
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{A}\mathrm{P}\mathrm{P}\mathrm{L}. \mathrm{M}\mathrm{A}\mathrm{T}\mathrm{H}. © 2023 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 83, \mathrm{N}\mathrm{o}. 4, \mathrm{p}\mathrm{p}. 1696--1716

STRUCTURED SYSTEMS OF NONLINEAR EQUATIONS*

SANA JAHEDI\dagger , TIMOTHY SAUER\ddagger , AND JAMES A. YORKE\S 

Abstract. In a ``structured system"" of equations, each equation depends on a specified subset
of the variables. In this article, we explore properties common to ``almost every"" system with a
fixed structure and how the properties can be read from the corresponding connection graph. A
solution p of a system F (p) = c is called robust if it persists despite small changes in F . We establish
methods for determining robustness that depends on the structure, as expressed in the properties of
the corresponding directed graph of the structured system. The keys to understanding linear and
nonlinear structured systems are subsets of variables that we call forward and backward bottlenecks.
In particular, when robustness fails in a structured system, it is due to the existence of a unique
``backward bottleneck"" that we call a ``minimax bottleneck."" We present a numerical method for
locating the minimax bottleneck. We show how to remove it by adding edges to the graph.

Key words. nonlinear equations, structured systems, robustness, prevalence, generic rank,
constant rank theorem, Implicit Function Theorem, dilation
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1. Introduction. This paper aims at reframing and extending what is referred
to in the engineering literature as ``structured systems"": each equation depends on a
specified subset of the unknown variables. Substantial previous work on structured
systems has been done in the context of control theory [10, 9]. We remove it from
that framework to broaden its applicability in the sciences.

In mathematical applications, there is often significant uncertainty in the specific
details of the model equations. Yet some basic properties of the model are independent
of these details, at least for generic implementations of the underlying structure of
the equations. This fact motivates a focus on structured systems, which form a
vector space of systems for each fixed structure. We will show how to guarantee
the robustness of solutions for typical systems with a given structure. We find that
lack of robustness is equivalent to the absence of a bottleneck in the graph-theoretic
representation of the system. In addition, we characterize multidimensional solution
sets in the case that solution sets are manifolds.

Definition 1.1. Let F : U \subset \BbbR N \rightarrow \BbbR M be a C1 function, and assume U is an
open subset of \BbbR N . Write F (x) = (f1(x), . . . , fM (x)). We say a point x is robust for
F if DF (x) has rank M , and x is fragile if it is not robust. For p in U , we define the
solution set
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STRUCTURED SYSTEMS OF NONLINEAR EQUATIONS 1697

f1(x1, x3) = c1,
f2(x1, x2) = c2,
f3(x2, x3) = c3.

DF =

 f11 0 f13
f21 f22 0
0 f32 f33

 1

2 3

(a) (b) (c)

Fig. 1. Three representation types of a feedback loop involving x1, mRNA density, x2, enzyme
density, and x3, the product density. (a) Structured system of three equations in three variables. (b)
The Jacobian matrix has rank 3 for generic entries. (c) Directed graph corresponding to the system
in (a).

SolSet(p) := \{ x\in U : F (x) = F (p)\} (1.1)

to be robust if every x\in SolSet(p) is robust.

Example 1.2. As the first example of a robust structured system, consider a model
of a biological feedback loop [12] in which the messenger RNA (mRNA) activates an
enzyme that interacts with the substrate to create a product that in turn modulates
the expression of mRNA. This negative feedback loop can be modeled by the system

\.x1 = - c1 + f1(x1, x3),

\.x2 = - c2 + f2(x1, x2),(1.2)

\.x3 = - c3 + f3(x2, x3),

where x1, x2, and x3 denote levels of mRNA, enzyme, and product, respectively. Our
interest in this article is in finite-dimensional systems of equations. These often arise
as equations of steady states of differential equations.

The steady states of the above system are solutions of the system of equations
F (x) = c, or in component form,

c1 = f1(x1, x3),

c2 = f2(x1, x2),(1.3)

c3 = f3(x2, x3).

This system is a structured system; the form of the equations tells us that the first
equation cannot depend upon x2, nor the second upon x3, nor the third upon x1.
Figure 1(c) shows a directed graph representing the system (1.3), where there is an
arrow from node j to node i if variable j is in equation i.

The property of robustness, that a small variation in the model equations does
not destroy the steady state solution, is extremely desirable for models of physical
systems. If a solution exists for a certain choice of parameters, but does not exist for
nearby values, it is likely that the model will not match real behavior in nature when
parameter uncertainty, as well as model uncertainty, is likely to be significant. Mathe-
matically speaking, the continued existence of a solution under small uncertainty can
often be guaranteed by the Implicit Function Theorem [13]. For the system (1.3), if
the Jacobian of the system at the solution is full rank, the Implicit Function Theorem
says that the solution extends to small perturbations of the system. This local result
can be tested on a case-by-case basis if enough detailed information about the system
is known.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1698 SANA JAHEDI, TIMOTHY SAUER, AND JAMES A. YORKE

A more global approach was taken in the paper [6], from which follows the fol-
lowing result; for almost every function F of the form (1.3) and almost every p in
the domain \BbbR 3, the Jacobian DF (x) at a point x in SolSet(p) achieves the maximum
possible rank of 3. This ``global"" result shows that the rank of DF (x) is typically
3, and so the Implicit Function Theorem will apply for almost every instantiation
of (1.3) and allow us to conclude the solutions are robust. Of course, such a global
statement hinges on one's definition of ``almost every."" Since these function spaces of
C\infty functions are infinite-dimensional in general, the ``almost every F"" in this result
is in the sense of prevalence [14, 5].

More generally, the following facts were proved in [6]. Let U \subset \BbbR N be an open
set, and let \scrF be any vector space of C\infty functions F : U \subset \BbbR N \rightarrow \BbbR M respecting a
structure, meaning that only certain variables are allowed to appear in each equation.
The classical case where ``only certain variables"" means ``all variables"" is also allowed.
In the above case, that means all functions F in \scrF have form (1.3). Assume also that
\scrF contains all linear functions that respect the structure. Due to this assumption
and the fact that U is open, there is a maximum possible rank of the Jacobian of the
system on U , which depends only on the structure; we denote this rank by r. (See
Definition 2.1 for a rigorous definition.) Then Theorem 2.13 of [6] says the following.

Theorem 1.3 (see [6]). For almost every F \in \scrF and almost every p \in U , the
following holds:

SolSet(p) is a C\infty -manifold of dimension N  - r and for all x\in SolSet(p), DF (x)
has kernel of dimension N  - r.

The following two propositions follow immediately from Theorem 1.3 and the
definitions of robust and fragile.

Proposition 1.4. If r = M , then SolSet(p) is robust for almost every F \in \scrF ,
and almost every p\in U .

Proposition 1.5. If r < M , then p is fragile for every F and every p \in U . In
particular, SolSet(p) is fragile for every F and every p\in U .

