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Stochastic differential equations (SDEs) provide accessible mathematical models
that combine deterministic and probabilistic components of dynamic behavior.
This article is an overview of numerical solution methods for SDEs. The solutions
are stochastic processes that represent diffusive dynamics, a common modeling
assumption in many application areas. We include a description of fundamental
numerical methods and the concepts of strong and weak convergence and order
for SDE solvers. In addition, we briefly discuss the extension of SDE solvers to
coupled systems driven by correlated noise. © 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Stochastic differential equations (SDEs) have
become standard models for diffusive processes

in the physical and biological sciences as well as
economics and finance. Diffusion processes represent
heat transfer and the movement and mixing of
molecules in physics and chemistry, and transport
of substances across membranes in cellular biology.
In modern finance, the Black–Scholes formula for
options pricing and other fundamental asset price
models are based on SDEs where the diffusion
coefficient represents price volatility.

Computational methods to solve SDEs are
roughly analogous to solvers for ordinary differential
equations, adapted for the probabilistic context.
We include a self-contained brief introduction to
stochastic calculus, and then survey the development
of SDE solvers, beginning with the analogue of the
Euler method. The important concepts of order and
strong and weak convergence are explained. A final
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section shows how the methods can be generalized to
multidimensional equations.

SOLUTIONS OF SDES

Under appropriate conditions, ordinary differential
equations have a unique solution for each initial con-
dition. SDEs, on the other hand, have solutions that
are continuous-time stochastic processes. Methods for
the computational solution of SDEs are based on tech-
niques for ordinary differential equations, but adapted
to account for stochastic dynamics.

Some fundamental concepts from stochastic
calculus are needed to describe the numerical methods.
A set of random variables Xt indexed by real numbers
t ≥ 0 is called a continuous-time stochastic process.
Each instance, or realization of the stochastic process
is a choice from the random variable Xt for each t,
and is therefore a function of t.

Any (deterministic) function f (t) can be trivially
considered as a stochastic process, with variance
V(f (t)) = 0. An archetypal example that is ubiquitous
in models from physics, chemistry, and finance is
the Wiener process Wt, a continuous-time stochastic
process with the following three properties: (1) For
each t, the random variable Wt is normally distributed
with mean 0 and variance t. (2) For each t1 < t2, the
normal random variable Wt2 − Wt1 is independent of
the random variable Wt1 , and in fact independent of
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all Wt, 0 ≤ t ≤ t1. (3) The Wiener process Wt can be
represented by continuous paths.

The Wiener process is a formal version of
random behavior first characterized by the botanist
Robert Brown1 in 1827, commonly called Brownian
motion. Brownian motion is crucial in the modeling
of stochastic processes since it represents the integral
of idealized noise that is independent of frequency,
called white noise. Often, the Wiener process is called
upon to represent random, external influences on an
otherwise deterministic system, or more generally,
dynamics that for a variety of reasons cannot be
deterministically modeled.

A typical diffusion process is modeled as
a differential equation involving deterministic, or
drift terms, and stochastic, or diffusion terms, the
latter represented by a Wiener process, as in the
equation

dX = a (t, X) dt + b (t, X) dWt. (1)

SDEs are given in differential form, unlike
the derivative form of ODEs. That is because
many interesting stochastic processes, like Brownian
motion, are continuous but not differentiable.
Therefore, the meaning of the SDE (1) is, by definition,
the integral equation

X (t) = X (0) +
∫ t

0
a

(
s, y

)
ds +

∫ t

0
b

(
s, y

)
dWs,

where the meaning of the last integral, called an Ito
integral, will be defined next.

Let c = t0 < t1 < · · ·< tn − 1 < tn = d be a grid of
points on the interval [c,d]. The Riemann integral is
defined as a limit

∫ d

c
f (x) dx = lim

�t→0

n∑
i=1

f
(
ti′

)
�ti,

where �ti = ti − ti − 1 and ti−1 ≤ ti′ ≤ ti. Similarly, the
Ito integral2 is the limit

∫ d

c
f (t) dWt = lim

�t→0

n∑
i=1

f (ti−1)�Wi

where �Wi = Wti − Wti−1 , a step of Brownian motion
across the interval. The difference is that while the ti′
in the Riemann integral may be chosen at any point in
the interval (ti − 1,ti), the corresponding point for the
Ito integral is required to be the left endpoint of that
interval.

