x, y) at time t :

Hearing the Shape

- Consider a membrane in $x y$-plane attached along boundary;
- Make it vibrate;
- Let $z(x, y, t)$ denote displacement of (x, y) at time t :

Wave equation and Laplacian

Then z satisfies wave equation:

$$
\frac{\partial^{2} z}{\partial t^{2}}-c^{2} \Delta z=0, \quad z \equiv 0 \quad \text { on boundary }
$$

Wave equation and Laplacian

Then z satisfies wave equation:

$$
\frac{\partial^{2} z}{\partial t^{2}}-c^{2} \Delta z=0, \quad z \equiv 0 \quad \text { on boundary }
$$

where

$$
\Delta z=\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}
$$

is the Laplacian.

Wave equation and Laplacian

Then z satisfies wave equation:

$$
\frac{\partial^{2} z}{\partial t^{2}}-c^{2} \Delta z=0, \quad z \equiv 0 \quad \text { on boundary }
$$

where

$$
\Delta z=\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}
$$

is the Laplacian.
(For simplicity, we take $c=1$ in the sequel.)

Harmonics

We are particularly interested in solutions of the form:

$$
z(x, y, t)=u(x, y) e^{i \omega t}, \quad \omega=\text { frequency } .
$$

Harmonics

We are particularly interested in solutions of the form:

$$
z(x, y, t)=u(x, y) e^{i \omega t}, \quad \omega=\text { frequency } .
$$

Then all points of membrane oscillate with same frequency but possibly with different amplitudes.

Harmonics

We are particularly interested in solutions of the form:

$$
z(x, y, t)=u(x, y) e^{i \omega t}, \quad \omega=\text { frequency }
$$

Then all points of membrane oscillate with same frequency but possibly with different amplitudes.

- For a musician: membrane produces a harmonic sound of frequency ω

Harmonics

We are particularly interested in solutions of the form:

$$
z(x, y, t)=u(x, y) e^{i \omega t}, \quad \omega=\text { frequency } .
$$

Then all points of membrane oscillate with same frequency but possibly with different amplitudes.

- For a musician: membrane produces a harmonic sound of frequency ω
(then ω is one of overtones (or harmonics) of membrane.)

Eigenvalues of Laplacian

- For a mathematician: these solutions are the ones furnished by Fourier's method of separation of variables.

Eigenvalues of Laplacian

- For a mathematician: these solutions are the ones furnished by Fourier's method of separation of variables.
(then any solution is an infinite sum of these special solutions.)

Eigenvalues of Laplacian

- For a mathematician: these solutions are the ones furnished by Fourier's method of separation of variables.
(then any solution is an infinite sum of these special solutions.)

IMPORTANT: ω cannot be arbitrary.

Eigenvalues of Laplacian

- For a mathematician: these solutions are the ones furnished by Fourier's method of separation of variables.
(then any solution is an infinite sum of these special solutions.)

IMPORTANT: ω cannot be arbitrary.

Indeed, substituting we obtain

$$
(-\Delta) u=\omega^{2} u \quad(\text { and } \quad u=0 \text { on the boundary) }
$$

Eigenvalues of Laplacian

- For a mathematician: these solutions are the ones furnished by Fourier's method of separation of variables.
(then any solution is an infinite sum of these special solutions.)

IMPORTANT: ω cannot be arbitrary.

Indeed, substituting we obtain

$$
(-\Delta) u=\omega^{2} u \quad(\text { and } u=0 \text { on the boundary) }
$$

Thus, harmonics in sound produced by membrane have to do with eigenvalues of Laplacian.

So, hearing the shape $=$ ability to recover a geometric object from spectral data for corresponding Laplacian.

So, hearing the shape $=$ ability to recover a geometric object from spectral data for corresponding Laplacian.

Note spectral data must include multiplicities.

So, hearing the shape $=$ ability to recover a geometric object from spectral data for corresponding Laplacian.

Note spectral data must include multiplicities.

WHY DO WE EXPECT TO BE ABLE TO "HEAR THE SHAPE"?
(1) Eigenvalue rigidity and hearing the shape of a drum

- Classical vs. Eigenvalue Rigidity
(2) Hearing the Shape
- 1-dimensional case
- Flat tori of dimension >1
- Weyl's Law and its Consequences
(3) Locally symmetric spaces
- Laplace-Beltrami operator
- Isospectral non-isometric manifolds
- Our results

Here $\Delta=\frac{d^{2}}{d x^{2}}$,

Here $\quad \Delta=\frac{d^{2}}{d x^{2}}, \quad$ so $\quad \frac{d^{2} u}{d x^{2}}+\lambda u=0$.

Here $\quad \Delta=\frac{d^{2}}{d x^{2}}, \quad$ so $\quad \frac{d^{2} u}{d x^{2}}+\lambda u=0$.

- For each $\lambda>0$, there are two linearly independent solutions

$$
\sin (\sqrt{\lambda} x) \text { and } \cos (\sqrt{\lambda} x)
$$

Here $\quad \Delta=\frac{d^{2}}{d x^{2}}, \quad$ so $\quad \frac{d^{2} u}{d x^{2}}+\lambda u=0$.

- For each $\lambda>0$, there are two linearly independent solutions

$$
\sin (\sqrt{\lambda} x) \text { and } \cos (\sqrt{\lambda} x)
$$

- Assume that u describes profile of vibrating string of length ℓ with attached ends

Here $\quad \Delta=\frac{d^{2}}{d x^{2}}, \quad$ so $\quad \frac{d^{2} u}{d x^{2}}+\lambda u=0$.

- For each $\lambda>0$, there are two linearly independent solutions

$$
\sin (\sqrt{\lambda} x) \text { and } \cos (\sqrt{\lambda} x)
$$

- Assume that u describes profile of vibrating string of length ℓ with attached ends $\Rightarrow u(0)=u(\ell)=0$.

Here $\quad \Delta=\frac{d^{2}}{d x^{2}}, \quad$ so $\quad \frac{d^{2} u}{d x^{2}}+\lambda u=0$.

- For each $\lambda>0$, there are two linearly independent solutions

$$
\sin (\sqrt{\lambda} x) \text { and } \cos (\sqrt{\lambda} x)
$$

- Assume that u describes profile of vibrating string of length ℓ with attached ends $\Rightarrow u(0)=u(\ell)=0$.

With locally symmetric spaces in mind, we instead consider condition $u(x+\ell)=u(x)$, i.e. u is defined on $\mathbb{R} / \ell \mathbb{Z} \simeq$ circumference of length ℓ.

Here $\quad \Delta=\frac{d^{2}}{d x^{2}}, \quad$ so $\quad \frac{d^{2} u}{d x^{2}}+\lambda u=0$.

- For each $\lambda>0$, there are two linearly independent solutions

$$
\sin (\sqrt{\lambda} x) \text { and } \cos (\sqrt{\lambda} x)
$$

- Assume that u describes profile of vibrating string of length ℓ with attached ends $\Rightarrow u(0)=u(\ell)=0$.

With locally symmetric spaces in mind, we instead consider condition $u(x+\ell)=u(x)$, i.e. u is defined on $\mathbb{R} / \ell \mathbb{Z} \simeq$ circumference of length ℓ.
(Both conditions result in same eigenvalues.)

Then $\sqrt{\lambda} \ell=2 \pi n$ for $n \in \mathbb{Z}$

Then $\sqrt{\lambda} \ell=2 \pi n$ for $n \in \mathbb{Z} \Rightarrow$ we obtain a discrete sequence of eigenvalues

$$
\lambda_{n}=\frac{4 \pi^{2} n^{2}}{\ell^{2}}, \quad n=0,1, \ldots
$$

Then $\sqrt{\lambda} \ell=2 \pi n$ for $n \in \mathbb{Z} \Rightarrow$ we obtain a discrete sequence of eigenvalues

$$
\lambda_{n}=\frac{4 \pi^{2} n^{2}}{\ell^{2}}, \quad n=0,1, \ldots
$$

for which there are solutions with period ℓ.

Then $\sqrt{\lambda} \ell=2 \pi n$ for $n \in \mathbb{Z} \Rightarrow$ we obtain a discrete sequence of eigenvalues

$$
\lambda_{n}=\frac{4 \pi^{2} n^{2}}{\ell^{2}}, \quad n=0,1, \ldots
$$

for which there are solutions with period ℓ.