Theorem 1.3 and Propositions 1.4 and 1.5 can be considered as a global extension
of the Implicit Function Theorem. The Implicit Function Theorem describes the
solutions in a neighborhood of p, whereas the above results are global results applicable
to almost every p. These global results reveal the key importance of the ``maximum
possible"" rank of the Jacobian in a structured system. In the literature, this maximum
possible rank of a matrix is often referred to as the generic rank. In this article we
establish a graph-theoretic criterion that is equivalent to the rank DF (x) = M for
Lebesgue-almost every x and almost every F : U \subset \BbbR N \rightarrow \BbbR M in the function space
of a structured system.

Next we discuss a system that does not have a robust solution.

Example 1.6. Consider an ecological system where the logarithmic growth rates
of species 1 and 2 depend only upon species 3,

\.x1

x1
= - c1 + f1(x3),

\.x2

x2
= - c2 + f2(x3),(1.4)

\.x3

x3
= - c3 + f3(x1, x2, x3),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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STRUCTURED SYSTEMS OF NONLINEAR EQUATIONS 1699

f1(x3) = c1,
f2(x3) = c2,

f3(x1, x2, x3) = c3.

(a)

31 2

(b) (c)

DF =

 0 0 f13
0 0 f23
f31 f32 f33



Fig. 2. A fragile structured system of equations motivated by the Competitive Exclusion Prin-
ciple. (a) A structured system of equations describing the steady states of system (1.5). For example,
f1 in the first equation is allowed to depend on x3, but not x1 or x2. This fact is represented in

the two other parts of this figure. (b) The structure matrix DF (x) = [ \partial fi
\partial xj

(x)]. (c) The directed

graph of the system. An edge from node i to node j in the graph means that variable i is allowed to
appear in equation j. Systems of this form cannot have a robust solution, so any solution that exists
is fragile. The coloring in (c) illustrates a ``backward bottleneck."" The ``bottle"" nodes 1 and 2 are
blue, and the ``neck"" node 3 is red here and throughout the paper.

where x1 and x2 denote the population densities of the predators, and x3 is the prey.
To search for steady states of the system, set the left sides of the equations to zero,
yielding the system of equations

f1(x3) = c1,

f2(x3) = c2,(1.5)

f3(x1, x2, x3) = c3.

See Figure 2 for other representations of the above structured system of equations.
The first two equations share one unknown, x3. There may be a solution of these
equations with positive x1, x2, x3 for some exceptional c= (c1, c2, c3), but it will ``fail
to be robust,"" in the sense that for almost every choice of f1 and f2, there will be no
solutions, since the roots of f1 and f2 will fail to overlap. This lack of robustness is
an example of a concept long known in the ecological literature as the Competitive
Exclusion Principle.

The property that two of the equations f1, f2 in (1.5) depend only on one variable
is the cause of the nonrobustness in this example. More generally, when a structured
system has a subset ofm equations that collectively depend on fewer thanm variables,
we say there is a ``backward bottleneck"" in the system (see the next section for a more
precise definition). The main result of this article is that if the maximum possible rank
r is less than M , then a structured system must have such a backward bottleneck.
In fact, this can be viewed as a generalization of the phenomenon expressed by the
Competitive Exclusion Principle [4]. Conversely, in the absence of such a bottleneck,
Proposition 1.4 holds, and almost every solution is robust.

Backward bottlenecks, called ``dilations"" in a slightly different context, were stud-
ied for structural observability and controllability by Lin [7], and extended by Liu,
Slotine, and Barab\'asi [10, 9]. We use backward bottlenecks for a different purpose
in this work. Furthermore, we introduce the concepts of ``forward bottleneck"" and
``minimax bottleneck."" In addition, we show how bottlenecks can be located compu-
tationally from the knowledge of the structure alone.

Example 1.7. The fragile solution of the ecological system (1.5) can be made
robust. Adding another prey species (node 4) to Figure 2(c) yields the directed graph
in Figure 3(c) and the equations

f1(x3, x4) = c1,

f2(x3, x4) = c2,(1.6)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1700 SANA JAHEDI, TIMOTHY SAUER, AND JAMES A. YORKE

f1(x3, x4) = c1,
f2(x3, x4) = c2,

f3(x1, x2, x3) = c3,
f4(x1, x2) = c4.

(a)

1 23

4

(b) (c)

DF =


0 0 f13 f14
0 0 f23 f24
f31 f32 f33 0
f41 f42 0 0



Fig. 3. A robust family of systems. For almost every F that respects the given structure in
(a), DF (x) is nonsingular, so the system will have ``robust"" solutions. (a) The structured system
of equations. (b) The Jacobian is generically of rank 4. (c) No bottleneck exists in the associated
directed graph.

f3(x1, x2, x3) = c3,

f4(x1, x2) = c4.

Let \scrF be the vector space of all C1 functions F = (f1, f2, f3, f4) where the fi are
restricted to the form shown by the structured system of equations (1.6).

We will find that the graph in Figure 3(c) has no backward bottleneck. Let \scrF 
denote the set of all C\infty functions respecting the structured system of equations (1.6).
For almost every F \in \scrF and for almost every x= (x1, . . . , x4) that is a solution of the
system in Figure 3(a), each sufficiently small perturbation of F also has a solution.
Thus, such solutions are allowed to exist in naturally occurring circumstances.

In 1974 Lin [7] developed a theory of linear structured systems for observability
and control purposes. Lin's ideas were further developed in the control and observ-
ability literature, often without proofs; see [15, 1, 10, 9, 2, 8] for examples. In this
article, we study a different and, in a way, more fundamental question: when are
solutions of a (nonlinear) structured system robust?

We extend Lin's ideas to nonlinear structured systems and rigorously prove the
connection between bottlenecks and the maximum rank of the Jacobian at solutions.
In addition, we show that the principal bottleneck in a system, called the minimax
backward bottleneck, can be located through the concept of ``kernel nodes,"" and we
present a computational approach to identify them.

2. Structured systems and directed graphs. A convenient way to visualize
a structured system is to assign a directed graph to the system. For a general system of
M equations in N variables, we consider a graph of P nodes where P =max\{ M,N\} .
Such graphs are illustrated in Figures 1(c), 2(c), and 3(c) where M = N ; several
examples later in this section treat cases where M \not =N .

Graph assumptions. In graph G, having an edge from node j to node i means
that variable j is allowed to appear in function fi. We call such a node i (having
an incoming edge) a function node and such a node j (having an outgoing edge) a
variable node. We assume that each node has either at least one incoming edge or
at least one outgoing edge. In particular, i\leq M means node i has an incoming edge,
and j \leq N means node j has an outgoing edge. A node k satisfies k \leq min(M,N) if
and only if it is both a function and a variable node. Such a labeling can always be
achieved by numbering all variables in the system arbitrarily from 1 to N , and then
listing the equations in arbitrary order. Note that although every system of equations
realizes a directed graph in this way, some directed graphs cannot be realized from a
system of equations (such as 1\rightarrow 2 or 2\rightarrow 1).