Because f and Wt are random variables, so is the
Ito integral I = ∫ d

c f (t) dWt. The differential dI is a
notational convenience; thus

I =
∫ d

c
fdWt

is expressed in differential form as dI = fdWt. The
differential dWt of Brownian motion Wt is called
white noise. A typical solution is a combination of
drift and the diffusion of Brownian motion.

To solve SDEs analytically, we need to introduce
the chain rule for stochastic differentials, called the Ito
formula.2 Let X be defined as in (1) and let Y = f (t,X).
Then

dY = ∂f
∂t

(t, X) dt + ∂f
∂x

(t, X) dX

+ 1
2

∂2f
∂x2 (t, X) dX dX (2)

where the dX dX term is interpreted from the
identities

dt dt = dt dWt = dWt dt = 0

dWt dWt = dt. (3)

For example, to show that Y = W2
t is a solution

to the SDE dY = 1 dt + 2Wt dWt, apply Ito’s formula
with f (t,x) = x2 and X = Wt. Then

dY = ∂f
∂t

(t, X) dt + ∂f
∂x

(t, X) dX

+ 1
2

∂2f
∂x2 (t, X) dX dX

= 0 + 2Wt dWt + 1
2

2 dWt dWt

= 1 dt + 2Wt dWt.

The Ito formula is the stochastic analogue
of the chain rule of differential calculus. Although
it is expressed in differential form for ease of
understanding, its meaning is precisely the equality
of the Ito integral of both sides of the equation. It is
proved under rather general hypotheses by referring
the equation back to the definition of Ito integral.
More complete details on Ito integrals and stochastic
calculus can be found in a number of texts, including
Refs 3–7.

For a second example, consider the stochastic
differential equation{

dX = μX dt + σX dWt

X (0) = X0
(4)
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FIGURE 1 | Solution to the Black–Scholes stochastic differential
equation (4). The exact solution (5) is plotted as a gray curve. The
Euler–Maruyama approximation with time step �t = 1/8 is plotted as a
dark curve. The drift and diffusion parameters are set to μ= 0.2 and
σ = 1, respectively.

with constants μ and σ . The solution of this SDE is
geometric Brownian motion

X (t) = X0e
(
μ− 1

2 σ2
)
t+σWt

. (5)

To check this, write X = f (t,Y) = X0eY , where
Y = (

μ − 1
2σ 2

)
t + σWt. By the Ito formula,

dX = X0eY dY + 1
2

eY dY dY

where dY = (
μ − 1

2σ 2
)

dt + σ dWt. Using the differ-
ential identities from the Ito formula,

dY dY = σ 2 dt,

and therefore

dX = X0eY
(

r − 1
2

σ 2
)

dt + X0eYσdWt + 1
2

σ 2eYdt

= X0eYμ dt + X0eYσ dWt

= μX dt + σX dWt

as claimed.
Figure 1 shows a realization of geometric

Brownian motion with constant drift coefficient μ

and diffusion coefficient σ . Similar to the case of
ordinary differential equations, relatively few SDEs
have closed-form solutions. It is often necessary to
use numerical approximation techniques, the central
focus of this article.

COMPUTATIONAL METHODS FOR
SDES

The simplest effective computational method for the
approximation of ordinary differential equations is
the Euler method; see Ref 8. The Euler–Maruyama
method9 is the analogue of the Euler method
for ordinary differential equations. To develop an
approximate solution on the interval [c,d], assign a
grid of points

c = t0 < t1 < t2 < · · · < tn = d.