Each $\lambda_{n}(n>0)$ has multiplicity 2 with eigenfunctions

$$
\sin \left(\frac{2 \pi n x}{\ell}\right) \text { and } \cos \left(\frac{2 \pi n x}{\ell}\right)
$$

Then $\sqrt{\lambda} \ell=2 \pi n$ for $n \in \mathbb{Z} \Rightarrow$ we obtain a discrete sequence of eigenvalues

$$
\lambda_{n}=\frac{4 \pi^{2} n^{2}}{\ell^{2}}, \quad n=0,1, \ldots
$$

for which there are solutions with period ℓ.
Each $\lambda_{n}(n>0)$ has multiplicity 2 with eigenfunctions

$$
\sin \left(\frac{2 \pi n x}{\ell}\right) \text { and } \cos \left(\frac{2 \pi n x}{\ell}\right) .
$$

- The sequence $\left\{\lambda_{n}\right\}$ determines ℓ.

Then $\sqrt{\lambda} \ell=2 \pi n$ for $n \in \mathbb{Z} \Rightarrow$ we obtain a discrete sequence of eigenvalues

$$
\lambda_{n}=\frac{4 \pi^{2} n^{2}}{\ell^{2}}, \quad n=0,1, \ldots
$$

for which there are solutions with period ℓ.

Each $\lambda_{n}(n>0)$ has multiplicity 2 with eigenfunctions

$$
\sin \left(\frac{2 \pi n x}{\ell}\right) \text { and } \cos \left(\frac{2 \pi n x}{\ell}\right)
$$

- The sequence $\left\{\lambda_{n}\right\}$ determines ℓ.
- So, one can hear shape of circumference (or string)

Then $\sqrt{\lambda} \ell=2 \pi n$ for $n \in \mathbb{Z} \Rightarrow$ we obtain a discrete sequence of eigenvalues

$$
\lambda_{n}=\frac{4 \pi^{2} n^{2}}{\ell^{2}}, \quad n=0,1, \ldots
$$

for which there are solutions with period ℓ.

Each $\lambda_{n}(n>0)$ has multiplicity 2 with eigenfunctions

$$
\sin \left(\frac{2 \pi n x}{\ell}\right) \text { and } \cos \left(\frac{2 \pi n x}{\ell}\right)
$$

- The sequence $\left\{\lambda_{n}\right\}$ determines ℓ.
- So, one can hear shape of circumference (or string) (even if one misses a couple of low overtones).
(1) Eigenvalue rigidity and hearing the shape of a drum
- Classical vs. Eigenvalue Rigidity
(2) Hearing the Shape
- 1-dimensional case
- Flat tori of dimension >1
- Weyl's Law and its Consequences
(3) Locally symmetric spaces
- Laplace-Beltrami operator
- Isospectral non-isometric manifolds
- Our results

2-dimensional torus

Consider "canonical" 2-dimensional torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$.

2-dimensional torus

Consider "canonical" 2-dimensional torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$.
Here eigenfunctions of Laplacian are

$$
\begin{gathered}
\sin (2 \pi m x) \cos (2 \pi n y), \quad \sin (2 \pi m x) \cos (2 \pi n x), \\
\text { and } \cos (2 \pi m x) \cos (2 \pi n y) \quad(m, n \in \mathbb{Z}) .
\end{gathered}
$$

2-dimensional torus

Consider "canonical" 2-dimensional torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$.
Here eigenfunctions of Laplacian are

$$
\begin{gathered}
\sin (2 \pi m x) \cos (2 \pi n y), \quad \sin (2 \pi m x) \cos (2 \pi n x), \\
\text { and } \cos (2 \pi m x) \cos (2 \pi n y) \quad(m, n \in \mathbb{Z}) .
\end{gathered}
$$

Corresponding eigenvalue $\lambda_{m, n}=4 \pi^{2}\left(m^{2}+n^{2}\right)$.

2-dimensional torus

Consider "canonical" 2-dimensional torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$.
Here eigenfunctions of Laplacian are

$$
\begin{gathered}
\sin (2 \pi m x) \cos (2 \pi n y), \quad \sin (2 \pi m x) \cos (2 \pi n x), \\
\text { and } \cos (2 \pi m x) \cos (2 \pi n y) \quad(m, n \in \mathbb{Z}) .
\end{gathered}
$$

Corresponding eigenvalue $\lambda_{m, n}=4 \pi^{2}\left(m^{2}+n^{2}\right)$.

This spectral data can be packaged differently:

2-dimensional torus

Consider "canonical" 2-dimensional torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$.
Here eigenfunctions of Laplacian are

$$
\begin{aligned}
& \sin (2 \pi m x) \cos (2 \pi n y), \quad \sin (2 \pi m x) \cos (2 \pi n x) \\
& \text { and } \cos (2 \pi m x) \cos (2 \pi n y) \quad(m, n \in \mathbb{Z})
\end{aligned}
$$

Corresponding eigenvalue $\lambda_{m, n}=4 \pi^{2}\left(m^{2}+n^{2}\right)$.

This spectral data can be packaged differently:

- eigenfunctions are obtained from

$$
\sin (2 \pi \cdot(m, n) \cdot(x, y)) \quad \text { and } \cos (2 \pi \cdot(m, n) \cdot(x, y)) ;
$$

2-dimensional torus

Consider "canonical" 2-dimensional torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$.
Here eigenfunctions of Laplacian are

$$
\begin{aligned}
& \sin (2 \pi m x) \cos (2 \pi n y), \quad \sin (2 \pi m x) \cos (2 \pi n x) \\
& \text { and } \cos (2 \pi m x) \cos (2 \pi n y) \quad(m, n \in \mathbb{Z})
\end{aligned}
$$

Corresponding eigenvalue $\lambda_{m, n}=4 \pi^{2}\left(m^{2}+n^{2}\right)$.

This spectral data can be packaged differently:

- eigenfunctions are obtained from

$$
\sin (2 \pi \cdot(m, n) \cdot(x, y)) \quad \text { and } \cos (2 \pi \cdot(m, n) \cdot(x, y)) ;
$$

- eigenvalue $=4 \pi^{2} q(m, n)$, where $q(a, b)=a^{2}+b^{2}$.

d-dimensional torus

Generalization to an arbitrary torus \mathbb{R}^{d} / L : (where L is a lattice of rank d)

d-dimensional torus

Generalization to an arbitrary torus \mathbb{R}^{d} / L : (where L is a lattice of rank d)

- eigenfunctions are obtained from

$$
\sin (2 \pi \cdot \vec{m} \cdot \vec{x}) \text { and } \cos (2 \pi \cdot \vec{m} \cdot \vec{x})
$$

where $\vec{x}=\left(x_{1}, \ldots, x_{d}\right)$ and $\vec{m}=\left(m_{1}, \ldots, m_{d}\right) \in L^{*} \quad$ (dual lattice);

d-dimensional torus

Generalization to an arbitrary torus \mathbb{R}^{d} / L : (where L is a lattice of rank d)

- eigenfunctions are obtained from

$$
\sin (2 \pi \cdot \vec{m} \cdot \vec{x}) \text { and } \cos (2 \pi \cdot \vec{m} \cdot \vec{x})
$$

where $\vec{x}=\left(x_{1}, \ldots, x_{d}\right)$ and $\vec{m}=\left(m_{1}, \ldots, m_{d}\right) \in L^{*} \quad$ (dual lattice);

- eigenvalue $=4 \pi^{2} q(\vec{m})$ where q is the standard quadratic form on \mathbb{R}^{d}

d-dimensional torus

Generalization to an arbitrary torus \mathbb{R}^{d} / L : (where L is a lattice of rank d)

- eigenfunctions are obtained from

$$
\sin (2 \pi \cdot \vec{m} \cdot \vec{x}) \text { and } \cos (2 \pi \cdot \vec{m} \cdot \vec{x})
$$

where $\vec{x}=\left(x_{1}, \ldots, x_{d}\right)$ and $\vec{m}=\left(m_{1}, \ldots, m_{d}\right) \in L^{*} \quad$ (dual lattice);

- eigenvalue $=4 \pi^{2} q(\vec{m})$ where q is the standard quadratic form on \mathbb{R}^{d}

Recall that $L^{*}:=\left\{\vec{x} \in \mathbb{R}^{d} \mid \vec{x} \cdot \vec{y} \in \mathbb{Z}\right.$ for all $\left.\vec{y} \in L\right\}$.

d-dimensional torus

So, two tori $\mathbb{R}^{d_{1}} / L_{1}$ and $R^{d_{2}} / L_{2}$:

d-dimensional torus

So, two tori $\mathbb{R}^{d_{1}} / L_{1}$ and $R^{d_{2}} / L_{2}$:

- have same eigenvalues of Laplacian $\Leftrightarrow q_{1}\left(L_{1}^{*}\right)=q_{2}\left(L_{2}^{*}\right)$

d-dimensional torus

So, two tori $\mathbb{R}^{d_{1}} / L_{1}$ and $R^{d_{2}} / L_{2}$:

- have same eigenvalues of Laplacian $\Leftrightarrow q_{1}\left(L_{1}^{*}\right)=q_{2}\left(L_{2}^{*}\right)$
- are isometric $\Leftrightarrow d_{1}=d_{2}=: d$, hence $q_{1}=q_{2}=: q$, and $\exists \sigma \in O_{d}(q)$ such that $\sigma\left(L_{1}\right)=L_{2}$ (equivalently, $\sigma\left(L_{1}^{*}\right)=L_{2}^{*}$)

d-dimensional torus

So, two tori $\mathbb{R}^{d_{1}} / L_{1}$ and $R^{d_{2}} / L_{2}$:

- have same eigenvalues of Laplacian $\Leftrightarrow q_{1}\left(L_{1}^{*}\right)=q_{2}\left(L_{2}^{*}\right)$
- are isometric $\Leftrightarrow d_{1}=d_{2}=: d$, hence $q_{1}=q_{2}=: q$, and $\exists \sigma \in O_{d}(q)$ such that $\sigma\left(L_{1}\right)=L_{2}$ (equivalently, $\sigma\left(L_{1}^{*}\right)=L_{2}^{*}$)
(in other words, quadratic lattices $\left(L_{1}, q_{1} \mid L_{1}\right)$ and $\left(L_{2}, q_{2} \mid L_{2}\right)$ are isomorphic)

d-dimensional torus

So, two tori $\mathbb{R}^{d_{1}} / L_{1}$ and $R^{d_{2}} / L_{2}$:

- have same eigenvalues of Laplacian $\Leftrightarrow q_{1}\left(L_{1}^{*}\right)=q_{2}\left(L_{2}^{*}\right)$
- are isometric $\Leftrightarrow d_{1}=d_{2}=: d$, hence $q_{1}=q_{2}=: q$, and $\exists \sigma \in O_{d}(q)$ such that $\sigma\left(L_{1}\right)=L_{2}$ (equivalently, $\sigma\left(L_{1}^{*}\right)=L_{2}^{*}$)
(in other words, quadratic lattices $\left(L_{1}, q_{1} \mid L_{1}\right)$ and $\left(L_{2}, q_{2} \mid L_{2}\right)$ are isomorphic)

Can see strong arithmetic connection foreshadowing the use of arithmetic groups.

d-dimensional torus

But it is very easy to construct positive definite integral quadratic forms q_{1} and q_{2} that

d-dimensional torus

But it is very easy to construct positive definite integral quadratic forms q_{1} and q_{2} that

- represents same integers, but

d-dimensional torus

But it is very easy to construct positive definite integral quadratic forms q_{1} and q_{2} that

- represents same integers, but
- are not equivalent even over \mathbb{Q}.

d-dimensional torus

But it is very easy to construct positive definite integral quadratic forms q_{1} and q_{2} that

- represents same integers, but
- are not equivalent even over \mathbb{Q}.

This yields nonisometric tori $\mathbb{R}^{d_{1}} / L_{1}$ and $R^{d_{2}} / L_{2}$ that have same eigenvalues of Laplacian.

d-dimensional torus

But it is very easy to construct positive definite integral quadratic forms q_{1} and q_{2} that

- represents same integers, but
- are not equivalent even over \mathbb{Q}.

This yields nonisometric tori $\mathbb{R}^{d_{1}} / L_{1}$ and $R^{d_{2}} / L_{2}$ that have same eigenvalues of Laplacian.

Moreover, one can construct such tori

d-dimensional torus

But it is very easy to construct positive definite integral quadratic forms q_{1} and q_{2} that

- represents same integers, but
- are not equivalent even over \mathbb{Q}.

This yields nonisometric tori $\mathbb{R}^{d_{1}} / L_{1}$ and $R^{d_{2}} / L_{2}$ that have same eigenvalues of Laplacian.

Moreover, one can construct such tori

- having different dimensions;

d-dimensional torus

But it is very easy to construct positive definite integral quadratic forms q_{1} and q_{2} that

- represents same integers, but
- are not equivalent even over \mathbb{Q}.

This yields nonisometric tori $\mathbb{R}^{d_{1}} / L_{1}$ and $R^{d_{2}} / L_{2}$ that have same eigenvalues of Laplacian.

Moreover, one can construct such tori

- having different dimensions;
- having same dimension, but different volumes.

d-dimensional torus

But it is very easy to construct positive definite integral quadratic forms q_{1} and q_{2} that

- represents same integers, but
- are not equivalent even over \mathbb{Q}.

This yields nonisometric tori $\mathbb{R}^{d_{1}} / L_{1}$ and $R^{d_{2}} / L_{2}$ that have same eigenvalues of Laplacian.

Moreover, one can construct such tori

- having different dimensions;
- having same dimension, but different volumes.
(In fact, there are infinite families of such tori having same dimension but pairwise different volumes.)

So, expectation to hear the shape fails if one considers only eigenvalues of Laplacian.

So, expectation to hear the shape fails if one considers only eigenvalues of Laplacian.

The way to fix situation is to consider eigenvalues with multiplicities.

So, expectation to hear the shape fails if one considers only eigenvalues of Laplacian.

The way to fix situation is to consider
eigenvalues with multiplicities.

This makes Kac's question somewhat rhetorical as it is unclear how we can possibly hear multiplicities, BUT ...

So, expectation to hear the shape fails if one considers only eigenvalues of Laplacian.

The way to fix situation is to consider
eigenvalues with multiplicities.

This makes Kac's question somewhat rhetorical as it is unclear how we can possibly hear multiplicities, BUT ...

Definition.

So, expectation to hear the shape fails if one considers only eigenvalues of Laplacian.

The way to fix situation is to consider
eigenvalues with multiplicities.

This makes Kac's question somewhat rhetorical as it is unclear how we can possibly hear multiplicities, BUT ...

Definition.

- Laplace spectrum $=$ set of eigenvalues of Laplacian with multiplicities

So, expectation to hear the shape fails if one considers only eigenvalues of Laplacian.

The way to fix situation is to consider
eigenvalues with multiplicities.

This makes Kac's question somewhat rhetorical as it is unclear how we can possibly hear multiplicities, BUT ...

Definition.

- Laplace spectrum $=$ set of eigenvalues of Laplacian with multiplicities (assuming that these are finite)

So, expectation to hear the shape fails if one considers only eigenvalues of Laplacian.

The way to fix situation is to consider
eigenvalues with multiplicities.

This makes Kac's question somewhat rhetorical as it is unclear how we can possibly hear multiplicities, BUT ...

Definition.

- Laplace spectrum $=$ set of eigenvalues of Laplacian with multiplicities (assuming that these are finite)
- Two geometric objects are isospectral if they have same Laplace spectra.
(1) Eigenvalue rigidity and hearing the shape of a drum
- Classical vs. Eigenvalue Rigidity
(2) Hearing the Shape
- 1-dimensional case
- Flat tori of dimension > 1
- Weyl's Law and its Consequences
(3) Locally symmetric spaces
- Laplace-Beltrami operator
- Isospectral non-isometric manifolds
- Our results

Weyl's Law

In 1911, Hermann Weyl established a particular case of Weyl's Law.

Weyl's Law

In 1911, Hermann Weyl established a particular case of Weyl's Law.

Let M be a compact Riemannian manifold of dimension d,

Weyl's Law

In 1911, Hermann Weyl established a particular case of

Weyl's Law.

Let M be a compact Riemannian manifold of dimension d, and let

$$
0=\lambda_{0} \leqslant \lambda_{1} \leqslant \lambda_{2} \leqslant \cdots
$$

be sequence of eigenvalues of Laplacian with multiplicities.

Weyl's Law

In 1911, Hermann Weyl established a particular case of

Weyl's Law.

Let M be a compact Riemannian manifold of dimension d, and let

$$
0=\lambda_{0} \leqslant \lambda_{1} \leqslant \lambda_{2} \leqslant \cdots
$$

be sequence of eigenvalues of Laplacian with multiplicities.

For $\lambda>0$, set $N(\lambda)=\#\left\{j \mid \sqrt{\lambda_{j}} \leqslant \lambda\right\}$.

Weyl's Law

In 1911, Hermann Weyl established a particular case of

Weyl's Law.

Let M be a compact Riemannian manifold of dimension d, and let

$$
0=\lambda_{0} \leqslant \lambda_{1} \leqslant \lambda_{2} \leqslant \cdots
$$

be sequence of eigenvalues of Laplacian with multiplicities.