For a directed graph G of a structured system, define the vector space \bfscrF (\bfitG ) to
be the space of all C\infty functions F : U \subset \BbbR N \rightarrow \BbbR M that respect the graph G, in

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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STRUCTURED SYSTEMS OF NONLINEAR EQUATIONS 1701

1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19

20 21 22 23 24 25 26

Fig. 4. A network model adapted from Sol\'e and Montoya [16]. Solutions of the structure system
of 26 equations in 26 unknowns associated with this graph cannot be robust since a bottleneck exists
with nodes 6 and 7. Several other obstructions to robustness exist. See Figure 7 for a more complete
discussion.

the sense that the variable j is allowed to appear in equation i only if there is an edge
from node j to node i. The subspace \scrL (G) denotes the vector space of linear functions
that respect the graph G. Other notable subspaces of \scrF (G) include the subspace of
all polynomial F , or polynomials with some maximum degree; i.e., the components
fi are polynomials with some maximum degree. In the latter case, the vector space
is finite-dimensional.

An alternative, more algebraic, way to represent a structured system is by the
structure matrix of partial derivatives.

Definition 2.1. The structure matrix S(G) of a directed graph is a matrix where
the ij entry is allowed to be nonzero if and only if G has an edge from node j to node
i, as illustrated in Figures 1(b), 2(b), and 3(b). A function F is said to respect a
structure matrix S if Sij = 0 implies that \partial Fi

\partial xj
(x) = 0 for all x. In particular, let \scrL (S)

be the set of all linear functions Ax where A is a matrix that respects S. The maximal
rank of all matrices respecting a structure matrix S is called maxrank (S). We say a
vector space \scrF of C1 functions that respect a structure is a structured function space,
provided \scrF includes \scrL (S).

Example 2.2. Figure 4 is a graphical representation of a more complex ecological
model with 26 species or nodes. The reader may find it daunting to determine from
the graph whether such a system allows robust solutions. We will show how to analyze
whether such graphs can have robust steady states, and in fact, no system with this
graph can have any robust solutions. We return to this system in Example 2.16.

Remark 2.3. According to Proposition 1.5, if maxrank(S(G)) = r < M , then
for every function F in the structured function space of S(G), every solution set is
fragile. In such a case, we call the graph G, or equivalently, the structured matrix
S(G), fragile. The main result of this section is Theorem 2.5, which states that the
maxrank condition for S(G) to be fragile is equivalent to the existence of a graphical
obstruction that we call a backward bottleneck in G.

Let G be a graph representing a structured system of M equations in N variables.
Let B be a subset of the nodes of G. The forward set of B, denoted by B\rightarrow , is the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1702 SANA JAHEDI, TIMOTHY SAUER, AND JAMES A. YORKE

1 2 3

4 5

Fig. 5. Generalization of the Competitive Exclusion Principle for two trophic levels. This
structure is fragile since there exists a backward bottleneck; the pair of sets B = \{ 1,2,3\} and B\leftarrow =
\{ 4,5\} form the minimax bottleneck.

set of all nodes g in G for which there is an edge starting at a node in B and ending
at g. The backward set of B, denoted by B\leftarrow , is the set of all nodes g in G for which
there is an edge starting at g and ending at a node in B.

Let Gx \subset G be the subset of all variable nodes, and let Gf \subset G be the subset
of all function nodes. Let B be a subset of Gx, and let B\rightarrow denote its forward set.
For K > 0, we say the pair of sets B and B\rightarrow is a forward K-bottleneck if B has
exactly K nodes more than B\rightarrow . Analogously, we say a pair of sets of nodes, B \subset Gf

and B\leftarrow , is a backward K-bottleneck if B has exactly K nodes more than B\leftarrow . If
N >M , there must be a forward bottleneck, and if M >N , there must be a backward
bottleneck.

The backward bottleneck in Figure 2(c) is the pair of sets B = \{ 1,2\} , shaded in
blue, and B\leftarrow = B\rightarrow = \{ 3\} , shaded in red. In Figure 5, B is the top level of three
nodes, and B\leftarrow =B\rightarrow is the lower level of two nodes. In both examples, B is part of
both a forward and a backward bottleneck. We refer to B as the bottle (and usually
color its nodes blue) and B\rightarrow (or B\leftarrow ) as the neck (usually colored red). It is possible
for a node to be both in a bottle and in a neck, in which case we color it both red
and blue, as node 1 in Examples 2.8 and 2.9.

A system that has a bottleneck will sometimes have many. Let Kmax be the
largest value K for which there is a forward K-bottleneck. Let (B,B\rightarrow ) be a forward
Kmax-bottleneck where B has as few nodes as possible; i.e., it has the minimum
number of nodes that has the maximum K. We call such a bottleneck a minimax
forward bottleneck. The backward minimax bottleneck is defined analogously. It
turns out that minimax backward bottleneck and minimax forward bottleneck are
unique if they exist (see Theorem 2.5 and Remark 2.6).

The Bottleneck Theorem (Theorem 2.5 and Remark 2.6 below) provides more de-
tail on bottlenecks that exist in a graph and shows how that helps detect a bottleneck
and how it might be eliminated. In the proof of the Bottleneck Theorem, the bottle
B we construct is the minimax bottle.

The set of nodes comprising the minimax bottleneck is not always obvious from
the graph. The concept of kernel nodes, described next, allows us to locate the
minimax forward and backward bottlenecks.

Definition 2.4. For a matrix A, we say a vector x is a null vector or a kernel
vector if Ax = 0. The kernel of A, denoted kerA, is the set of all null vectors of
A. For a graph G with structure matrix S(G), the graph nodes (coordinates) can be
divided into two distinct types:

(1) a regular node (or coordinate) that takes the value zero for every vector in
ker(A) for almost every matrix A\in \scrL (S(G)), and

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/2

9/
23

 to
 1

29
.1

74
.2

40
.2

13
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



STRUCTURED SYSTEMS OF NONLINEAR EQUATIONS 1703

(2) a kernel node (or coordinate) that is nonzero in some null vector of A for
almost every A\in \scrL (S(G)).

The set of kernel nodes is denoted by Bkernel.

Kernel nodes can be thought of as nodes corresponding to coordinates that are
nonzero in at least one null vector for a matrix A, which is obtained by replacing
nonzero entries of the structure matrix S(G) by random numbers. For example, the
matrix in Figure 2(b) has a null vector (f32, - f31,0)

T and therefore coordinates 1 and
2 are nonzero in a kernel vector for almost every choice of fij . Hence, nodes 1 and 2
in Figure 2(b) are kernel nodes.

Later in this section, we show how to compute kernel nodes by symbolic algebra.
Alternatively, one could insert random numbers into the entries allowed by the struc-
tured matrix and compute the kernel. With probability one, the coordinates that
are nonzero in kernel vectors will correspond to the kernel nodes. See Appendix B
for a worked-out example. For larger problems, this approach may succeed when the
symbolic approach becomes excessively computationally complex.

