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ROBUSTNESS OF SOLUTIONS OF ALMOST EVERY SYSTEM OF
EQUATIONS∗

SANA JAHEDI†, TIMOTHY SAUER‡, AND JAMES A. YORKE§

Abstract. In mathematical modeling, it is common to have an equation F (p) = c, where the
exact form of F is not known. This article shows that there are large classes of F where almost
all F share the same properties. The classes we investigate are vector spaces F of C1 functions
F : RN → RM that satisfy the following condition: F has “almost constant rank” (ACR) if there is
a constant integer ρ(F) ≥ 0 such that rank(DF (p)) = ρ(F) for “almost every” F ∈ F and almost
every p ∈ RN . If the vector space F is finite dimensional, then “almost every” is with respect to the
Lebesgue measure on F , and otherwise, it means almost every in the sense of prevalence, as described
herein. Most function spaces commonly used for modeling purposes are ACR. In particular, we show
that if all of the functions in F are linear or polynomial or real analytic, or if F is the set of all
functions in a “structured system”, then F is ACR. For each F and p,, the solution set of p ∈ RN

is SolSet(p) := {x : F (x) = F (p)}. A solution set of F (p) = c is called robust if it persists despite
small changes in F and p. The following two global results are proved for almost every F in an
ACR vector space F : (1) Either the solution set SolSet(p) is robust for almost every p ∈ RN , or
none of the solution sets are robust. (2) The solution set SolSet(p) is a C∞-manifold of dimension
d = N − ρ(F). In particular, d is the same for almost every F ∈ F .

Key words. nonlinear equations, structured systems, robustness, generic rank, constant rank
theorem, implicit function theorem, prevalence
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1. Introduction. The competitive exclusion principle (CEP), long discussed
in ecological literature, holds that two predators that depend solely on the same
prey species cannot coexist. More precisely, the CEP says the two predators whose
population density depends purely on the population density of a single prey species
cannot coexist unless they benefit precisely equally from the prey. This scenario is
very unlikely in natural circumstances. These dynamics can be described by the
following system of equations:

ẋ1
x1

= −c1 + f1(x3),

ẋ2
x2

= −c2 + f2(x3),(1.1)

ẋ3
x3

= −c3 + f3(x1, x2, x3),
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f1(x3) = c1
f2(x3) = c2

f3(x1, x2, x3) = c3

(a)

31 2

(b) (c)

DF =

\left[  0 0 f13
0 0 f23
f31 f32 f33

\right]  

Fig. 1. A fragile structure motivated by CEP. (a) A structured system of equations describing
the positive steady states of the system of equations (1.1). For example, f1 in the first equation is
allowed to depend on x3, but not x1 or x2. This fact is represented in the two other parts of this

figure. (b) The structure matrix DF (x) = [ ∂fi
∂xj

(x)]. (c) The directed graph of the system. An edge

from node i to node j in the graph means that variable i is allowed to appear in equation j. Systems
of this form cannot have a robust solution, so any solution that exists is fragile.

where x1 and x2 denote the population densities of the predators, and x3 is the prey.
To search for steady states of the system, set the left sides of the equations to zero,
yielding the system of equations

f1(x3) = c1,

f2(x3) = c2,(1.2)

f3(x1, x2, x3) = c3,

illustrated in Figure 1(a). The first two equations share one unknown, x3. There
may be a solution of these equations with positive x1, x2, x3 for some exceptional
c = (c1, c2, c3). However, it will fail to be robust in the sense that the set of solutions
continues to exist under small perturbations of the equations without disappearing
(or, more generally, changing the dimension of the set of solutions). In fact, for a
dense subset of nearby choices of c1, c2, f1, f2, there will be no solutions.

The system of equations (1.2) is a “structured system” of equations in the sense
that only certain variables are allowed to appear in certain equations. In this article,
we prove some general facts about when robust solutions of structured systems can
be expected and when they cannot, as in the above example.

First note that if the system of equations (1.2) has a solution such as p =
(p1, p2, p3), then F (p) = (c1, c2, c3). Thus we may write the system of equations
(1.2) as F (x) = F (p) and consider the “solution set” for p,

SolSet(p) := {x : F (x) = F (p)}.(1.3)

For concreteness, we look at a particular example of system (1.2).

Example 1.1.

x23 = c1,

x43 + 1 = c2,(1.4)

x21 − x2 + x43 = c3.

Assume that p is a solution, so c1 = p23, c2 = p43 + 1, and c3 = p21− p2 + p43. Two facts
are apparent:

(1) Although the system of equations (1.4) has a solution p, a dense subset
of small C∞ perturbations of the equations F will not have a solution. Thus
this solution p is not robust. We can see this from the first two equations

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ROBUSTNESS OF SOLUTIONS 1793

alone, which would imply that c21+1 = c2, which only holds for special choices
of c.
(2) If p is a solution of the system of equations (1.4), then SolSet(p) is a
one-dimensional C∞-manifold for every p. In fact, the first two equations
will imply x3 = ±p3. The last equation implies x21 − x2 = p21 − p2, Therefore

SolSet(p) = {(x1, x21 − p21 + p2, p3)} ∪ {(x1, x21 − p21 + p2,−p3)}

for all x1 ∈ R, which is a union of one-dimensional curves (parabolas) in R3.

