
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjbd20

Journal of Biological Dynamics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjbd20

Robust steady states in ecosystems with
symmetries

Sana Jahedi, Timothy Sauer & James A. Yorke

To cite this article: Sana Jahedi, Timothy Sauer & James A. Yorke (2023) Robust steady
states in ecosystems with symmetries, Journal of Biological Dynamics, 17:1, 2259223, DOI:
10.1080/17513758.2023.2259223

To link to this article:  https://doi.org/10.1080/17513758.2023.2259223

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 20 Sep 2023.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tjbd20
https://www.tandfonline.com/loi/tjbd20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/17513758.2023.2259223
https://doi.org/10.1080/17513758.2023.2259223
https://www.tandfonline.com/action/authorSubmission?journalCode=tjbd20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjbd20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/17513758.2023.2259223
https://www.tandfonline.com/doi/mlt/10.1080/17513758.2023.2259223
http://crossmark.crossref.org/dialog/?doi=10.1080/17513758.2023.2259223&domain=pdf&date_stamp=20 Sep 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/17513758.2023.2259223&domain=pdf&date_stamp=20 Sep 2023


JOURNAL OF BIOLOGICAL DYNAMICS
2023, VOL. 17, NO. 1, 2259223
https://doi.org/10.1080/17513758.2023.2259223

Robust steady states in ecosystems with symmetries

Sana Jahedia, Timothy Sauerb and James A. Yorkec

aMcMaster University, Hamilton, Canada; bGeorge Mason University, Fairfax, VA, USA; cUniversity of
Maryland, College Park, MD, USA

ABSTRACT
Steady states of dynamical systems, whether stable or unstable, are
critical for understanding future evolution. Robust steady states,
ones that persist under small changes in the model parameters, are
desired when modelling ecological systems, where it is common for
accurate and detailed information on functional form and param-
eters to be unavailable. Previous work by Jahedi et al. [Robustness
of solutions of almost every system of equations, SIAM J. Appl. Math.
82(5) (2022), pp. 1791–1807; Structured systems of nonlinear equa-
tions, SIAM J. Appl. Math. 83(4) (2023), pp. 1696–1716.] has estab-
lished criteria to imply the prevalence of robust steady states for
systems with minimal predetermined structure, including conven-
tional structured systems. We review that work and extend it by
allowing symmetries in the system structure, which present added
obstructions to robustness.
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1. Introduction

Steady states are rest points of dynamical processes. In ecological models, they repre-
sent states of balance in a natural system, for example between competing or cooperating
species. There is often significant uncertainty in the specific details of model equations of
natural systems [4]. Yet some basic properties of themodel are independent of these details,
at least for generic implementations of the underlying structure of the equations.

Because of this, systems with structure form a convenient context for modelling
biological systems under uncertain conditions. By structure, wemean the interconnections
allowed between different entities and possible symmetries among these interconnections.
The permissible systems for each fixed structure form a vector space, so that we can use the
concept of prevalence [6] to discuss properties that are almost always certain to occur. In
this article, we will begin by reviewing recent work on guaranteeing the robustness of solu-
tions for typical systems, in the sense of prevalence, with a given structure. It was shown
in [8] that robustness in structured systems is equivalent to the absence of a bottleneck in
the graph-theoretic representation of the system. Using this as a starting point, we gener-
alize the concept of bottleneck to a more general form called a ‘shortfall’, which identifies
obstructions to robustness in structured systems with symmetries. We also show how to
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locate shortfalls, which helps to localize parts of the system that cause rank deficiency in
the Jacobian matrix of the steady state.

Section 2 presents the background on structured systems based on recent work in [7,
8]. Structured systems, as conventionally considered, allow only certain variables to occur
in specified equations. Section 3 discusses bottlenecks, which are the only obstructions
to robustness in structured systems. In Section 4, we investigate a more general context
where not only are certain variables restricted from appearing, but we can impose linear
constraints, which we call symmetries, on the allowed variables. In this more general situ-
ation, shortfalls generalize bottlenecks. In Section 5, we discuss the results and outlook for
future research.