For $\lambda>0$, set $N(\lambda)=\#\left\{j \mid \sqrt{\lambda_{j}} \leqslant \lambda\right\}$.

Then

$$
N(\lambda)=\frac{\operatorname{vol}(M)}{(4 \pi)^{d / 2} \Gamma(d / 2+1)} \lambda^{d}+o\left(\lambda^{d}\right)
$$

Consequently, isospectral compact Riemannian manifolds have

Consequently, isospectral compact Riemannian manifolds have

- same dimension;

Consequently, isospectral compact Riemannian manifolds have

- same dimension;
- same volume.

Consequently, isospectral compact Riemannian manifolds have

- same dimension;
- same volume.

So, if $\mathbb{R}^{d_{1}} / L_{1}$ and $\mathbb{R}^{d_{2}} / L_{2}$ are isospectral, then:

Consequently, isospectral compact Riemannian manifolds have

- same dimension;
- same volume.

So, if $\mathbb{R}^{d_{1}} / L_{1}$ and $\mathbb{R}^{d_{2}} / L_{2}$ are isospectral, then:

- $d_{1}=d_{2} ;$

Consequently, isospectral compact Riemannian manifolds have

- same dimension;
- same volume.

So, if $\mathbb{R}^{d_{1}} / L_{1}$ and $\mathbb{R}^{d_{2}} / L_{2}$ are isospectral, then:

- $d_{1}=d_{2}$;
- corresponding quadratic forms q_{1} and q_{2} have same discriminant.

GAUSS: There are finitely many equivalence classes of positive definite integral quadratic forms of a given dimension and
a given discriminant.

GAUSS: There are finitely many equivalence classes of positive definite integral quadratic forms of a given dimension and a given discriminant.

- Assume that quadratic form has integral values on L.

GAUSS: There are finitely many equivalence classes of positive definite integral quadratic forms of a given dimension and a given discriminant.

- Assume that quadratic form has integral values on L. Then there are finitely many \mathbb{R}^{d} / M isospectral to \mathbb{R}^{d} / L.

GAUSS: There are finitely many equivalence classes of positive definite integral quadratic forms of a given dimension and a given discriminant.

- Assume that quadratic form has integral values on L. Then there are finitely many \mathbb{R}^{d} / M isospectral to \mathbb{R}^{d} / L.
- M. Kneser: Finiteness holds for any lattice
(not necessarily integral-valued).

Bad news

EIGENVALUES OF THE LAPLACE OPERATOR

 on certain manifoldsBy J. Milnor
princeton university
Communionted February 6, 1964
To every compact Riemannian manifold M there corresponds the sequence $0=$ $\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \ldots$ of eigenvalues for the Laplace operator on M. It is not known just how much information about M can be extracted from this sequence. ${ }^{1}$ This note will show that the sequence does not characterize M completely, by exhibiting two 16-dimensional toruses which are distinct as Riemannian manifolds but have the same sequence of eigenvalues.
By a flat torus is meant a Riemannian quotient manifold of the form R^{n} / L, where L is a lattice ($=$ discrete additive subgroup) of rank n. Let L^{*} denote the dual lattice, consisting of all $y \in R^{x}$ such that $x \cdot y$ is an integer for all $x \in L$. Then each $y \in L^{*}$ determines an eigenfunction $f(x)=\exp (2 \pi i x \cdot y)$ for the Laplace operator on R^{n} / L. The corresponding eigenvalue λ is equal to $(2 \pi)^{2} y y$. Hence, the number of eigenvalues less than or equal to $(2 \pi r)^{2}$ is equal to the number of points of L^{*} ying within a ball of radius r about the origin.

According to Witt ${ }^{2}$ there exist two self-dual lattices $L_{1}, L_{2} \subset R^{16}$ which are distinct, in the sense that no rotation of R^{16} carries L_{1} to L_{2}, such that each ball about the origin contains exactly as many points of L_{1} as of L_{2}. It follows that the Riemannian manifolds R^{16} / L_{1} and R^{16} / L_{2} are not isometric, but do have the same sequence of eigenvalues.
In an attempt to distinguish R^{16} / L_{1} from R^{16} / L_{2} one might consider the eigenvalues of the Hodge-Laplace operator $\Delta=d \delta+\delta d$, applied to the space of differential p-forms. However, both manifolds are flat and parallelizable, so the identity

$$
\Delta\left(f d x_{i_{1}} \wedge \ldots, \wedge_{1} x_{i_{0}}\right)=(\Delta f) d x_{i_{1}} \wedge \ldots \wedge d x_{i_{0}}
$$

shows that one obtains simply the old eigenvalues, each repeated $\binom{16}{p}$ times.
${ }^{1}$ Compare Avakumović, V., "Uber die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten," Math. Zeits., 65, 327-344 (1956).
${ }^{2}$ Witt, E., "Eine Identität xwischen Modulformen xweiten Grades," Abh. Malh. Sem. Uniw. Hamburg, 14, 323-337 (1941). See p. 324. I am indebted to K. Ramanathan for pointing out this reference.

Bad
 news

In 1964, MiLNOR re-discovered

EIGENVALUES OF THE LAPLACE OPERATOR on certain manifolds

By J. Milnor
princeton university
Communionted February 6, 1964
To every compact Riemannian manifold M there corresponds the sequence $0=$ $\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \ldots$ of eigenvalues for the Laplace operator on M. It is not known just how much information about M can be extracted from this sequence, ${ }^{1}$ This note will show that the sequence does not characterize M completely, by exhibiting two 16-dimensional toruses which are distinct as Riemannian manifolds but have the same sequence of eigenvalues.
By a flat torus is meant a Riemannian quotient manifold of the form R^{n} / L, where L is a lattice ($=$ discrete additive subgroup) of rank n. Let L^{*} denote the dual lattice, consisting of all $y \in R^{v}$ such that $x y$ is an integer for all $x \in L$. Then each $y \in L^{*}$ determines an eigenfunction $f(x)=\exp (2 \pi i x \cdot y)$ for the Laplace operator on R^{n} / L. The corresponding eigenvalue λ is equal to $(2 \pi)^{2} y y y$. Hence, the number of eigenvalues less than or equal to $(2 \pi r)^{2}$ is equal to the number of points of L^{*} lying within a ball of radius r about the origin.
According to Witt ${ }^{2}$ there exist two self-dual lattices $L_{1}, L_{2} \subset R^{16}$ which are distinct, in the sense that no rotation of R^{16} carries L_{1} to L_{2}, such that each ball about the origin contains exactly as many points of L_{1} as of L_{2}. It follows that the Riemannian manifolds R^{16} / L_{1} and R^{16} / L_{2} are not isometric, but do have the same sequence of eigenvalues.
In an attempt to distinguish R^{16} / L_{1} from R^{16} / L_{2} one might consider the eigenvalues of the Hodge-Laplace operator $\Delta=d \delta+\delta d$, applied to the space of differential p-forms. However, both manifolds are flat and parallelizable, so the identity

$$
\Delta\left(f d x_{i_{1}} \wedge \ldots, . \wedge d x_{i_{0}}\right)=(\Delta f) d x_{i_{1}} \wedge \ldots \wedge d x_{i_{0}}
$$

shows that one obtains simply the old eigenvalues, each repeated $\binom{16}{p}$ times.
${ }^{1}$ Compare Avakumović, V., "Uber die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten," Math. Zeits., 65, 327-344 (1956).
${ }^{2}$ Witt, E., "Eine Identitait xwischen Modulformen xweiten Grades," Abh. Malh, Sem, Uniw. Hamburg, 14, 323-337 (1941). See p. 324. I am indebted to K. Ramanathan for pointing out this reference.