Lemma A.5 of Appendix A implies that each node is either a regular node or a
kernel node. To be precise, for each node j of the graph G, let Sj denote the set
of matrices A in \scrL (G) such that the coordinate xj = 0 for all vectors in ker(A).
According to Lemma A.5, either Sj or its complement is measure zero. Kernel nodes
are the ones where Sj has zero measure.

Next, we state the main theorem of this article. The proof is contained in Appen-
dix A. The theorem holds that a structured system of equations is fragile if and only
if it has a backward bottleneck. In addition, it identifies the bottle of the minimax
backward bottleneck as the set of the kernel nodes Bkernel of the transpose of the
structure matrix.

Theorem 2.5 (Bottleneck Theorem). Let S = S(G) be the M \times N structure
matrix of a directed graph G. Let T = ST and r=maxrank(S) =maxrank(T ).

(I) r <M if and only if there is a backward K-bottleneck for K > 0. If so, there
exists a unique minimax backward K\ast -bottleneck where K\ast =M  - r.

(II) The bottle of the minimax backward bottleneck of G is the set of kernel nodes
Bkernel of T .

(III) A graph is fragile if and only if there is a backward bottleneck.

It follows from the proof (see Appendix A) that there is a backward K-bottleneck
if and only if 0<K \leq K\ast when K\ast is positive.

Remark 2.6. There are analogous results for forward bottlenecks. The proofs
require only trivial changes. Let S = S(G) be the M \times N structure matrix of a
directed graph G. Let r=maxrank(S).

(I) r < N if and only if there is a forward K-bottleneck for K > 0. If so, there
exists a unique minimax forward K\ast -bottleneck where K\ast =N  - r.

(II) The bottle of the minimax forward bottleneck of G is the set of kernel nodes
Bkernel of structure matrix S.

(III) If there is a forward bottleneck, then according to Theorem 1.3, for almost
every C\infty function F :U \subset \BbbR N \rightarrow \BbbR M with directed graph G and almost every p\in U ,
SolSet(p) is a C\infty -manifold of dimension K\ast .

Remark 2.7. Theorem 2.5 in combination with Propositions 1.4 and 1.5 shows
that almost every function in a structured function space has one of two possibilities:
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1704 SANA JAHEDI, TIMOTHY SAUER, AND JAMES A. YORKE

Either (1) almost every solution is robust, if no backward bottleneck exists, or (2) all
solutions are fragile, if a backward bottleneck exists.

Example 2.8 (the simplest forward bottleneck with N >M). Let M = 1,N = 2,
meaning that we have a structured system of one equation in two variables with the
form F (x) = f1(x1, x2) = c1. The structure matrix and graph are

21S =
[
f11 f12

]
Here maxrank = 1,K\ast =N - maxrank(S) = 1> 0. There is a forward bottleneck

\{ 1,2\} \rightarrow \{ 1\} (shown) but no backward bottleneck. The structure matrix has a null
vector \nu = (f12, - f11)

T . Since both coordinates are symbolically nonzero, they are
both kernel nodes and correspond to the coordinates of the minimax forward bot-
tle; See Remark 2.6(II). The ``bottle"" nodes are blue and the ``neck"" nodes are red
throughout the paper.

Example 2.9 (the simplest backward bottleneck with M >N). Let M = 2,N = 1.
The map F (x) = (f1(x1), f2(x1)) has the structure matrix and graph

21S =

[
f11
f21

]

Here maxrank = 1,K\ast = M - maxrank(S) = 1. By Theorem 2.5, there is a
backward bottleneck, which is \{ 1\} \rightarrow \{ 1,2\} , shown in the graph. The transpose of
the structure matrix has a null vector \nu = (f21, - f11)

T , i.e., ST \nu = 0. The nonzero
components of \nu , and therefore the kernel nodes, are \{ 1,2\} . This set is the bottle
of the minimax backward bottle, as is guaranteed by Theorem 2.5(II). Here, \nu has
only 2 coordinates. Since N - maxrank(S) = 0, by Remark 2.6 there is no forward
bottleneck.

A procedure for making a graph robust. Let K\ast =M - maxrank(S(G)). If K\ast > 0,
then find the minimax backward bottleneck. We can then reduce K\ast by one by
adding an edge from any node that is not in the neck to any bottle node. Such edges
always exist: For example, each node in the bottle B that is not a neck node can be
given a self-edge if necessary. When this process is repeated K\ast times, the generic
rank becomes equal to M . Note that no nodes are being added to the graph in this
procedure, so no new bottlenecks are created.

Computational method for finding a bottle. When dealing with a small structured
systems such as the one represented in Figures 2 and 5 one could use symbolic algebra
to find the bottle of the minimax bottleneck. Computer software packages for symbolic
algebra give us a computational means of determining the kernel node set Bkernel of
the matrix T , the transpose of the structure matrix S. See (2.1) below to see typical
output from Python and Maple using symbolic algebra. The package computes a
basis for the kernel space. When symbolic entries are used in the input matrix, for
each kernel node, the software returns nonzero symbolic formulas for at least one of
the basis vectors, and it always returns zero for the nodes which are not kernel nodes.
For an example, consider the network given in Figure 5.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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STRUCTURED SYSTEMS OF NONLINEAR EQUATIONS 1705

In Python.

1

2 from sympy import MatrixSymbol , Matrix
3

4 f = MatrixSymbol ( ‘ f ’ , 6 , 6) # c r ea te a symbol ic matrix to use the
symbols  l a t e r

5

6 S = Matrix ( 5 , 5 , [ 0 , 0 , 0 , f [ 1 , 4 ] , f [ 1 , 5 ] , \
7 0 ,0 ,0 , f [ 2 , 4 ] , f [ 2 , 5 ] , \
8 0 ,0 ,0 , f [ 3 , 4 ] , f [ 3 , 5 ] , \
9 f [ 4 , 1 ] , f [ 4 , 2 ] , f [ 4 , 3 ] , f [ 4 , 4 ] , 0 , \

10 f [ 5 , 1 ] , f [ 5 , 2 ] , f [ 5 , 3 ] , 0 , f [ 5 , 5 ] ] )
11

12 T = S . t ranspose ( ) # c a l c u l a t e the t ranspose o f the s t r u c tu r e matrix
13

14 B = T. nu l l s pa c e ( ) # c a l c u l a t e a ba s i s f o r the nu l l s pa c e o f T
15

16 Matrix (B) # pr in t the ba s i s f o r the nu l l space

In Maple.

1 # Cal l the l i n e a r a lgebra package
2 with ( LinearAlgebra ) :
3 # Create the symbol ic matrix S
4 S := Matrix (5 , 5 , S=[0 , 0 , 0 , f14 , f15 , 0 , 0 , 0 , f24 , f25 ,
5 0 , 0 , 0 , f34 , f35 ,
6 f41 , f42 , f43 , f44 , 0 ,
7 f51 , f52 , f53 , 0 , f55 ] ) :
8 # Calcu la te the ba s i s f o r the ke rne l o f the t ranspose o f S
9 NullSpace ( Transpose (S) )

We have reformatted this output for the reader's convenience:

(2.1) output:

\left\{           

\left[      
f24f35 - f25f34
f15f34 - f35f14
f25f14 - f15f24

0
0

\right]      
\right\}           .