2. Background and previous work

In this section, we give a brief synopsis of the results of [7, 8] that will be generalized in the
following section. Themain context of the workwas to examine typical behaviour in ‘struc-
tured systems’, where by definition, only specified variables are allowed in each equation.
(Allowing all variables in all equations is a special case.) An example of a structured system
of differential equations is

ẋ1 = −c1 + f1(x3, x4, x5)

ẋ2 = −c2 + f2(x3, x4, x5)

ẋ3 = −c3 + f3(x1, x5)

ẋ4 = −c4 + f4(x1, x5)

ẋ5 = −c5 + f5(x1, x2, x5). (1)

We will primarily be concerned with properties of steady states, so in fact we will usu-
ally consider setting the left side to zero, which yields the structured system of nonlinear
equations

c1 = f1(x3, x4, x5)

c2 = f2(x3, x4, x5)

c3 = f3(x1, x5)

c4 = f4(x1, x5)

c5 = f5(x1, x2, x5). (2)

Structured systems can be represented by directed graphs, as shown in Figure 1.Wedraw
an edge from node i to node j if variable i is allowed to appear in equation j. Figure 1(a)
is a representation of the system (2). In some modelling scenarios, the directed graph
representation may summarize almost all of the information known to the modeller, for
example, which species relies on another for population changes. In such cases, it is even
more important to understand generic behaviour that is independent of specific details.

We will define the robustness of solutions of systems of nonlinear equations as follows.

Definition 2.1: Let F : U ⊂ R
N → R

M be a C1 function and assume U is an open subset
of R

N . Write F(x) = (f1(x), . . . , fM(x)). We say a point x is robust for F if DF(x) has rank
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Figure 1. Graphical representations of structured systems and symmetric structures. (a) Robust struc-
tured system corresponding to Equation (2), or equivalently, relation (6). (b) Removing two edges results
in a fragile system corresponding to relations (6) and (7). (c) A symmetric structure, as discussed in
Section 4. Blue pairs and green pairs are matched Jacobian entries.

M, and x is fragile if it is not robust. For p in U, we define the solution set

SolSet(p) := {x ∈ U : F(x) = F(p)}. (3)

to be robust if every x ∈ SolSet(p) is robust.

The property of robustness guarantees that a small variation in the model equations does
not destroy the steady-state solution. When modelling physical systems, this is a highly
desirable property. A solution that exists for a given choice of parameters, but does not
persist for nearby values, is likely to fail to successfully represent natural behaviour, where
parameter and model uncertainty are significant factors. The Implicit Function Theorem
guarantees continued existence of a robust solution under small uncertainty: If the Jacobian
of the system at the solution has full rank, the Implicit Function Theorem says that the
solution extends to small perturbations of the system. In [7], this local result was extended
to a global version, which we describe next.

Let U ⊂ R
N be an open set, and let F be any vector space of C∞ functions F : U ⊂

R
N → R

M representing a structured system, meaning that only certain variables are
allowed to appear in each equation. Assume also that F contains all linear functions that
respect the structure. Due to this assumption and the fact that U is open, there is a maxi-
mumpossible rank of the Jacobian of the systemonU, which depends only on the structure;
we denote this rank by r. (See Definition 2.5 for a rigorous definition.) Then Theorem 2.13
of [7] says the following.

Theorem 2.2: For almost every F ∈ F and almost every p ∈ U, SolSet(p) is a C∞-manifold
of dimension N−r and for all x ∈ SolSet, DF(x) has kernel of dimension N−r.

The ‘almost every’ F in the theorem refers to the notion of prevalence [6]. The definition
of a prevalent set in a function space such as F is designed to transfer some of the
properties of full Lebesgue measure in R

n to infinite-dimensional vector spaces. In fact,
prevalent implies dense, is translation-invariant, and agrees with Lebesgue measure in
finite-dimensional subspaces. In addition, countable intersections of prevalent sets are
prevalent.
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The following two propositions follow immediately from Theorem 2.2 and the defini-
tions of robust and fragile.