Bad

EIGENVALUES OF THE LAPLACE OPERATOR on certain manifolds

By J. Milnor

princeton university
Communionted February E, 1964
To every compact Riemannian manifold M there corresponds the sequence $0=$ $\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \ldots$ of eigenvalues for the Laplace operator on M. It is not known just how much information about M can be extracted from this sequence. ${ }^{1}$ This note will show that the sequence does not characterize M completely, by exhibiting two 16-dimensional toruses which are distinct as Riemannian manifolds but have the same sequence of eigenvalues.
By a flat torus is meant a Riemannian quotient manifold of the form R^{n} / L, where L is a lattice ($=$ discrete additive subgroup) of rank n. Let L^{*} denote the dual lattice, consisting of all $y \in R^{x}$ such that $x \cdot y$ is an integer for all $x \in L$. Then each $y \in L^{*}$ determines an eigenfunction $f(x)=\exp (2 \pi i x \cdot y)$ for the Laplace operator on R^{n} / L. The corresponding eigenvalue λ is equal to $(2 \pi)^{2} y y$. Hence, the number of eigenvalues less than or equal to $(2 \pi r)^{2}$ is equal to the number of points of L^{*} lying within a ball of radius r about the origin.
According to Witt ${ }^{2}$ there exist two self-dual lattices $L_{1}, L_{2} \subset R^{10}$ which are distinct, in the sense that no rotation of R^{16} carries L_{1} to L_{2}, such that each ball about the origin contains exactly as many points of L_{1} as of L_{2}. It follows that the Riemannian manifolds R^{16} / L_{1} and R^{16} / L_{2} are not isometric, but do have the same sequence of eigenvalues.
In an attempt to distinguish R^{16} / L_{1} from R^{16} / L_{2} one might consider the eigenvalues of the Hodge-Laplace operator $\Delta=d \delta+\delta d$, applied to the space of differential p-forms. However, both manifolds are flat and parallelizable, so the identity

$$
\Delta\left(f d x_{i_{1}} \wedge \ldots \wedge d x_{i_{0}}\right)=(\Delta f) d x_{i_{1}} \wedge \ldots \wedge d x_{i_{0}}
$$

shows that one obtains simply the old eigenvalues, each repeated $\binom{16}{p}$ times.
${ }^{1}$ Compare Avakumović, V., "Uber die Eigenfunktionen auf geschlossenen Riemannsehen Mannigfaltigkeiten," Math. Zeits., 65, 327-344 (1956).
${ }^{2}$ Witt, E., "Eine Identität xwischen Modulformen xweiten Grades," Abh. Malh, Sem. Univ, Hamburg, 14, 323-337 (1941). See p. 324. I am indebted to K. Ramanathan for pointing out this reference.

In 1964, MILNOR re-discovered

two noniquivalent unimodular integral quadratic forms $\operatorname{dim}=16$ with same number of representations of each integer

Bad

EIGENVALUES OF THE LAPLACE OPERATOR on certain manifolds

By J. Milnor

princeton university
Communionted February 6, 1964
To every compact Riemannian manifold M there corresponds the sequence $0=$ $\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \ldots$ of eigenvalues for the Laplace operator on M. It is not known just how much information about M can be extracted from this sequence. ${ }^{1}$ This note will show that the sequence does not characterize M completely, by exhibiting two 16-dimensional toruses which are distinct as Riemannian manifolds but have the same sequence of eigenvalues.
By a flat torus is meant a Riemannian quotient manifold of the form R^{n} / L, where L is a lattice ($=$ discrete additive subgroup) of rank n. Let L^{*} denote the dual lattice, consisting of all $y \in R^{x}$ such that $x \cdot y$ is an integer for all $x \in L$. Then each $y \in L^{*}$ determines an eigenfunction $f(x)=\exp (2 \pi i x \cdot y)$ for the Laplace operator on R^{n} / L. The corresponding eigenvalue λ is equal to $(2 \pi)^{2} y y$. Hence, the number of eigenvalues less than or equal to $(2 \pi r)^{2}$ is equal to the number of points of L^{*} lying within a ball of radius r about the origin.
According to Witt ${ }^{2}$ there exist two self-dual lattices $L_{1}, L_{2} \subset R^{10}$ which are distinct, in the sense that no rotation of R^{16} carries L_{1} to L_{2}, such that each ball about the origin contains exactly as many points of L_{1} as of L_{2}. It follows that the Riemannian manifolds R^{16} / L_{1} and R^{16} / L_{2} are not isometric, but do have the same sequence of eigenvalues.
In an attempt to distinguish R^{16} / L_{1} from R^{16} / L_{2} one might consider the eigenvalues of the Hodge-Laplace operator $\Delta=d \delta+\delta d$, applied to the space of differential p-forms. However, both manifolds are flat and parallelizable, so the identity

$$
\Delta\left(f d x_{i_{1}} \wedge \ldots \wedge d x_{i_{0}}\right)=(\Delta f) d x_{i_{1}} \wedge \ldots \wedge d x_{i_{0}}
$$

shows that one obtains simply the old eigenvalues, each repeated $\binom{16}{p}$ times.
${ }^{1}$ Compare Avakumović, V., "Uber die Eigenfunktionen auf geschlossenen Riemannsehen Mannigfaltigkeiten," Math. Zeits., 65, 327-344 (1956).
${ }^{2}$ Witt, E., "Eine Identitat xwischen Modulformen xweiten Grades," Abh. Malh. Sem, Univ. Hamburg, 14, 323-337 (1941). See p. 324. I am indebted to K. Ramanathan for pointing out this reference.

In 1964, MILNOR re-discovered

two noniquivalent unimodular integral quadratic forms $\operatorname{dim}=16$ with same number of representations of each integer \Rightarrow

Bad

EIGENVALUES OF THE LAPLACE OPERATOR on certain manifolds

By J. Milnor

princkton university
Communionted February E, 1964
To every compact Riemannian manifold M there corresponds the sequence $0=$ $\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \ldots$ of eigenvalues for the Laplace operator on M. It is not known just how much information about M can be extracted from this sequence. ${ }^{1}$ This note will show that the sequence does not characterize M completely, by exhibiting two 16-dimensional toruses which are distinct as Riemannian manifolds but have the same sequence of eigenvalues.
By a flat torus is meant a Riemannian quotient manifold of the form R^{n} / L, where L is a lattice ($=$ discrete additive subgroup) of rank n. Let L^{*} denote the dual lattice, consisting of all $y \in R^{v}$ such that $x y$ is an integer for all $x \in L$. Then each $y \in L^{*}$ determines an eigenfunction $f(x)=\exp (2 \pi i x \cdot y)$ for the Laplace operator on R^{n} / L. The corresponding eigenvalue λ is equal to $(2 \pi)^{2} / y y$. Hence, the number of eigenvalues less than or equal to $(2 \pi r)^{2}$ is equal to the number of points of L^{*} lying within a ball of radius r about the origin.
According to Witt ${ }^{2}$ there exist two self-dual lattices $L_{1}, L_{2} \subset R^{16}$ which are distinct, in the sense that no rotation of R^{16} carries L_{1} to L_{2}, such that each ball about the origin contains exactly as many points of L_{1} as of L_{2}. It follows that the Riemannian manifolds R^{16} / L_{1} and R^{16} / L_{2} are not isometric, but do have the same sequence of eigenvalues.
In an attempt to distinguish R^{16} / L_{1} from R^{16} / L_{2} one might consider the eigenvalues of the Hodge-Laplace operator $\Delta=d \delta+\delta d$, applied to the space of differential p-forms. However, both manifolds are flat and parallelizable, so the identity

$$
\Delta\left(f d x_{i_{1}} \wedge \ldots \wedge d x_{i_{0}}\right)=(\Delta f) d x_{i_{1}} \wedge \ldots \wedge d x_{i_{p}}
$$

shows that one obtains simply the old eigenvalues, each repeated $\binom{16}{p}$ times.
${ }^{1}$ Compare Avakumović, V., "Uber die Eigenfunktionen auf geschlossenen Riemannsehen Mannigfaltigkeiten," Math. Zeits., 65, 327-344 (1956).
${ }^{2}$ Witt, E., "Eine Identitat xwischen Modulformen xweiten Grades," Abh. Malh. Sem. Univ. Hamburg, 14, 323-337 (1941). See p. 324. I am indebted to K. Ramanathan for pointing out this reference.

In 1964, MilnOR re-discovered Witt's paper (1941) containing two noniquivalent unimodular integral quadratic forms $\operatorname{dim}=16$ with same number of representations of each integer \Rightarrow

- non-isometric isospectral 16-dim tori.