The output is a single vector, meaning that the kernel is one-dimensional. Therefore,
there exists a one-bottleneck. The nodes 1, 2, and 3 are the bottle nodes since
components 1, 2, and 3 of the null vector are almost always nonzero. By looking at
the incoming edges of these three nodes, we find that the bottleneck is the pair of sets
(B,B\leftarrow ), where B = \{ 1,2,3\} and B\leftarrow = \{ 4,5\} . To eliminate this bottleneck, it suffices
to add an edge connecting one of the nodes of the set \{ 1,2,3\} to one of the nodes from
the same set. As a result, by Theorem 2.5, the new structure matrix (corresponding
to the system after an edge is added) has rank r = 5. Hence, the resulting network
will have robust solutions, according to Proposition 1.4.

Symbolic computation works well for reasonably small problems, but symbolic
algebra scales poorly in the size of the graph. For larger problems, one could replace
the nonzero entries of the structure matrix with random numbers and compute a basis
for the null space of the structure matrix. An example is provided in Appendix B.

Examples with \bfitM =\bfitN .

Example 2.10. We interpret Example 1.6 in terms of bottlenecks. Consider the
graph and system in Figure 2, where M = N = 3. Here maxrank = 2 for generic
entries. By Proposition 1.5, for every F and c, the system
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1706 SANA JAHEDI, TIMOTHY SAUER, AND JAMES A. YORKE

f1(x3) = c1,
f2(x3) = c2,

f3(x1, x2, x3) = c3

has no robust solutions, because maxrank(F ) is generically 2 and is never greater than
2. If F is C\infty , there will be solutions for at most a measure zero set of c, and those are
fragile. By Theorem 1.3 for almost every function with this structure and for almost
every x \in \BbbR 3, the set SolSet(x) is a one-dimensional manifold. The structure matrix
corresponding to the above system is

DF (x) =

\left[   0 0 \partial f1
\partial x3

0 0 \partial f2
\partial x3

\partial f3
\partial x1

\partial f3
\partial x2

\partial f3
\partial x3

\right]   .

The kernel of DF (x) is one-dimensional and ( \partial f3\partial x2
, - \partial f3

\partial x1
,0)T is a kernel vector, illus-

trating that the bottle of the minimax forward bottleneck consists of the kernel nodes,
which correspond to coordinates 1 and 2. Hence, the minimax forward bottleneck is
\{ 1,2\} \rightarrow \{ 3\} , and it is a K\ast minimax bottleneck, where \sansK \ast = N  - maxrank(S) =
3  - 2 = 1. Note that in this example, the minimax forward bottleneck is also the
minimax backward bottleneck. Having M =N does not necessarily imply that every
forward bottleneck is also a backward bottleneck; see the following example, for in-
stance. In a graph where all the edges are bi-directional, every forward bottleneck is
also a backward bottleneck.

Example 2.11. Let M =N = 3. Consider the system

f1(x1) = c1,
f2(x1) = c2,

f3(x2, x3) = c3.

The structure matrix and graph (displaying the (minimax) bottleneck) are the
following:

(b) minimax

forward bottleneck

21 3

(c) minimax

backward bottleneck

1 2 3

(a) structure matrix

S =

 f11 0 0
f21 0 0
0 f32 f33



The minimax forward bottleneck is the pair (B,B\rightarrow ), where B = \{ 2,3\} and B\rightarrow =
\{ 3\} , and the minimax backward bottleneck is the pair (C,C\leftarrow ), where C = \{ 1,2\} and
C\leftarrow = \{ 1\} .

Note that a lesson to be learned from Examples 2.10 and 2.11 is that when
M =N , the minimax forward bottleneck is not necessarily the same as the minimax
backward bottleneck. In fact, even when M =N , a forward bottleneck may not be a
backward bottleneck. A graph is robust when no backward bottleneck exists.
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STRUCTURED SYSTEMS OF NONLINEAR EQUATIONS 1707

Examples with \bfitM <\bfitN .

Example 2.12. Let M = 2 and N = 3. Consider the system

f1(x1) = c1,
f2(x1, x2, x3) = c2,

which has the following structure matrix and graph (displaying its (minimax) forward
bottleneck):

S =

[
f11 0 0
f21 f22 f23

]
21 3

The graph has no backward bottleneck. In fact, M = maxrank(\scrF ) = 2, hence, the
graph is robust. On the other hand, the kernel is one-dimensional with a basis vector
\nu = (0, f23, - f22)

T , where S\nu = 0. There exists a 1-forward bottleneck. According to
Remark 2.6, for almost every C\infty function F that respects the above structure, and
for almost every p, SolSet(p) is a one-dimensional manifold.

Example 2.13. Let M = 3 and N = 5, and consider the system

f1(x1, x2, x3) = c1,
f2(x4) = c2,
f3(x5) = c3.

The minimax forward bottleneck is a 2-bottleneck \{ 1,2,3\} \rightarrow \{ 1\} . Hence, by The-
orem 1.3 for almost every C\infty function F that respects the above structure and for
almost every p, SolSet(p) is a two-dimensional manifold. Since maxrank = M = 3,
the graph is robust.

2

1

3

4

5

An example with \bfitM >\bfitN . See also Example 2.9.

Example 2.14. Let M=3 and N=2. Consider the following structured system of
equations:

f1(x1, x2) = c1,
f2(x1, x2) = c2,
f3(x1, x2) = c3.

The system has no robust solutions---due to the existence of a minimax backward
bottleneck. Let ST denote the transpose of the structure matrix associated with this
structured system:

ST =

\biggl[ 
f11 f21 f31
f12 f22 f32

\biggr] 
.
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1708 SANA JAHEDI, TIMOTHY SAUER, AND JAMES A. YORKE

777

(a)

1 2 3 4

65

7

7 7 7

(b)

Fig. 6. Examples of robust and fragile graphs. A red X-mark indicates that every F that
respects the graph is fragile; such an F has no robust steady states. The number of X-marks is the
minimum number of edges that must be added before the graph can be robust. (a) The graph discussed
in Example 2.15 is fragile. The three X-marks mean there is a backward 3-bottleneck. (b) Illustration
of how bottlenecks combine to form the minimax bottleneck. A portion of a larger network is shown.
For a backward bottleneck, edges leaving the nodes of the bottle to nodes in the rest of the graph
can occur without changing the bottleneck, provided they do not point to bottleneck nodes. Here,
the sets \{ 1,2\} , \{ 3,4\} , \{ 1,2,3,4\} , and \{ 5,6\} each form the bottle of a distinct backward bottleneck.
Combining them, B = \{ 1,2,3,4,5,6\} is the bottle of the minimax 3-bottleneck that contains the
smaller bottlenecks. The neck of the minimax backward bottleneck is B\leftarrow = \{ 5,6,7\} .