Proposition 2.3: If r = M, then SolSet(p) is robust for almost every F ∈ F , and almost every
p ∈ U.

Proposition 2.4: If r<M, then p is fragile for every F and every p ∈ U. In particular,
SolSet(p) is fragile for every F and every p ∈ U.

As a result, it is of key importance in structured systems like (2) to know when the
maximal possible rank of the Jacobian matrix is equal to M. To more formally define a
structured system corresponding to a directed graph, we make the following definition.

Definition 2.5: The structure matrix S(G) of a directed graph G is a matrix where the
ij entry is allowed to be nonzero if and only if G has an edge from node j to node i. The
structure matrix is often called an adjacency matrix of the directed graph. A function F is
said to respect a structurematrix S if Sij = 0 implies that ∂Fi

∂xj (x) = 0 for all x. In particular,
letL(S) be the set of all linear functionsAxwhereA is amatrix that respects S. Themaximal
rank of all matrices respecting a structure matrix S is calledmaxrank(S). We say a vector
space F of C1 functions that respect a structure is a structured function space, provided
F includes L(S).

WhenM = N, a classical result [2, 13] states that if the nodes can be divided into disjoint
subsets, each of which can be traversed on the directed graph in a circuit with no repeated
nodes, then generically the Jacobian is nonsingular. This proceeds from the fact that the
determinant, as a function of the matrix entries, has a nonvanishing degreeN term in this
case, and so will be nonzero for a generic choice of matrix entries. This is a feature of the
system (2) shown in Figure 1(a), since there is a single circuit with no repeated nodes, for
example {1→ 3→ 2→ 5→ 4}.

3. Bottlenecks

A more detailed analysis of the maxrank of a directed graph appears in [8], where the
concept of bottlenecks was developed. A bottleneck is a local property of a directed graph
which exists if and only if r = M in Proposition 2.3. In other words, the solution set is
robust if and only there is no bottleneck. This provides modellers (1) a tool to isolate and
analyse the cause of rank deficiency in a structured system and (2) a key principle in design
of robust networks.

Bottlenecks are specific properties of the graphical representation that can localize the
part of the systemwhere rank deficiency is generated. In addition, amethod for locating the
bottlenecks was described in [8]. Bottlenecks, called ‘dilations’ in a slightly different con-
text, were studied for structural observability and controllability by Lin [9], and extended
later [3, 10–12].

In the remainder of this section, we give a brief review of bottlenecks and show how
they can be located. Given a graph representing a structured system of M equations in N
variables, let B be a subset of the nodes of the graph. The backward set of B, denoted by



JOURNAL OF BIOLOGICAL DYNAMICS 5

B←, is the set of all nodes g for which there is an edge starting at g and ending at a node in
B. We say a pair of sets of nodes, B and B←, is a backward k-bottleneck if B has exactly k
nodes more than B←.

A system that has a bottleneck will sometimes have several, but it turns out that there
is a unique most concentrated bottleneck. Let k∗ be the largest k for which there is a back-
ward k-bottleneck. Let (B,B←) be a backward k∗-bottleneck where B has as few nodes as
possible, i.e. it has theminimumnumber of nodes that has themaximum k∗.We call such a
bottleneck aminimax backward bottleneck. The minimax backward bottleneck is unique
if it exists.

There is no bottleneck in Figure 1(a), but in Figure 1(b), we have removed two edges,
disconnecting nodes 3 and 4 from node 2. Note that if we choose B = {2, 3, 4}, then
B← = {1, 5}. Therefore the pair (B,B←) is a backward 1-bottleneck. This is the minimax
backward bottleneck for this graph.

The set of nodes comprising the minimax bottleneck is not always obvious from the
graph. The concept of kernel nodes, described next, allows us to locate the minimax
forward and backward bottlenecks.