Bad

EIGENVALUES OF THE LAPLACE OPERATOR on certain manifolds

By J. Milnor

prixchton university
Communionted February E, 1964
To every compact Riemannian manifold M there corresponds the sequence $0=$ $\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \ldots$ of eigenvalues for the Laplace operator on M. It is not known just how much information about M can be extracted from this sequence. ${ }^{1}$ This note will show that the sequence does not characterize M completely, by exhibiting two 16-dimensional toruses which are distinct as Riemannian manifolds but have the same sequence of eigenvalues.
By a flat torus is meant a Riemannian quotient manifold of the form R^{n} / L, where L is a lattice ($=$ discrete additive subgroup) of rank n. Let L^{*} denote the dual lattice, consisting of all $y \in R^{v}$ such that $x y$ is an integer for all $x \in L$. Then each $y \epsilon L^{*}$ determines an eigenfunction $f(x)=\exp (2 \pi i x \cdot y)$ for the Laplace operator on R^{n} / L. The corresponding eigenvalue λ is equal to $(2 \pi)^{2} y y$. Hence, the number of eigenvalues less than or equal to $(2 \pi r)^{2}$ is equal to the number of points of L^{*} lying within a ball of radius r about the origin.
According to Witt ${ }^{2}$ there exist two self-dual lattices $L_{1}, L_{2} \subset R^{16}$ which are distinct, in the sense that no rotation of R^{16} carries L_{1} to L_{2}, such that each ball about the origin contains exactly as many points of L_{1} as of L_{2}. It follows that the Riemannian manifolds R^{16} / L_{1} and R^{16} / L_{2} are not isometric, but do have the same sequence of eigenvalues.
In an attempt to distinguish R^{16} / L_{1} from R^{16} / L_{2} one might consider the eigenvalues of the Hodge-Laplace operator $\Delta=d \delta+\delta d$, applied to the space of differential p-forms. However, both manifolds are flat and parallelizable, so the identity

$$
\Delta\left(f d x_{i_{1}} \wedge \ldots \wedge d x_{i_{0}}\right)=(\Delta f) d x_{i_{1}} \wedge \ldots \wedge d x_{i_{0}}
$$

shows that one obtains simply the old eigenvalues, each repeated $\binom{16}{p}$ times.
${ }^{\text {a }}$ Compare Avakumović, V., "Uber die Eigenfunktionen auf geschlossenen Riemannsehen Mannigfaltigkeiten," Math. Zeits., 65, 327-344 (1956).
${ }^{2}$ Witt, E., "Eine Identität xwischen Modulformen xweiten Grades," Abh. Malh, Sem. Univ, Hamburg, 14, 323-337 (1941). See p. 324. I am indebted to K. Ramanathan for pointing out this reference.

In 1964, MilnOR re-discovered Witt's paper (1941) containing two noniquivalent unimodular integral quadratic forms $\operatorname{dim}=16$ with same number of representations of each integer \Rightarrow

- non-isometric isospectral 16-dim tori.
- $\operatorname{dim}=12$ Kneser

Bad

EIGENVALUES OF THE LAPLACE OPERATOR on certain manifolds

By J. Milnor

princkton university
Communionted February E, 1964
To every compact Riemannian manifold M there corresponds the sequence $0=$ $\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \ldots$ of eigenvalues for the Laplace operator on M. It is not known just how much information about M can be extracted from this sequence. ${ }^{1}$ This note will show that the sequence does not characterize M completely, by exhibiting two 16-dimensional toruses which are distinct as Riemannian manifolds but have the same sequence of eigenvalues.
By a flat torus is meant a Riemannian quotient manifold of the form R^{n} / L, where L is a lattice ($=$ discrete additive subgroup) of rank n. Let L^{*} denote the dual lattice, consisting of all $y \in R^{v}$ such that $x y y$ is an integer for all $x \in L$. Then each $y \epsilon L^{*}$ determines an eigenfunction $f(x)=\exp (2 \pi i x \cdot y)$ for the Laplace operator on R^{n} / L. The corresponding eigenvalue λ is equal to $(2 \pi)^{2} y y$. Hence, the number of eigenvalues less than or equal to $(2 \pi r)^{2}$ is equal to the number of points of L^{*} lying within a ball of radius r about the origin.
According to Witt ${ }^{2}$ there exist two self-dual lattices $L_{1}, L_{2} \subset R^{16}$ which are distinct, in the sense that no rotation of R^{16} carries L_{1} to L_{2}, such that each ball about the origin contains exactly as many points of L_{1} as of L_{2}. It follows that the Riemannian manifolds R^{16} / L_{1} and R^{16} / L_{2} are not isometric, but do have the same sequence of eigenvalues.
In an attempt to distinguish R^{16} / L_{1} from R^{16} / L_{2} one might consider the eigenvalues of the Hodge-Laplace operator $\Delta=d \delta+\delta d$, applied to the space of differential p-forms. However, both manifolds are flat and parallelizable, so the identity

$$
\Delta\left(f d x_{i_{1}} \wedge \ldots \wedge d x_{i_{0}}\right)=(\Delta f) d x_{i_{1}} \wedge \ldots \wedge d x_{i_{0}}
$$

shows that one obtains simply the old eigenvalues, each repeated $\binom{16}{p}$ times.
${ }^{1}$ Compare Avakumović, V., "Uber die Eigenfunktionen auf geschlossenen Riemannsehen Mannigfaltigkeiten," Math. Zeits., 65, 327-344 (1956).
${ }^{2}$ Witt, E., "Eine Identitait xwischen Modulformen xweiten Grades," Abh. Malh, Sem. Univ, Hamburg, 14, 323-337 (1941). See p. 324. I am indebted to K. Ramanathan for pointing out this reference.

In 1964, MILNOR re-discovered

two noniquivalent unimodular integral quadratic forms $\operatorname{dim}=16$ with same number of representations of each integer \Rightarrow

- non-isometric isospectral 16-dim tori.
- $\operatorname{dim}=12$ Kneser
- $\operatorname{dim}=8$ Kitaoka

Bad

EIGENVALUES OF THE LAPLACE OPERATOR on certain manifolds

By J. Milnor

prixchton university
Communionted February 6, 1964
To every compact Riemannian manifold M there corresponds the sequence $0=$ $\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \ldots$ of eigenvalues for the Laplace operator on M. It is not known just how much information about M can be extracted from this sequence. ${ }^{1}$ This note will show that the sequence does not characterize M completely, by exhibiting two 16-dimensional toruses which are distinct as Riemannian manifolds but have the same sequence of eigenvalues.
By a flat torus is meant a Riemannian quotient manifold of the form R^{n} / L, where L is a lattice ($=$ discrete additive subgroup) of rank n. Let L^{*} denote the dual lattice, consisting of all $y \in R^{v}$ such that $x y y$ is an integer for all $x \in L$. Then each $y \epsilon L^{*}$ determines an eigenfunction $f(x)=\exp (2 \pi i x \cdot y)$ for the Laplace operator on R^{n} / L. The corresponding eigenvalue λ is equal to $(2 \pi)^{2} y y y$. Hence, the number of eigenvalues less than or equal to $(2 \pi r)^{2}$ is equal to the number of points of L^{*} lying within a ball of radius r about the origin.
According to Witt ${ }^{2}$ there exist two self-dual lattices $L_{1}, L_{2} \subset R^{16}$ which are distinct, in the sense that no rotation of R^{16} carries L_{1} to L_{2}, such that each ball about the origin contains exactly as many points of L_{1} as of L_{2}. It follows that the Riemannian manifolds R^{16} / L_{1} and R^{16} / L_{2} are not isometric, but do have the same sequence of eigenvalues.
In an attempt to distinguish R^{16} / L_{1} from R^{16} / L_{2} one might consider the eigenvalues of the Hodge-Laplace operator $\Delta=d \delta+\delta d$, applied to the space of differential p-forms. However, both manifolds are flat and parallelizable, so the identity

$$
\Delta\left(f d x_{i_{1}} \wedge \ldots \wedge d x_{i_{0}}\right)=(\Delta f) d x_{i_{1}} \wedge \ldots \wedge d x_{i_{0}}
$$

shows that one obtains simply the old eigenvalues, each repeated $\binom{16}{p}$ times.
${ }^{1}$ Compare Avakumović, V., "Uber die Eigenfunktionen auf geschlossenen Riemannsehen Mannigfaltigkeiten," Math. Zeits., 65, 327-344 (1956).
${ }^{2}$ Witt, E., "Eine Identitat xwischen Modulformen xweiten Grades," Abh. Malh. Sem, Univ, Hamburg, 14, 323-337 (1941). See p. 324. I am indebted to K. Ramanathan for pointing out this reference.

In 1964, Milnor re-discovered
Witt's paper (1941) containing two noniquivalent unimodular integral quadratic forms $\operatorname{dim}=16$ with same number of representations of each integer \Rightarrow

- non-isometric isospectral 16-dim tori.
- $\operatorname{dim}=12$ Kneser
- $\operatorname{dim}=8$ Kitaoka
- $\operatorname{dim}=4$ Schiemann, ConwaySloane
(1) Eigenvalue rigidity and hearing the shape of a drum
- Classical vs. Eigenvalue Rigidity
(2) Hearing the Shape
- 1-dimensional case
- Flat tori of dimension > 1
- Weyl's Law and its Consequences
(3) Locally symmetric spaces
- Laplace-Beltrami operator
- Isospectral non-isometric manifolds
- Our results
(1) Eigenvalue rigidity and hearing the shape of a drum
- Classical vs. Eigenvalue Rigidity
(2) Hearing the Shape
- 1-dimensional case
- Flat tori of dimension >1
- Weyl's Law and its Consequences
(3) Locally symmetric spaces
- Laplace-Beltrami operator
- Isospectral non-isometric manifolds
- Our results

Let M be a Riemannian d-manifold.