For almost all choices of F = (f1, f2, f3), the kernel of (ST ) is one-dimensional, and

\nu =

\left[  f21f32  - f31f22
f31f12  - f11f32
f11f22  - f21f12

\right]  is a null vector so ST \nu = 0. Therefore, the backward bottle

is B = \{ 1,2,3\} , since all the components of the null vector are nonzero. Hence B\leftarrow 

equals \{ 1,2\} . Therefore the pair (B,B\leftarrow ) is a minimax 1-backward bottleneck:

21

3

Example 2.15. Theorem 2.5 imposes graph-theoretic restrictions on systems that
can have robust solutions. In the bi-directional graph in Figure 6(a), each blue node
species on each level is connected only to the species in the adjacent level, though
some edges connect red nodes with other red nodes. Let N1,N2,N3,N4 denote the
number of species in each of these ``trophic"" levels, listing from the bottom to the
top. This type of trophic graph cannot have robust solutions if the total number of
species in the odd-numbered levels, Nodd =N1+N3, is greater than the total number
of species in the even-numbered levels. For example, in Figure 6(a), Nodd = 8 >
Neven = 5, so there is a 3-backward bottleneck \{ red nodes\} \rightarrow \{ blue nodes\} . By the
Bottleneck Theorem, Theorem 2.5, at least three edges must be added to allow robust
solutions.

In Appendix B, by using a numerical approach we identify the set of kernel nodes
for this N = M = 13 system. One finds that the set of kernel nodes consists of the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19

20 21 22 23 24 25 26

777777

(a)

1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19

20 21 22 23 24 25 26

777777

(b)

Fig. 7. Existence of a backward bottleneck makes a network fragile. The six X's mean six
species must be eliminated before the graph becomes robust---unless carefully chosen edges are added.
(a) Let B denote the 12 nodes shaded blue. Then the backward set B\leftarrow consists of six nodes shaded
red. Hence B is a six-species bottleneck. At least six edges that increase the set B\leftarrow must be added to
make the graph robust. It is easy to cover 20 nodes with disjoint cycles, leaving six in B uncovered,
so the structure matrix has rank 20. (b) 29 bi-directional edges have been added, shown in green,
adding at least one edge to every node, and edges between every pair of layers, and edges within
each layer except the lowest. These make no difference to the robustness. B is still a six-species
bottleneck.

eight blue nodes, and therefore they constitute the bottle of the backward bottleneck
(and also the forward bottleneck \{ blue nodes\} \rightarrow \{ red nodes\} , since the graph is
symmetric). That is, for almost every 13 \times 13 Jacobian matrix of the structured
system shown in Figure 6(a), all vectors in the three-dimensional nullspace have zero
entries for the coordinates corresponding to the red nodes.

Example 2.16. Figure 7(a) analyzes Figure 4. Our results show that the graph
is fragile. There is a six-species bottleneck. In order to eliminate the bottleneck by
adding edges, six edges must be carefully added. A substantial research effort has
aimed at discovering what stabilizes ecological networks. Some have described ways
that appear to promote the stability of an ecosystem [3, 11], but there has been no
gold standard for assessing robustness, which is a requirement for stability. Gross
et al. [3] suggested two universal rules: Food-web stability is enhanced when (i)
``species at a high trophic level feed on multiple prey species,"" and (ii) ``species at
an intermediate trophic level are fed upon by multiple predator species."" These rules

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1710 SANA JAHEDI, TIMOTHY SAUER, AND JAMES A. YORKE

suggest adding edges might enhance the stability of the ecological network, but it is
not the full story. As an example, Figure 7(b) is made by adding 29 bi-directional
(green) edges to Figure 7(a), adding edges throughout the network, but the resulting
network, Figure 7(b) is not yet robust. Our theory suggests where the edges must be
added to make a system robust. Write B for the set of blue nodes and B\leftarrow for the
red nodes. Since \#(B) = 12 and \#(B\leftarrow ) = 6, B is a 6-bottleneck so the graph cannot
be robust. At least six backward edges ending in B and not starting in B\leftarrow must be
added before the graph becomes robust.

3. Discussion. The Competitive Exclusion Principle, long discussed in ecologi-
cal literature, states that two predators that depend solely on the same prey species
cannot coexist, as portrayed in Figure 2. More precisely, the Competitive Exclusion
Principle says the two predators whose population density depends purely on a prey
species population density cannot coexist unless they benefit precisely equally from
the prey, a scenario that is virtually impossible in natural circumstances. In terms
of the graph, there are two ``predator"" nodes that depend on one ``prey"" node. That
means there are two nodes for which each has only one incoming edge and two edges
come from the same node, a third node. This simple configuration is a bottleneck.
Since there is a backward bottleneck, by Theorem 2.5(III), the graph is fragile (i.e.,
not robust).

We show in this article how the basic lesson of the Competitive Exclusion Principle
of ecology can be extended to a general concept that applies to all systems F (x) = c
of M equations in N unknowns, provided that they respect an underlying structure,
a structure that can be encapsulated in a vector space of functions F .

If there is a backward bottleneck, the bottle can be viewed as being a set of
predator species and the neck as prey species. The bottle consists of n species that are
only influenced by n - k species where k > 0; it does not matter whether the influence
is positive (such as a prey or food source) or is negative (such as a predator). The
existence of a bottleneck can be detected by looking at the rank of the whole system.
There is a k-backward bottleneck somewhere in the system if and only if the rank r
of the system satisfies r \leq M  - k. The same is true for forward bottlenecks with M
replaced by N .

In Theorem 2.5, we proved the equivalence of two ostensibly different views of
structured systems, the rank of the structure matrix, and the existence of bottle-
necks. Depending on what is known about the network model, or class of models,
one or another of the views may be most informative. These results have immedi-
ate implications to possible graph structures, for example, precluding robust solu-
tions in strictly trophic food webs without interactions between competing species
unless strict constraints on the number of species in each guild are satisfied. These
constraints are direct generalizations of the Competitive Exclusion Principle. In-
terestingly, they may have extensive implications for systems in general, outside
ecology.

When M = N , the existence of a forward bottleneck implies the existence
of a backward bottleneck, and vice versa. When the generic rank of a structured
matrix is strictly less than M = N , both bottlenecks exist and the system is
fragile.

When N \not =M , the existence of forward and backward bottlenecks is more inde-
pendent. Let the maxrank of the M \times N structure matrix be r:
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STRUCTURED SYSTEMS OF NONLINEAR EQUATIONS 1711

\bullet If a collection of M equations depends upon M - r fewer variables, then there
exists a unique minimax backward bottleneck with rank deficiency of M  - r.
Hence, for almost every F that respects the graph G, there are no robust
solutions.

\bullet If a collection of r equations is overly determined byN variables whereN - r >
0, then there exists a unique minimax forward bottleneck with rank deficiency
of N  - r. Then, for almost every F that respects the graph G and for almost
every x, SolSet(x) is a manifold of dimension N  - r.