Definition 3.1: For a matrix A, we say a vector x is a null vector or a kernel vector if
Ax = 0. The kernel of A, denoted kerA, is the set of all null vectors of A. The graph nodes
of a structured system S = S(G) can be divided into two distinct types:

(1) regular nodes that take the value zero for every vector in ker(A) for almost every
matrix A ∈ L(S) and

(2) kernel nodes that are nonzero in some null vector of A for almost every A ∈ L(S).

The set of kernel nodes is denoted by Bkernel.

Lemma 4.5 of [8] states that every node is either a regular node or a kernel node. The
connection to the generic rank is given by the following result of [8]:

Theorem 3.2 (Bottleneck Theorem): Let S = S(G) be the M × N structure matrix of a
directed graph G. Let r = maxrank(S).

(1) r<M if and only if there is a backward K-bottleneck for K>0. If so, there exists a unique
minimax backward K∗-bottleneck where K∗ = M − r.

(2) The bottle of the minimax backward bottleneck of G is the set of kernel nodes Bkernel of
T = ST.

(3) A graph is robust if and only if there is no backward bottleneck.

As mentioned above, the system in Figure 1(b) has minimax backward bottleneck
B = {2, 3, 4}, which is the set of kernel nodes of the transpose ST of the structure matrix,
according to part (2) of the theorem. It follows that while the system in Figure 1(a) is robust,
the system in Figure 1(b) with two edges deleted is fragile.

Looking at Figure 1 in reverse shows the usefulness of finding the minimax bottleneck.
If we are presented with the fragile system in Figure 1(b), we can see from the directed
graph that there is a backward bottleneck toB = {2, 3, 4}, withB← = {1, 5}. This shows the
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modeller from where the rank deficiency arises, and how to fix the deficiency, by adding
an edge from node 3 or 4 to node 2. Both are added in Figure 1(a).

Alternatively, one can compute the bottleneck from the kernel nodes of ST , according
to Theorem 3.2. The structure matrix S for Figure 1(b) and its transpose are

S =

⎡
⎢⎢⎢⎢⎣

0 0 s13 s14 s15
0 0 0 0 s25
s31 0 0 0 s35
s41 0 0 0 s45
s51 s52 0 0 s55

⎤
⎥⎥⎥⎥⎦ ST =

⎡
⎢⎢⎢⎢⎣

0 0 s31 s41 s51
0 0 0 0 s52
s13 0 0 0 0
s14 0 0 0 0
s15 s25 s35 s45 s55

⎤
⎥⎥⎥⎥⎦ .

Computing the kernel of a matrix ST in this general form yields a one-dimensional ker-
nel spanned by a vector with nonzero entries in the 2, 3 and 4 coordinates, implying the
minimax backward bottleneck is B = {2, 3, 4}.

A simpler version of a bottleneck, and one that motivated this line of research, stems
from the Competitive Exclusion Principle (CEP) from ecology [5], as shown in the
following example.

Example 3.3: Consider an ecological systemwhere the logarithmic growth rates of species
1 and 2 depend only upon species 3,

ẋ1
x1
= −c1 + f1(x3),

ẋ2
x2
= −c2 + f2(x3),

ẋ3
x3
= −c3 + f3(x1, x2, x3), (4)

where x1 and x2 denote the population densities of the predators, and x3 is the prey. Steady
states are defined by the system of equations

f1(x3) = c1,

f2(x3) = c2,

f3(x1, x2, x3) = c3 (5)

which has directed graph shown in Figure 2. Note that the system has a backward
1-bottleneck {3} → {1, 2} (which is the minimax backward bottleneck), and so accord-
ing to Theorem 3.2, the system is fragile, meaning small changes in parameters can erase
the steady state.