Let M be a Riemannian d-manifold.

Laplace-Beltrami operator in local coordinates x_{1}, \ldots, x_{d} :

$$
\begin{equation*}
\Delta(u)=\frac{1}{\sqrt{\operatorname{det} g}} \sum_{i, j=1}^{d} \frac{\partial}{\partial x_{i}}\left(g^{i j} \sqrt{\operatorname{det} g} \frac{\partial u}{\partial x_{j}}\right) \tag{L}
\end{equation*}
$$

where $g=\left(g_{i j}\right)$ is matrix of Riemannian metric, $g^{-1}=\left(g^{i j}\right)$.

Let M be a Riemannian d-manifold.

Laplace-Beltrami operator in local coordinates x_{1}, \ldots, x_{d} :

$$
\begin{equation*}
\Delta(u)=\frac{1}{\sqrt{\operatorname{det} g}} \sum_{i, j=1}^{d} \frac{\partial}{\partial x_{i}}\left(g^{i j} \sqrt{\operatorname{det} g} \frac{\partial u}{\partial x_{j}}\right) \tag{L}
\end{equation*}
$$

where $g=\left(g_{i j}\right)$ is matrix of Riemannian metric, $g^{-1}=\left(g^{i j}\right)$.

Example.

For upper-half plane $\mathbb{H}=\{x+i y \mid y>0\}, d s^{2}=y^{-2}\left(d x^{2}+d y^{2}\right)$, we have

$$
\Delta_{\mathbb{H}}=y^{-2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)
$$

Properties of Δ

- Δ is 2 nd order linear differential operator that commutes with isometries;
- eigenvalues have finite multiplicities and form a discrete set of nonnegative numbers:

Properties of Δ

- Δ is 2 nd order linear differential operator that commutes with isometries;

For M compact:

- Δ is self-adjoint and negative definite
- eigenvalues have finite multiplicities and form a discrete set of nonnegative numbers:

Properties of Δ

- Δ is 2 nd order linear differential operator that commutes with isometries;

For M compact:

- Δ is self-adjoint and negative definite
- eigenvalues have finite multiplicities and form a discrete set of nonnegative numbers:

Properties of Δ

- Δ is 2 nd order linear differential operator that commutes with isometries;

For M compact:

- Δ is self-adjoint and negative definite (so, we add - in (L) to make Δ positive definite - then)
- eigenvalues have finite multiplicities and form a discrete set of nonnegative numbers:

Properties of Δ

- Δ is 2 nd order linear differential operator that commutes with isometries;

For M compact:

- Δ is self-adjoint and negative definite (so, we add - in (L) to make Δ positive definite - then)
- eigenvalues have finite multiplicities and form a discrete set of nonnegative numbers:

$$
0=\lambda_{0} \leqslant \lambda_{1} \leqslant \lambda_{2} \cdots
$$

Properties of Δ

- Δ is 2 nd order linear differential operator that commutes with isometries;

For M compact:

- Δ is self-adjoint and negative definite (so, we add - in (L) to make Δ positive definite - then)
- eigenvalues have finite multiplicities and form a discrete set of nonnegative numbers:

$$
0=\lambda_{0} \leqslant \lambda_{1} \leqslant \lambda_{2} \cdots
$$

However, eigenvalues are extremely hard to compute!

Selberg's $1 / 4$ Conjecture (1965)
Let $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$ and $\Gamma(m)$ be congruence subgroup $\bmod m$. Then all nonzero eigenvalues of Laplacian on $\mathbb{H} / \Gamma(m)$ are $\geqslant 1 / 4$.

Selberg's $1 / 4$ Conjecture (1965)
Let $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$ and $\Gamma(m)$ be congruence subgroup $\bmod m$.
Then all nonzero eigenvalues of Laplacian on $\mathbb{H} / \Gamma(m)$ are $\geqslant 1 / 4$.

Selberg proved estimation $\geqslant 3 / 16$.

Selberg's 1/4 Conjecture (1965)

Let $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$ and $\Gamma(m)$ be congruence subgroup $\bmod m$.
Then all nonzero eigenvalues of Laplacian on $\mathbb{H} / \Gamma(m)$ are

$$
\geqslant 1 / 4 .
$$

Selberg proved estimation $\geqslant 3 / 16$.

Gap of $1 / 16$ has not been bridged in over 50 years!

Selberg's 1/4 Conjecture (1965)

Let $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$ and $\Gamma(m)$ be congruence subgroup $\bmod m$.
Then all nonzero eigenvalues of Laplacian on $\mathbb{H} / \Gamma(m)$ are

$$
\geqslant 1 / 4 .
$$

Selberg proved estimation $\geqslant 3 / 16$.

Gap of $1 / 16$ has not been bridged in over 50 years!

Best known estimate $\geqslant \frac{171}{784}=0.218 \ldots$ (Luo-Rudnick-Sarnak, 1995)

Selberg's 1/4 Conjecture (1965)

Let $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$ and $\Gamma(m)$ be congruence subgroup $\bmod m$.
Then all nonzero eigenvalues of Laplacian on $\mathbb{H} / \Gamma(m)$ are $\geqslant 1 / 4$.

Selberg proved estimation $\geqslant 3 / 16$.

Gap of $1 / 16$ has not been bridged in over 50 years!

Best known estimate $\geqslant \frac{171}{784}=0.218 \ldots$ (Luo-Rudnick-Sarnak, 1995)

We will describe techniques to bypass explicit computations!
(1) Eigenvalue rigidity and hearing the shape of a drum

- Classical vs. Eigenvalue Rigidity
(2) Hearing the Shape
- 1-dimensional case
- Flat tori of dimension >1
- Weyl's Law and its Consequences
(3) Locally symmetric spaces
- Laplace-Beltrami operator
- Isospectral non-isometric manifolds
- Our results
- M.-F. Vigneras (1980) - first example of isospectral non-isometric Riemann surfaces.
- M.-F. Vigneras (1980) - first example of isospectral non-isometric Riemann surfaces.

Construction used arithmetic of quaternion algebras.

- M.-F. Vigneras (1980) - first example of isospectral non-isometric Riemann surfaces.

Construction used arithmetic of quaternion algebras.

- T. Sunada (1985) gave a different construction, based on group-theoretic properties of fundamental group.
- M.-F. Vigneras (1980) - first example of isospectral non-isometric Riemann surfaces.

Construction used arithmetic of quaternion algebras.

- T. Sunada (1985) gave a different construction, based on group-theoretic properties of fundamental group.

Can be implemented for general locally symmetric spaces.

- M.-F. Vigneras (1980) - first example of isospectral non-isometric Riemann surfaces.

Construction used arithmetic of quaternion algebras.

- T. Sunada (1985) gave a different construction, based on group-theoretic properties of fundamental group.

Can be implemented for general locally symmetric spaces.

BOTH constructions result in commensurable manifolds.

Two Riemannian manifolds M_{1} and M_{2} are commensurable

Two Riemannian manifolds M_{1} and M_{2} are commensurable if they have a common finite-sheeted cover:

Two Riemannian manifolds M_{1} and M_{2} are commensurable if they have a common finite-sheeted cover:

"Right question": Are two isospectral (compact Riemannian) manifolds necessarily commensurable?

Two Riemannian manifolds M_{1} and M_{2} are commensurable if they have a common finite-sheeted cover:

"Right question": Are two isospectral (compact Riemannian) manifolds necessarily commensurable?

- In general, no - Lubotzky et al. (2006)

Two Riemannian manifolds M_{1} and M_{2} are commensurable if they have a common finite-sheeted cover:

"Right question": Are two isospectral (compact Riemannian) manifolds necessarily commensurable?

- In general, no - Lubotzky et al. (2006)
- Prasad-R.: yes in many cases

Two Riemannian manifolds M_{1} and M_{2} are commensurable if they have a common finite-sheeted cover:

"Right question": Are two isospectral (compact Riemannian) manifolds necessarily commensurable?