In particular, when N \not =M , existence of a forward bottleneck does not rule out the
existence of robust solutions.

From our perspective, the Competitive Exclusion Principle is not a biological
principle whose conclusion can be tested. It is a theorem whose hypotheses can be
tested in various biological settings. It is a theorem that we have generalized here, in
the form of Theorems 2.5 and 1.3. These ideas about equations and networks can be
extended far beyond the ecological realm.

The Bottleneck Theorem says the correct generalization of the Competitive Ex-
clusion Principle is not simply about predators and prey. It says that if a collection
of species depends purely on k fewer species, where k > 0, there cannot be a robust
steady state. That is a statement about the equations of nature. This fact generalizes
to a statement about the nature of structured equations: If a collection of n equations
depends upon n - k variables where k > 0, then there exists a unique minimax back-
ward k-bottleneck. Hence, for almost every F that respects the graph G, there are
no robust solutions of F (x) = c for any c, and for almost every c, and almost every
F that respects the graph G, there are no solutions, not even fragile solutions. The
Bottleneck Theorem is an extended version of the Competitive Exclusion Principle,
applicable to scientific and engineering areas well beyond ecology.

Appendix A. We begin with some lemmas which support the definition of kernel
nodes. The proof of Theorem 2.5 follows.

Lemma A.1. Let w,v1, . . . , vk \in Rn. Then w is in Span\{ v1, . . . , vk\} if and only if
there is a subset \{ vi1 , . . . , vir\} such that rank \{ vi1 , . . . , vir\} = r = rank \{ w,vi1 , . . . , vir\} .

Lemma A.2. If S1, . . . , Sk are Lebesgue-measurable subsets of Rn of either full
measure or measure zero, then the same is true for all finite unions and intersections
of the Si and their complements.

Consider any vector space of m \times n matrices, such as the space \scrL (G) for some
directed graph G. Assume there is a prescribed set of matrix minors. The next
lemma states that the set of matrices on which those matrix minors all vanish either
has measure zero or has full measure---in the Lebesgue measure on the vector space.

Lemma A.3. Let Ai be an m \times n matrix for i = 1, . . . , k. Consider the k-
dimensional set of parametrized matrices C = c1A

1 + \cdot \cdot \cdot + ckA
k (where the cj are

the parameters). Let M1(c1, . . . , ck), . . . ,Mm(c1, . . . , ck) enumerate all minor determi-
nants of C. Then for any subset S of the integers \{ 1, . . . ,m\} , the set of (c1, . . . , ck)
for which Mi(c1, . . . , ck) = 0 if and only if i \in S has either full measure or measure
zero in Rk.

Proof. All the Mi are polynomials in the ci and are either identically zero (vanish
on a full measure set) or not identically zero (vanish on a lower-dimensional, thus mea-
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1712 SANA JAHEDI, TIMOTHY SAUER, AND JAMES A. YORKE

sure zero, set). Specifying some of the Mi to be zero and the rest to be nonzero results
in a full measure or zero measure subset of (c1, . . . , ck), according to Lemma A.2.

Lemma A.4. Let H be a dimension n - 1 subspace of Rn, and let C = c1A
1 +

\cdot \cdot \cdot + ckA
k. Then the subset of (c1, . . . , ck) \in Rk for which ker(C) \subset H is either full

measure or measure zero.

Proof. Without loss of generality, we may assume H = \{ x1 = 0\} . If the first
column C1 of C is identically zero, then the subset has full measure. If not, then
ker(C) \not \subset H for some (c1, . . . , ck) if and only if the column C1 lies in the span of
the rest of the columns of C. By Lemma A.1, this holds exactly for (c1, . . . , ck) in a
subset defined by minor determinants, which has either full measure or zero measure
by Lemma A.3.

Lemma A.5. For each integer 1 \leq j \leq N , either Sj or its complement Sc
j has

measure zero in \scrL (G).

Proof. Note that Sj is the set of matrices with structure matrix S(G) for which
the kernel is contained in H = \{ xj = 0\} . Lemma A.4 says that either this set or its
complement has measure zero.

Lemma A.5 can be illustrated explicitly for 2\times 2 structure matrices A. Let

A=

\biggl[ 
a11 a12
a21 a22

\biggr] 
,

where some of the entries may be required to be 0 in the structure matrix. Consider
the set of matrices

S1 = \{ A| a11a22  - a12a21 \not = 0\} \cup \{ A| a12 = 0 and a11 \not = 0\} \cup \{ A| a22 = 0 and a21 \not = 0\} 

and its complement

Sc
1 = \{ A| a11a22  - a12a21 = 0\} \cap \{ A| a12 \not = 0 or a11 = 0\} \cap \{ A| a22 \not = 0 or a21 = 0\} .

If the structure matrix allows all entries of A to be nonzero, then (Sc
1) is of measure

zero, and so S1 has full measure.
As another example, if the structure matrix requires a11 = a21 = 0, the roles are

reversed. In that case S1 is of measure zero and so Sc
1 has full measure.

The proof of Theorem 2.5 follows.

Proof of Theorem 2.5, Part (I). Assume the pair of sets (B,B\leftarrow ) is a backward
K-bottleneck such that K > 0 and B and B\leftarrow have b and b - K nodes, respectively,
where b \geq 2. That means the b rows of the matrix S corresponding to B are zero
except for b - K columns, or in other words, S has form

(A.1) S =

N−b+K b−K[
0 ?
? ?

]
b
M − b

T =

b M−b[
0 ?
? ?

]
N − b+K
b−K

where we have renumbered the nodes so that B consists of the first b rows of S and
where we have situated the b  - K nonzero columns at the right of the matrix for
simplicity (the nonzero columns could be anywhere in S). The transpose T is also
shown for convenience.
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STRUCTURED SYSTEMS OF NONLINEAR EQUATIONS 1713

It follows that theN\times b submatrix TB of T consisting of the b columns represented
by the nodes of B has at most b - K nonzero rows, the rows corresponding to nodes
of B\leftarrow . Since TB : Rb \rightarrow RN has at most b  - K nonzero rows, the kernel of TB is
at least K-dimensional, which implies the same about the kernel of T , and so r =
rank(T )\leq M  - K <M , as required.

To prove the converse direction, we will assume r < M and show that S must
have form (A.1) with K =M - r, with the proviso, as above, that the rightmost b - K
nonzero columns could occur anywhere in S. If that can be shown, then there is a
backward K-bottleneck, with K =M  - r > 0.

Let B =Bkernel be the set of kernel nodes of T . According to Lemma A.5, for any
node j in B, the set Tj of N \times M matrices respecting T for which xj = 0 for every
x\in ker(T ) has measure zero. Let b= | B| .