This is an illustration of the CEP, discussed in ecology since the time of Darwin, that
holds that two species with the same predator and prey cannot occupy the same niche in
an ecosystem. One species (the more efficient one) is bound to eventually outcompete the
other and force it to extinction. This corresponds to a ‘probability one’ statement math-
ematically, that is at the heart of the Bottleneck Theorem. In fact, Theorem 3.2 can be
viewed as the mathematical equivalent of following the Competitive Exclusion Principle
to its logical conclusion.
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Figure 2. The directed graph that corresponds to the Competitive Exclusion Principle. A model of two
species that depend only on a single third species has only nonrobust solutions.

4. Symmetric structures

In this section, we consider a more general context than the structured systems of the
previous section. Instead of defining structure by completely disallowing variables in equa-
tions (by requiring some ∂fi

∂xj = 0), we allow arbitrary linear relations between entries of the
Jacobian matrix, which we call symmetries.

Definition 4.1: Consider an M × N matrix S with entries Sij. A symmetry of matrix
entries is a linear relation R(S11, . . . , Smn) = 0. A symmetry structure � is any collection
of symmetries of matrix entries. Let F : RN → R

M be a C1 function and denote its par-
tial derivatives by Fij ≡ ∂Fi

∂xj . We say that F respects the symmetry structure � if for every
R ∈ �, we have R(F11, . . . , Fmn) = 0 for all x. In particular, let L(�) be the vector space
of all linear functions F that respect �. We call a vector space F = F(�) of C1 functions
that respect a structure � a structured function space, provided F includes L(�). The
maximal rank of all matrices respecting a symmetry structure � is calledmaxrank(�).

In otherwords, a symmetry structure forC1 functions is a requirement that certain spec-
ified relations hold among the Jacobian entries. In the simplest case, we could require some
partial derivatives to be identically zero. This would correspond to the structure matrix of
a directed graph as in [8].

For example, Figure 1(a) shows a directed graph that represents the relations

F12 = F21 = F34 = F43 = F32 = F42 = F53 = F54 = F11 = F22 = F33 = F44 = 0, (6)

which sets 12 of the possible 25 Jacobian entries to zero. Figure 1(b) shows a directed graph
that represents the six relations above, and in addition,

F14 = F24 = 0. (7)

In a systemwith a symmetry, some Jacobian entries are assumed to be equal to one another.
Figure 1(c) shows a directed graph that enforces the relations (6) and also

F13 − F14 = F23 − F24 = 0.

In other words, the Jacobian entries represented by the blue edges in the graph are assumed
to be equal, and the Jacobian entries represented by the green edges are also assumed to be
equal.

For a system F ∈ C1(RN ,RM) of M equations in N variables, we denote the Jacobian
matrix by ∂F

∂x . If B ⊂ {1, . . . ,M} and C ⊂ {1, . . . ,N} are subsets corresponding to equa-
tions and variables, respectively, then by abuse of notation we denote the submatrix of the
Jacobian of partial derivatives of the functions in B by the variables in C by ∂B

∂C .
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We will be concerned with certain rank deficiencies in the Jacobian matrix. Given a
symmetric structure � and B ⊂ {1, . . . ,M}, let the backward set B← denote the set of
variables that are allowed by� to appear in the equations of B. For example, in Figure 1(a),
if B = {1, 2}, then B← = {3, 4}, while in Figure 1(b), if B = {1, 2}, then B← = {3}. If k>0,
we call the pair (B,B←) a k-shortfall if

maxrank
[

∂B
∂B←

]
= |B| − k

where |B| denotes the number of elements of the set B. It is clear that if a k-shortfall exists
for any set of equations B, the rank of the full Jacobian will be strictly less thanM.

In fact, a symmetric structure may have more than one k-shortfall. The termminimax
k∗-shortfall is reserved for the shortfall with maximum k = k∗ and as small B as possible.
We show in the following theorem that the minimax shortfall is unique.

The following result is a more general form of Theorem 3.2.

Theorem 4.2: (Shortfall Theorem) Let � be a symmetric structure of the M × N matrix S
and set r = maxrank (S).

(1) r<M if and only if there is a k-shortfall for some k>0. If so, there exists a unique
minimax backward k∗-shortfall where k∗ = M − r.