Approximate X values

x0, x1, x2, . . . , xn

will be determined at the respective t points. Given
the SDE initial value problem

{
dX (t) = a(t, X)dt + b(t, X)dWt

X (c) = Xc
(6)

the approximate solution is computed as follows:

Euler–Maruyama Method

x0 = X0

xi+1 = xi + a (ti, xi)�ti+1 + b (ti, xi) �Wi+1 (7)

where

�ti+1 = ti+1 − ti

�Wi+1 = W (ti+1) − W (ti) . (8)

The Brownian motion is modeled by the
increments �Wi, which are determined from a normal
random number generator. Define N(0,1) to be the
standard random variable that is normally distributed
with mean 0 and standard deviation 1. The random
increment �Wi is computed as

�Wi = zi

√
�ti (9)

where zi is chosen from N(0,1).
This is a clear difference from the Euler

method in the deterministic ordinary differential
equation case. Each set of {w0, . . . ,wn} produced
by the Euler–Maruyama method is an approximate
realization of the solution stochastic process X(t)
which depends on the random numbers zi that
were chosen. Since Wt is a stochastic process,
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FIGURE 2 | Solution to Langevin equation (11). The path is the
solution approximation for parameters μ= 10, σ = 1, computed by the
Euler–Maruyama method with stepsize �t i = 0.01 for all i.

each realization will be different and so will the
approximations.

As a first example, the Euler–Maruyama method
is applied to the SDE (4). The Euler–Maruyama
equations (7) have the form

x0 = X0 (10)

xi+1 = xi + μxi�ti + σxi�Wi.

We will use the drift coefficient μ = 0.2 and
diffusion coefficient σ = 1. An exact realization,
generated from the solution (5), along with the
corresponding Euler–Maruyama approximation, are
shown in Figure 1. By corresponding, we mean
that the approximation used the same Brownian
motion realization as the true solution. Note the
close agreement between the solution and the
approximating points.

As another example, consider the Langevin
equation10

dX (t) = −μX (t) dt + σ dWt (11)

where μ and σ are positive constants. In this case, it is
not possible to analytically derive the solution in terms
of elementary processes. The solution of the Langevin
equation is a stochastic process called the Ornstein-
Uhlenbeck process.11 Figure 2 shows one realization
of the approximate solution. It was generated from an
Euler–Maruyama approximation, using the steps

x0 = X0 (12)

xi+1 = xi − μxi�ti + σ�Wi

for i = 1, . . . , n. This SDE is used to model systems
that tend to revert to a particular state, in this case the
state X = 0, in the presence of a noisy background.

STRONG CONVERGENCE OF SDE
SOLVERS

The definition of convergence for SDE approximation
methods is similar to convergence for ordinary
differential equation solvers, aside from the differences
caused by the fact that a solution to an SDE is a
stochastic process, and each computed trajectory is
only one realization of that process. Each approximate
solution path w(t), gives a random value at T, so that
w(T) is a random variable as well. The difference
between the values at time T, e(T) = X(T) − x(T), is
therefore a random variable.

A discrete-time approximation is said to
converge strongly to the solution X(t) at time T if

lim
�t→0

E {|X (T) − x�t (T)|} = 0

where x�t is the approximate solution computed with
constant stepsize �t, and E denotes expected value.
For strongly convergent approximations, we further
quantify the rate of convergence by the concept of
order. An SDE solver converges strongly with order
m if the expected value of the error is of mth order in
the stepsize, i.e., if for any time T,

E {|X (T) − x�t (T)|} = O
(
(�t)m)

for sufficiently small stepsize �t. This definition
generalizes the standard convergence criterion for
ordinary differential equations, reducing to the usual
definition when the stochastic part of the equation
goes to zero.

Although the Euler method for ordinary
differential equations has order 1, the strong order
for the Euler–Maruyama method for SDEs is 1/2.
This fact was proved [8] under appropriate conditions
on the functions a and b in standard form (6). In
particular, the drift term a(t,x) must be globally
Lipschitz continuous or grow at most linearly in the
variable x.