- In general, no - Lubotzky et al. (2006)
- Prasad-R.: yes in many cases (Publ. math. IHES 109(2009))

Two Riemannian manifolds M_{1} and M_{2} are commensurable if they have a common finite-sheeted cover:

"Right question": Are two isospectral (compact Riemannian) manifolds necessarily commensurable?

- In general, no - Lubotzky et al. (2006)
- Prasad-R.: yes in many cases (Publ. math. IHES 109(2009))

Previously, results were available only for hyperbolic 2- and 3-manifolds. (A. Reid et al.)
(1) Eigenvalue rigidity and hearing the shape of a drum

- Classical vs. Eigenvalue Rigidity
(2) Hearing the Shape
- 1-dimensional case
- Flat tori of dimension >1
- Weyl's Law and its Consequences
(3) Locally symmetric spaces
- Laplace-Beltrami operator
- Isospectral non-isometric manifolds
- Our results

Notations

Notations

Let G be a semi-simple algebraic \mathbb{R}-group; $\mathcal{G}=G(\mathbb{R})$.

Notations

Let G be a semi-simple algebraic \mathbb{R}-group; $\mathcal{G}=G(\mathbb{R})$.

- \mathcal{K} - maximal compact subgroup of \mathcal{G};
$\mathfrak{X}:=\mathcal{K} \backslash \mathcal{G}$ - corresponding symmetric space.

Notations

Let G be a semi-simple algebraic \mathbb{R}-group; $\mathcal{G}=G(\mathbb{R})$.

- \mathcal{K} - maximal compact subgroup of \mathcal{G};
$\mathfrak{X}:=\mathcal{K} \backslash \mathcal{G}$ - corresponding symmetric space.
- For $\Gamma \subset \mathcal{G}$ discrete torsion free subgroup, $\mathfrak{X}_{\Gamma}=\mathfrak{X} / \Gamma$ - corresponding locally symmetric space.

Notations

Let G be a semi-simple algebraic \mathbb{R}-group; $\mathcal{G}=G(\mathbb{R})$.

- \mathcal{K} - maximal compact subgroup of \mathcal{G};
$\mathfrak{X}:=\mathcal{K} \backslash \mathcal{G}$ - corresponding symmetric space.
- For $\Gamma \subset \mathcal{G}$ discrete torsion free subgroup, $\mathfrak{X}_{\Gamma}=\mathfrak{X} / \Gamma$ - corresponding locally symmetric space.
- \mathfrak{X}_{Γ} is arithmetically defined if Γ is arithmetic.

Notations

Let G be a semi-simple algebraic \mathbb{R}-group; $\mathcal{G}=G(\mathbb{R})$.

- \mathcal{K} - maximal compact subgroup of \mathcal{G};
$\mathfrak{X}:=\mathcal{K} \backslash \mathcal{G}$ - corresponding symmetric space.
- For $\Gamma \subset \mathcal{G}$ discrete torsion free subgroup,
$\mathfrak{X}_{\Gamma}=\mathfrak{X} / \Gamma$ - corresponding locally symmetric space.
- \mathfrak{X}_{Γ} is arithmetically defined if Γ is arithmetic.

Now, let G_{1} and G_{2} be absolutely almost simple \mathbb{R}-groups, $\Gamma_{i} \subset \mathcal{G}_{i}=G_{i}(\mathbb{R})$ be a discrete torsion-free subgroup, $\mathfrak{X}_{\Gamma_{i}}$ - corresponding locally symmetric space, $i=1,2$.

Theorem 1 (Prasad-R.)

Let $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ be compact locally symmetric spaces, and assume that they are isospectral.

Theorem 1 (Prasad-R.)

Let $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ be compact locally symmetric spaces, and assume that they are isospectral.
(1) If $\mathfrak{X}_{\Gamma_{1}}$ is arithmetically defined, then so is $\mathfrak{X}_{\Gamma_{2}}$.

Theorem 1 (Prasad-R.)

Let $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ be compact locally symmetric spaces, and assume that they are isospectral.
(1) If $\mathfrak{X}_{\Gamma_{1}}$ is arithmetically defined, then so is $\mathfrak{X}_{\Gamma_{2}}$.
(2) $G_{1}=G_{2}=: G$, hence $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ have same universal cover.

Theorem 1 (Prasad-R.)

Let $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ be compact locally symmetric spaces, and assume that they are isospectral.
(1) If $\mathfrak{X}_{\Gamma_{1}}$ is arithmetically defined, then so is $\mathfrak{X}_{\Gamma_{2}}$.
(2) $G_{1}=G_{2}=: G$, hence $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ have same universal cover.
(3) If at least one of the groups Γ_{1} or Γ_{2} is arithmetic, then unless G is of type $A_{n}(n>1), D_{2 n+1}(n>1)$ or E_{6}, spaces $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ are commensurable.

Geometric applications

Corollary

Let M_{1} and M_{2} be arithmetically defined hyperbolic manifolds of dimension $d \not \equiv 1(\bmod 4)$. If M_{1} and M_{2} are isospectral then they are commensurable.

Geometric applications

Corollary

Let M_{1} and M_{2} be arithmetically defined hyperbolic manifolds of dimension $d \not \equiv 1(\bmod 4)$. If M_{1} and M_{2} are isospectral then they are commensurable.

Our techniques apply to locally symmetric spaces that share a different set of geometric data, viz. length spectrum.

Definition.

(1) Let M be a Riemannian manifold.

Length spectrum $L(M)=$ set of length of all closed geodesics.

Definition.

(1) Let M be a Riemannian manifold.

Length spectrum $L(M)=$ set of length of all closed geodesics.
(2) Riemannian manifolds M_{1} and M_{2} are

Definition.

(1) Let M be a Riemannian manifold.

Length spectrum $L(M)=$ set of length of all closed geodesics.
(2) Riemannian manifolds M_{1} and M_{2} are

- iso-length spectral if $L\left(M_{1}\right)=L\left(M_{2}\right)$;

Definition.

(1) Let M be a Riemannian manifold.

Length spectrum $L(M)=$ set of length of all closed geodesics.
(2) Riemannian manifolds M_{1} and M_{2} are

- iso-length spectral if $L\left(M_{1}\right)=L\left(M_{2}\right)$;
- length-commensurable if $\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)$.

Definition.

(1) Let M be a Riemannian manifold.

Length spectrum $L(M)=$ set of length of all closed geodesics.
(2) Riemannian manifolds M_{1} and M_{2} are

- iso-length spectral if $L\left(M_{1}\right)=L\left(M_{2}\right)$;
- length-commensurable if $\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)$.
$Q \cdot L(M)$ is rational length spectrum.

Definition.

(1) Let M be a Riemannian manifold.

Length spectrum $L(M)=$ set of length of all closed geodesics.
(2) Riemannian manifolds M_{1} and M_{2} are

- iso-length spectral if $L\left(M_{1}\right)=L\left(M_{2}\right)$;
- length-commensurable if $\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)$.
$\mathbb{Q} \cdot L(M)$ is rational length spectrum.
It has less geometric content,

Definition.

(1) Let M be a Riemannian manifold.

Length spectrum $L(M)=$ set of length of all closed geodesics.
(2) Riemannian manifolds M_{1} and M_{2} are

- iso-length spectral if $L\left(M_{1}\right)=L\left(M_{2}\right)$;
- length-commensurable if $\mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)$.
$\mathbb{Q} \cdot L(M)$ is rational length spectrum.
It has less geometric content, but may be easier to figure out, and it is invariant under passing to a commensurable manifold.

Using trace formula one shows that

Using trace formula one shows that compact $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ isospectral $\Rightarrow \quad L\left(M_{1}\right)=L\left(M_{2}\right)$

Using trace formula one shows that
compact $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ isospectral $\Rightarrow L\left(M_{1}\right)=L\left(M_{2}\right)$

$$
\Rightarrow \quad \mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)
$$

Using trace formula one shows that
compact $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ isospectral $\Rightarrow L\left(M_{1}\right)=L\left(M_{2}\right)$

$$
\Rightarrow \quad \mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)
$$

Most of our geometric results rely only on assumption that locally symmetric spaces are length-commensurable.

Using trace formula one shows that
compact $\mathfrak{X}_{\Gamma_{1}}$ and $\mathfrak{X}_{\Gamma_{2}}$ isospectral $\Rightarrow L\left(M_{1}\right)=L\left(M_{2}\right)$

$$
\Rightarrow \quad \mathbb{Q} \cdot L\left(M_{1}\right)=\mathbb{Q} \cdot L\left(M_{2}\right)
$$

Most of our geometric results rely only on assumption that locally symmetric spaces are length-commensurable.

Length-commensurability is translated into weak commensurability of fundamental groups.