(2) The bottle of the minimax shortfall is the set of kernel nodes Bkernel of the transpose
T ≡ ST.

(3) A graph is robust if and only if there is no shortfall.

Proof: (1) If there is a k-shortfall, then there is a set B (the bottle) of b nodes for which
the submatrix ∂B

∂B← has rank b−k, where B← is the backward set of B. That implies that the
rows of the Jacobian matrix assigned to the nodes of B span rank < b, and so the rank of
the Jacobian must be < M.

Conversely, assume r<M. Let B = Bkernel be the set of kernel nodes of T. According to
Lemma 4.5 of [8], for any node j in B, the set Tj ofN ×Mmatrices respecting T for which
xj = 0 for every x ∈ ker (T) has measure zero. Let b = |B|.

First, note that if B is the empty set, then the intersection of the Tj is a full measure set,
i.e. for almost every A respecting the structure T, ker(A) = {0}, a contradiction to r<M.
Thus b>0. Note that if j is in the complement Bc, then xj = 0 for every vector x in ker(A),
for every A not in the measure zero set Q =⋃

j∈Bc Tc
j .

Consider matrices A in L(�) with symmetry structure matrix T and are not in the set
Q. Renumber the nodes such that B = {1, . . . , b}. Let AB denote the submatrix of first b
columns of A. Since A is not inQ, xb+1 = . . . = xM = 0 for x in ker(A), so we can assume
ker(A) = [U, 0, . . . , 0], where U is a dimension k∗ subspace of Rb where k∗ = M − r. The
space U⊥ is b− k∗ dimensional. For almost every A respecting T, the rows r1, . . . , rN of
the submatrix AB must all be in U⊥.

The columns of the b× N submatrix AT
B of S span only b− k∗ dimensions. Since B←

corresponds to the columns of AT
B that have nonzero entries, rank ∂B

∂B← = b− k∗ and
(B,B←) is a k∗-shortfall. This is the unique minimax k∗-shortfall because the rank of S
isM − k∗ and all nodes in Bmust be included in the minimax K∗-shortfall.

(2) Follows immediately from the proof of (1).



JOURNAL OF BIOLOGICAL DYNAMICS 9

(3) According to Propositions 2.3 and 2.4, robust is equivalent to rank (S) = M. By (1),
this is true if and only if there is no shortfall. �

Example 4.3: The example in Figure 1(c) is an application of the Shortfall Theorem. The
Jacobian matrix of the symmetric structure is

S =

⎡
⎢⎢⎢⎢⎣

0 0 F13 F14 F15
0 0 F23 F24 F25
F31 0 0 0 F35
F41 0 0 0 F45
F51 F52 0 0 F55

⎤
⎥⎥⎥⎥⎦ (8)

where F13 = F14 and F23 = F24. The kernel nodes of ST form the set B = {1, 2, 3, 4}, which
is the minimax shortfall. Moreover, since B← = {1, 3, 4, 5}, with the same cardinality as B,
the BottleneckTheorem3.2 is not applicable.However, it is easy to check that the submatrix
∂B
∂B← has rank equal to 3 = |B| − 1, so the Shortfall Theorem 4.2 implies that the system is
fragile.

The computation of the kernel nodes in a system like (8) can be done in several different
ways. Using a symbolic algebra system like Maple or Matlab will provide a basis for the
kernel, although this approach suffers from poor scaling as the size of the matrix increases.
A quickerway that works (with probability one) is to seed thematrixwith randomnumbers
in the nonzero entries, making sure to respect symmetries, and then computing the kernel
using the reduced echelon form of the randomized matrix to determine the kernel nodes.