One way to produce higher-order solvers for
ordinary differential equations is to make use of
higher-order terms in the Taylor series of the solution.
We use a similar approach to build a strong order 1
method for SDEs. The analogue of the Taylor series
for SDEs is the Ito-Taylor expansion. See Ref 12
for details. The Milstein method,13–15,16 introduced
in the mid-1970s, includes one more term from this
expansion. Consider the SDE

{
dX (t) = a(X, t)dt + b(X, t)dWt

X (0) = X0.
(13)
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TABLE 1 Average Error Versus Step Size for the Euler–Maruyama
and Milstein Approximations of Eq. (15)

�t Euler–Maruyama Milstein

2− 1 0.169369 0.063864

2− 2 0.136665 0.035890

2− 3 0.086185 0.017960

2− 4 0.060615 0.008360

2− 5 0.048823 0.004158

2− 6 0.035690 0.002058

2− 7 0.024277 0.000981

2− 8 0.016399 0.000471

2− 9 0.011897 0.000242

2− 10 0.007913 0.000122

Milstein Method

x0 = X0

xi+1 = xi + a (xi, ti) �ti + b(xi, ti)�Wi

+ 1
2

b (xi, ti)
∂b
∂x

(xi, ti)(�W2
i − �ti). (14)

The Milstein method has order 1, meaning that it
will converge to the correct stochastic solution process
more quickly than Euler–Maruyama as the stepsize
�ti goes to 0. The Milstein method is identical to the
Euler–Maruyama method if there is no X term in the
diffusion part b(X,t) of the equation.

To compare the Euler–Maruyama and Milstein
methods, we apply them to the Black–Scholes SDE

dX = μX dt + σX dWt. (15)

We discussed the Euler–Maruyama approxima-
tion above. The Milstein method becomes

x0 = X0 (16)

xi+1 = xi + μxi�ti + σxi�Wi + 1
2

σ
(
�W2

i − �ti

)
.

Applying the Euler–Maruyama and the Milstein
methods with decreasing stepsizes �t results in
successively improved approximations as shown in
Table 1.

The two columns represent the average of the
error {x(T) − X(T)} at T = 8 over 100 realizations. The
orders 1/2 for Euler–Maruyama and 1 for Milstein are
clearly visible in the table. Cutting the stepsize by a

factor of 4 is required to reduce the error by a factor of
2 with the Euler–Maruyama method. For the Milstein
method, cutting the stepsize by a factor of 2 achieves
the same result.

The Milstein method is an Ito-Taylor method,
meaning that it is derived from a truncation of the
stochastic Ito-Taylor expansion of the solution. This
is in many cases a disadvantage, since the partial
derivative appears in the approximation method, and
must be provided explicitly by the user. This is
analogous to higher-order Taylor methods for solving
ordinary differential equations, which are seldom used
in practice for that reason. To counter this problem,
Runge–Kutta methods were developed for ODEs,
which trade these extra partial derivatives in the
Taylor expansion for extra function evaluations from
the readily-available differential equation.

In the SDE context, the same trade can be made
with the Milstein method, resulting in a strong order 1
method that requires evaluation of b(X) at two places
on each step. A heuristic derivation can be carried out
by making the replacement

bx (xi) ≈ b
(
xi + b (xi)

√
�ti

) − b (xi)

b (xi)
√

�ti

in the Milstein formula (14), which leads to the
Runge–Kutta method.

Strong Order 1.0 Runge–Kutta Method

x0 = X0

xi+1 = xi + a (xi) �ti + b(xi)�Wi

+ 1
2

[b(xi + b (xi)
√

�ti) − b(xi)](�W2
i − �ti)/

√
�ti.