First, note that if B is the empty set, then the intersection of the Tj is a full
measure set, i.e., for almost every A respecting the structure T , ker(A) = \{ 0\} , a
contradiction to r < M . Thus b > 0. Note that if j is in the complement Bc,
then xj = 0 for every vector x in ker(A), for every A not in the measure zero set
Q=

\bigcup 
j\in Bc T c

j . We use this fact below.
Consider matrices A in \scrL (G) that respect the structure matrix T , and are not

in the set Q. Renumber the nodes such that B = \{ 1, . . . , b\} . Let AB denote the
submatrix of the first b columns of A. Since A is not in Q, xb+1 = \cdot \cdot \cdot = xM = 0 for x
in ker(A), so we can assume ker(A) = [U,0, . . . ,0], where U is a dimension K subspace
of \BbbR b (since the rank of A is r =M  - K), and the space U\bot is (b - K)-dimensional.
For almost every A respecting T , the rows r1, . . . , rN of the submatrix AB must all be
in U\bot and satisfy the following two properties, proved below: (1) the nonzero rows
of AB are linearly independent, and (2) no set of p columns of AB contains all of the
nonzero entries of p or more nonzero rows. Property (1) forces all but b - K of the
rows of AB to be zero rows in the structure T . Thus the first b columns of A have at
most b - K nonzero rows, which verifies the form of T in (A.1).

Finally, we verify (1) and (2). If b = 1, (1) is true because if any entry in the
(single) column of AB is nonzero, the first component of vectors in ker(A) is zero
for almost every A, a contradiction to the definition of B. For b > 1, we induct on
b. Let 0 =

\sum 
ciri be a dependency of rows of AB , where all ci \not = 0. If the union

of the coordinates appearing in the rows of the ri does not include all b coordinates,
use the induction hypothesis. If they include all b coordinates, then so does the
structure matrix T , and no such dependency can exist for almost every A. To verify
(2), suppose there are columns ci1 , . . . , cip and p such rows. By (1), the rows are
linearly independent, and their entries are restricted to p columns. Therefore, any
vector x= (u,0, . . . ,0) in ker(A) must be zero in entries ui1 , . . . , uip . This contradicts
the fact that i1, . . . , ip are kernel nodes.

Proof of Theorem 2.5, Part (II). Note that Bkernel is theK
\ast -bottleneck used above

in the first part of the proof, where K\ast is such that rank(S) = rank(T ) = M  - K\ast .
No bottleneck exists with larger K, by Part (I). Also, B is minimal because no node
can be deleted without the bottleneck becoming a K-bottleneck for K <K\ast , due to
property (2) above. Therefore Bkernel of T is the bottle of the minimax backward
bottleneck of S.

Proof of Theorem 2.5, Part (III). Part (I) of this theorem implies that there exists
a backward K-bottleneck if and only if M - r\geq K > 0. Hence, there exists a backward
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1714 SANA JAHEDI, TIMOTHY SAUER, AND JAMES A. YORKE

bottleneck if and only if r <M and we know G is fragile if and only if r <M . Hence,
G is fragile if and only if there exists a backward bottleneck.

Appendix B. In this section we explain how to find the kernel nodes of a large
structured system and provide an example. To compute the kernel nodes for a large
structured system, first compute its adjacency matrix. Then replace all the ones in
the adjacency matrix with nonzero random numbers; denote the resulting matrix with
S. Next compute a basis for the null space of S. In most computational languages,
the output will be a matrix in which each column is a basis vector for the null space
of the structure matrix; denote this matrix with K. By definition 2.4(2), a regu-
lar node will be a node corresponding to a row that is zero (near machine zero) in
every column, and a kernel node corresponds to a row that is nonzero (or far from
zero) in at least one column. Assign a vector to matrix K, which includes the sum
along the columns of K, and denote it by I. The nonzero entries of vector I corre-
spond to the kernel nodes since having a nonzero entry in I means there has been a
nonzero entry in the corresponding row in matrix K. Below we compute the set of
kernel nodes for the structured system represented in Figure 6(a) with Python as an
example.

For the convenience of the reader, the structured graph in Figure 6(a) is repeated
below with its nodes labeled by numbers. First, the nonzero entries of the structure
matrix are replaced by random numbers. Then using the null space function from
the scipy module we compute a basis for the null space of the structured matrix S.
Note that since the matrix is filled with random numbers, the output may vary in
each run, but the output below shows what to expect. Each column of the output
matrix below corresponds to a basis vector. By inspection of the output, it is noted
that coordinates 1,2,7,8,9, corresponding to the red nodes, have values at or near
machine zero, in every column. For the convenience of the reader, the rows of output
that are near zero are colored red. Each row corresponding to a bottle node is far
from zero at least in one of its entries. Hence, in the next step, we sum along the
columns of the matrix K. If a row is always near to zero, the sum of entries of that
row will remain very close to zero; otherwise, it will be a nonzero number far from
zero. The entries far from zero correspond to kernel nodes which are labeled blue in
the output below.

1 2

3 4 5 6

7 8 9

10 11 12 13

777
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STRUCTURED SYSTEMS OF NONLINEAR EQUATIONS 1715

1 import numpy as np
2 from sc ipy . l i n a l g import nu l l s p a c e
3 S = np . random . randn (13 ,13)
4 edges = [ [ 0 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ] ,\
5 [ 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ] ,\
6 [ 1 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 0 , 0 , 0 , 0 ] ,\
7 [ 1 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 ] ,\
8 [ 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ] ,\
9 [ 1 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 , 0 ] ,\

10 [ 1 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 1 ] ,\
11 [ 0 , 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 1 , 0 ] ,\
12 [ 0 , 1 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 ] ,\
13 [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 ] ,\
14 [ 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 ] ,\
15 [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 , 0 ] ,\
16 [ 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 ] ]
17 S=S∗ edges
18 K= nu l l s p a c e (S)
19 K

array([[ 1.20717887e-16, 6.84428086e-17, -3.11732981e-16],

[ -2.27911323e-16, -9.70940348e-17, 5.54609082e-16],

[ -9.21205896e-02, -1.55525688e-01, 3.89155479e-01],

[ 3.50849655e-01, 1.91779975e-01, -6.49053981e-01],

[ -2.77855603e-01, 2.05519591e-01, -2.29308997e-01],

[ 1.24862901e-02, -1.71947247e-01, 3.48715679e-01],

[ -6.49478401e-17, -1.22157121e-17, 1.15851999e-17],

[ -4.43549872e-17, -5.08385029e-17, 1.65382089e-16],

[ 1.01923948e-16, 1.80608967e-17, -1.10077705e-16],

[ -3.41302851e-01, 4.41425689e-01, -1.10191730e-01],

[ -6.81666946e-01, -2.93761792e-01, -1.16448517e-01],

[ 2.34523019e-01, -7.24053614e-01, -2.94561356e-01],

[ 3.93573583e-01, 2.48639855e-01, 3.75010446e-01]]

)

1 import numpy as np
2

3 ar = np . array ( abs (K) )
4

5 binar = ar > pow(10 , −12)
6

7 i n t a r = binar . astype ( i n t )
8

9 I = np . sum( in t a r , ax i s=1)
10

11 I

array([ 0, 0, 3, 3, 3, 3, 0, 0, 0, 3, 3, 3, 3])
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