Example 4.4: Consider the coupled system of differential equations defined by

ẋ1 = −a1 + g1(x2, x3, x4, x5)

ẋ2 = −a2 + g2(x2, x3, x4, x5)

ẋ3 = −a3 + g3(x2, x3, x4, x5)

ẋ4 = −a4 + g4(x1, x2, x3, x5)

ẋ5 = −a5 + g5(x1, x2, x3, x4) (9)

where g1, . . . , g5 are arbitrary C1 functions. Figure 3(a) displays the directed graph corre-
sponding to the equations. Setting the left-hand sides to zero to solve for steady states yields
a structured system whose Jacobian matrix has a circuit, for example 1→ 2→ 3→ 4→
5. Therefore almost every system of this form gives robust solutions.

Example 4.5: Next, we add symmetries to the coupled system of (9). The system is

ẋ1 = −a1 + (x3 + x4 + x5)g1(x2)

ẋ2 = −a2 + (x3 + x4 + x5)g2(x2)

ẋ3 = −a3 + (x3 + x4 + x5)g3(x2)

ẋ4 = −a4 + g4(x1, x2, x3, x5)

ẋ5 = −a5 + g5(x1, x2, x3, x4) (10)
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Figure 3. Graphical representations of structured systems and symmetric structures. (a) Robust struc-
tured system corresponding to relations (9). (b) Robust system in (a) is changed to fragile symmetric
system when some edges are identified, corresponding to system (10). Blue, green and red triples are
matched Jacobian entries. (c) With an added edge from node 1 to node 2, robustness is restored in the
symmetric structure.

where g1, . . . , g5 are arbitrary C1 functions. Figure 3(b) displays the directed graph corre-
sponding to the equations. Setting the left-hand sides to zero yields a symmetric structure
with Jacobian matrix

S =

⎡
⎢⎢⎢⎢⎣

0 F12 F13 F14 F15
0 F22 F23 F24 F25
0 F32 F33 F34 F35
F41 F42 F43 0 F45
F51 F52 F53 F54 0

⎤
⎥⎥⎥⎥⎦ (11)

with relations

F11 = F21 = F31 = F44 = F55 = 0,

F13 = F14 = F15,

F23 = F24 = F25,

F33 = F34 = F35.

There is no bottleneck, but there is a shortfall. In fact, theminimax 1-shortfall can be found
from the Shortfall Theorem to be B = {1, 2, 3}, consisting of the kernel nodes. Then B← =
{2, 3, 4, 5}, and the Jacobian submatrix ∂B

∂B← has rank 2. Therefore (10) has only fragile
steady states.

To repair this shortfall, only one edge has to be added to the graph: For example, con-
necting 1→ 2 suffices, as shown in Figure 3(c). Then B is no longer a shortfall, and in fact
the computation yields no kernel nodes. Thus according to the Shortfall Theorem, almost
every instantiation of the revised system (in the sense of prevalence) has robust equilibria.

5. Discussion

Model uncertainty is an important factor in natural systems such as population networks,
food webs, as well as coupled systems in general (see, e.g. [4] and references therein). Mod-
els that are stable with respect to small changes in their defining equations are more likely
to track natural behaviour. These models produce ‘robust’ solutions that remain solutions
under small perturbations of the model parameters.
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In recent work, the concept of bottlenecks was proposed as a graphical mechanism to
explain obstructions to robustness in coupled systems whose defining equations allow or
disallow certain variables, called structured systems. In the present work, we have gener-
alized this concept to systems that, in addition to allowing or disallowing variables, also
allow equalities between coupling strengths, which we call symmetries. These symmetric
structures therefore have obstructions to robustness, called shortfalls, that aremore general
forms of bottlenecks. In addition, we show how to find the minimax shortfall by a simple
kernel computation.

Bottlenecks and shortfalls represent important organizing principles for understanding
and control of structured systems. In [1], special die-out Lyapunov functions are created
for each bottleneck that show when species must die out. The Lyapunov functions use the
kernel vectors, each kernel vector giving a different Lyapunov function.

Note that the description of steady states given here is independent of the stability of the
dynamics. The persistence of steady states under small changes in parameters is a funda-
mental aspect of models that is sometimes underappreciated and should be considered
when formulating general properties of models. These results stress the importance of
robustness as a central issue in effective modelling of dynamics in nature.
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