A proper derivation can be found in Rumelin.17

The orders of the methods introduced here for SDEs,18

1/2 for Euler–Maruyama and 1 for Milstein and
the Runge–Kutta counterpart, would be considered
low by ODE standards. Higher-order methods can
be developed for SDEs, but become much more
complicated as the order grows. As an example,
consider the strong order 1.5 scheme for the SDE
(13) proposed by Platen and Wagner.19

Strong Order 1.5 Taylor Method

x0 = X0

xi+1 = xi + a�ti + b�Wi + 1
2

bbx

(
�W2

i − �ti

)
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+ ayσ�Zi + 1
2

(
aax + 1

2
b2axx

)
�t2

i

+
(

abx + 1
2

b2bxx

)
(�Wi�ti − �Zi)

+ 1
2

b
(
bbxx + b2

x

)
(
1
3

�W2
i − �ti)�Wi (17)

where partial derivatives are denoted by
subscripts, and where the additional random variable
�Zi is normally distributed with mean 0, variance
E

(
�Z2

i

) = 1
3�t3

i and correlated with �Wi with
covariance E (�Zi�Wi) = 1

2�t2
i . Note that �Zi can

be generated as

�Zi = 1
2

�ti

(
�Wi + �Vi/

√
3
)

where �Vi is chosen independently from√
�tiN (0, 1).

Whether higher-order methods are needed in
a given application depends on how the resulting
approximate solutions are to be used. In the ordinary
differential equation case, the usual assumption is that
the initial condition and the equation are known with
accuracy. Then it makes sense to calculate the solution
as closely as possible to the same accuracy, and higher-
order methods are called for. In the context of SDEs,
in particular if the initial conditions are chosen from
a probability distribution, the advantages of higher-
order solvers are often less compelling, and if they
come with added computational expense, may not be
warranted.

WEAK CONVERGENCE OF SDE
SOLVERS

Strong convergence allows approximations to be
computed accurately on an individual realization
basis. For some usages, such detailed pathwise
information is required. In other applications such
as Monte Carlo estimates,20–23 the goal is to learn the
probability distribution of the solution X(T); single
realizations may not be of interest.

Weak solvers are devised to fill this need.
They are often simpler than corresponding strong
methods, since their goal is to replicate the probability
distribution only. In analogy with strong convergence,
we offer the following definition.

A discrete-time approximation x�t with stepsize
�t is said to converge weakly to the solution X(T) if

lim
�t→0

E
{
f (x�t (T))

} = E
{
f (X (T))

}

for all polynomials f (x). According to this definition,
all moments converge as �t → 0. If the stochastic
part of the equation is 0 and the initial value
is deterministic, the definition agrees with the
strong convergence definition, and the usual ordinary
differential equation definition.

Weakly convergent methods can also be assigned
an order of convergence. We say that a solver
converges weakly with order m if the error in the
moments is of mth order in the stepsize, or∣∣E {

f (X (T))
} − E

{
f (x�t (T))

}∣∣ = O((�t)m)
for sufficiently small stepsize �t.

In general, the rates of weak and strong
convergence do not agree. Unlike the case in ordinary
differential equations, where the Euler method has
order 1, the Euler–Maruyama method for SDEs is
guaranteed to converge strongly with order m = 1/2,
and converge weakly with order 1.

Higher-order weak methods can be much
simpler than corresponding strong methods, and
are available in several different forms. The most
direct approach is to exploit the Ito-Taylor expansion
referred above. An example SDE solver that converges
weakly with order 2 is as follows.

Weak Order 2 Taylor Method

x0 = X0

xi+1 = xi + a�ti + b�Wi + 1
2

bbx

(
�W2

i − �ti

)

+ axb�Zi + 1
2

(
aax + 1

2
axxb2

)
�t2

+
(

abx + 1
2

bxxb2
)

(�Wi�ti − �Zi) (18)

where �Wi is chosen from
√

�tiN (0, 1) and �Zi is
distributed as in the Strong Order 1.5 method.

A second approach is to mimic the idea
of Runge–Kutta solvers for ordinary differential
equations. These solvers replace the explicit higher
derivatives in the Ito-Taylor solvers with extra
function evaluations at interior points of the current
solution interval. Platen24,25 proposed the weak order
2 solver of Runge–Kutta type.

Weak Order 2 Runge–Kutta Method

x0 = X0

xi+1 = xi + 1
2

[a (u) + a(xi)]�ti
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+ 1
4

[b (u+) + b(u−) + 2b(xi)]�Wi

+ 1
4

[b (u+) − b(u−)](�W2
i − �t)/

√
�ti (19)

where

u = xi + a�ti + b�Wi

u+ = xi + a�ti + b
√

�ti

u− = xi + a�ti − b
√

�ti.

Figure 3 compares the Euler–Maruyama
method, which converges with order 1 in the weak
sense, to the Weak Order 2 Runge–Kutta method.
Note the difference between strong and weak con-
vergence. In Figure 3 the mean error of the estimate
of the expected value E[X(T)] is plotted, since we
are comparing weak convergence of the methods. The
weak orders are clearly revealed by the log–log plot.

Several other higher-order weak solvers can
be found in Kloeden and Platen.12,26 Weak Taylor
methods of any order can be constructed, as well
as Runge–Kutta analogues that reduce or eliminate
the derivative calculations. In addition, standard
Richardson extrapolation techniques [49] can be used
to bootstrap weak method approximations of a given
order to the next order.

Weak solvers can be used in diffusion models
where information is carried primarily by means
or variances, as in many biological and molecular

10 10–1 100
10–4

10–3

10–2

10–1

100

Time step Δ t

E
rr

or

FIGURE 3 | The mean error of the estimation of E(X (T)) for SDE
(15). The plot compares the Euler–Maruyama method (circles) which
has weak order 1, and the weak order 2 Runge–Kutta type method
(squares) given in (19). Parameters used were
X(0) = 10, T = 1, μ= − 3, σ = 0.2.

dynamics applications. They are also an appropriate
choice for practical financial modeling uses, in
particular when the goal is to investigate the
probability distribution of an asset price or interest
rate, or when stochastic sampling is used to price a
complicated derivative. In such cases it is typical to be
primarily interested in one of the statistical moments
of a stochastically defined quantity, and weak methods
may be simpler and still sufficient for the sampling
purpose.

Monte Carlo (MC) simulation20,27,23 is used
in many fields to compute quantities of interest in
stochastic modeling scenarios. In simplest form, the
quantity of interest is expressed as the expected value
of a random variable, which is approximated as the
average of the random variable over many random
realizations. In many applications, the quantity of
interest is a function of the solution value X(T) of
an SDE at time T, where X(0) is known exactly, or
chosen from a known distribution. For example, the
values of exotic financial derivatives28,29 are often
computed in this way, where X(t) represents the price
of an underlying asset.

A recent key development in the research on MC
approximation is the emergence of multilevel Monte
Carlo (MLMC),30,31 which is a way of accelerating
convergence to the desired expected value. The
method works as a type of variance reduction, where
both a nearby quantity with lower variance and the
difference between the two quantities are separately
calculated, with reduced total effort relative to the
original problem. A number of researchers32–34 have
reported useful applications of MLMC to improve
MC approximation of quantities modeled by SDEs.
The development of MLMC has stimulated the search
for more efficient and more generally applicable strong
and weak SDE solvers.35

Multidimensional SDEs
So far we have described solution methods for
scalar SDEs. Extending the methods to computational
approximation of coupled SDEs is straightforward, as
long as the noise contributions are uncorrelated. We
begin with such an example, and then discuss changes
needed to handle correlated noise inputs.

A common asset model in contemporary finance
is the Heston model36

dXt = rXt dt +
√

VtXt dW1
t

dVt = κ (θ − Vt) dt + c
√

Vt dW2
t . (20)

where Xt and Vt represent asset price and volatility,
respectively. The Heston model is a generalization
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of the Black–Scholes asset model37 that allows
volatility to change stochastically, yet yields an
analytic form for the pricing of contingent assets
like options. If we assume that W1

t and W2
t are

independent Wiener processes, the Euler–Maruyama
discrete version would be

x0 = X0

v0 = V0

xi+1 = xi + rxi �ti + √
vixi �W1

i

vi+1 = vi + κ (θ − vi) �ti + c
√

vi �W2
i . (21)

with independent Brownian increments �W1
i =

z1
i

√
�ti, �W2

i = z2
i

√
�ti, where z1

i and z2
i are

independent draws from the standard normal
distribution.

However, coupled SDEs often involve noise that
is driven by a correlated multidimensional Wiener
process. The solution of multidimensional SDEs is
complicated in general; here we give only a glimpse of
the issues involved.

For multifactor Wiener processes(
W1

t , . . . , Wk
t

)
, the generalization of Ito’s formula

requires that (3) is replaced with

dt dt = dt dWi
t = dWi

t dt = 0

dWi
t dWj

t = ρij dt (22)

where ρ ij represents the statistical correlation between
Wi

t and Wj
t. As usual, correlation ρ of two random

variables X1 and X2 is defined as

ρ (X1, X2) = cov (X1, X2)√
V (X1)

√
V (X2)

.

Note that ρ(X1,X1) = 1, and X1 and X2 are
uncorrelated if ρ(X1,X2) = 0.

To construct discretized correlated Wiener
processes for use in SDE solvers, one begins with
a desired correlation matrix

R =

⎡
⎢⎣

ρ11 · · · ρ1k
...

...

ρk1 · · · ρkk

⎤
⎥⎦

for the Wiener processes W1, . . . , Wk. The matrix
R is symmetric positive semi-definite (all eigenvalues
are nonnegative) with units on the main diagonal. A
straightforward way to create noise processes with

a specified correlation is by taking a matrix square
root of R. One can use the Cholesky factorization
R = CCτ for this purpose, or alternatively one can use
the singular value decomposition (SVD) (see Ref 8 for
description of both).

To create a noise process with correlation R,
begin with k independent, uncorrelated Wiener pro-
cesses Z1, . . . , Zk, satisfying dZidZi = dt, dZidZj = 0
for i 	= j. Define the column vector dW = CdZ, and
check that the covariance matrix, and therefore the
correlation matrix, of dW is

dWdWτ = CdZ
(
CdZ

)τ

= CdZdZτ Cτ

= CCτ dt = R dt.

For example, we could consider two molecular
processes X1 and X2 that are driven by negatively
correlated noise, say with correlation matrix

R =
[

1 ρ

ρ 1

]

where ρ = − 0.8. The matrix

C =
[

1 0
ρ

√
1 − ρ2

]

is the Cholesky square root of R, so the noise can be
generated as

dW1 = dZ1

dW2 = ρ dZ1 +
√

1 − ρ2 dZ2. (23)

CONCLUSION

Numerical methods for the solution of SDEs are
essential for the analysis of random phenomena.
Strong solvers are necessary when exploring
characteristics of systems that depend on trajectory-
level properties. Several approaches exist for strong
solvers, in particular Taylor and Runge–Kutta
methods, although these methods tend to increase
greatly in complexity for orders greater than one.

In many applications, major emphasis is placed
on the probability distribution of solutions, and in
particular mean and variance of the distribution. In
such cases, weak solvers may be sufficient, and have
the advantage of comparatively less computational
overhead.

In addition to the choice of SDE solver,
methods of variance reduction exist that may increase

© 2013 Wiley Per iodica ls, Inc.
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computational efficiency. MLMC methods offer a
promising means of variance reduction and increases
in efficiency in simulation of SDE trajectories.
Moreover, the replacement of pseudorandom numbers
with quasirandom numbers8,22 from low-discrepancy
sequences38 is applicable as long as statistical
independence along trajectories is maintained.

A more in-depth explanation of the mathemat-
ics behind the algorithms, including the Ito-Taylor
expansions, can be found in Kloeden and Platen.12

Another readable survey of SDE solvers which
discusses implementation issues is due to Higham.39

Approximation of solutions of SDEs depends on
the existence of powerful normal random number
generators, typically produced by a uniform random
generator together with the Box-Muller method.40

Computational techniques for the generation of ran-
dom numbers is itself an interesting story; see Refs 21,
41–44 for general information on random number
generation. We have emphasized evenly-spaced time
stepping in our discussion, but there is a growing lit-
erature on adaptive time-step methods.45–47 Progress
on error and stability issues for SDE solvers48–54 is
an important and ongoing research area.
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