One of the main conclusions of this article is that the properties of Example 1
are quite general. Fix a structure, that preassigns particular variables to particular
equations, as in (1.2). Then for a dense subset of systems of C∞ functions F : U ⊂
RN → RM with that structure, the following are true:

1. Either

(a) SolSet(p) is robust for almost every p in the domain U , or
(b) SolSet(p) is robust for no p ∈ U . See Corollary 2.6.

2. SolSet(p) is a C∞-manifold for almost every p ∈ U . See Theorem 2.13.
We will actually prove a stronger result, that guarantees the above statements

for a “prevalent” subset of functions [13, 6, 9]. Prevalent implies dense, and is a
generalization of “almost every” to infinite-dimensional function spaces. Further-
more, we show that distinguishing between cases 1(a) and 1(b) is a simple rank
computation.

A simple illustration of case 1(b) is the example F : RN → R, F (x) = x21 + x22 +
· · ·+x2N = c.. Then SolSet(p) is an (N − 1)-dimensional sphere for almost all p ∈ R3.
The only exception is p = 0. Our generalization of this example will be the following:
For almost every real analytic function F : RN → R and p ∈ RN , rank(DF (p)) = 1,
and SolSet(p) is an (N − 1)-manifold for almost every F (in the sense of prevalence)
and almost every p (in the sense of Lebesgue measure).

The system of equations (1.2) of CEP falls into category 1(b). The next example
shows an instance from category 1(a).

Example 1.2. A robust example. The nonrobust solution of (1.2) can be made
robust. Adding another prey species (node 4) to Figure 1(c) yields the directed graph
in Figure 2(c), and the equations

f1(x3, x4) = c1,

f2(x3, x4) = c2,(1.5)

f3(x1, x2, x3) = c3,

f4(x1, x2) = c4.

f1(x3, x4) = c1
f2(x3, x4) = c2

f3(x1, x2, x3) = c3
f4(x1, x2) = c4

(a)

4

31 2

(b) (c)

DF =

\left[    
0 0 f13 f14
0 0 f23 f24
f31 f32 f33 0
f41 f42 0 0

\right]    

Fig. 2. A robust family of systems. For almost every F of this form, DF (x) is nonsingular, so
the system will have robust solutions. (a) The structured system of equations. (b) The Jacobian is
generically of rank 4. (c) The directed graph of the system.
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D
ow

nl
oa

de
d 

01
/0

4/
23

 to
 1

29
.1

74
.2

40
.2

13
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



1794 SANA JAHEDI, TIMOTHY SAUER, AND JAMES A. YORKE
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Fig. 3. A signaling pathway leading to cancer. This structure graph represents the Jack/stat
signaling pathway represented by system of equations (3.3). Every 12 by 12 matrix S that respects
the above structure has rank at most 11. By Corollary 2.6 this signaling pathway is not robust.

Let F2 be the vector space of all C1 functions F = (f1, f2, f3, f4), where the fi are
restricted to the form shown in Figure 2(a).

We will show that for almost every F ∈ F2 and for almost every x = (x1, . . . , x4)
that is a solution of the system in Figure 2(a); each sufficiently small perturbation of
c1, c2, c3, c4 also has a solution. Thus, such solutions are allowed to exist in naturally
occurring circumstances.

An even simpler case of Case 1(a) is the real analytic equation cosx = c, where
F : R → R is given by F (x) = cosx. For almost every p in the domain, F ′(p) is
nonzero, and the implicit function theorem implies that the solution set is nonempty
for small changes in c.

In applications, there is often uncertainty in the exact details of the equations.
That motivates our focus on vector spaces of systems for each fixed structure, such
as the structures in Figures 1 and 2. More generally, we will propose a condition
on vector spaces F that implies that, for almost all F ∈ F and p ∈ U , the solution
sets (1.3) have the same properties, such as almost all being robust, fragile, or having
the same dimension. When the vector space is infinite dimensional, we will rely on
the concept of prevalence to define almost every, which is stronger than (implies) the
notion of a dense subset of the vector space of C∞ functions. A review of facts about
prevalence is given in Appendix A.

In the next section we define our terminology. In section 3 we offer some applica-
tions, in section 4 we provide proofs of the theorems, and discuss relations with prior
work in section 5.

2. Function spaces of almost constant rank. Any vector space L of M ×N
matrices has the property that almost every matrix in the vector space has the same
rank, equal to maxA∈L rank(A); see Proposition 4.1. We will argue that this key fact
extends to many examples of vector spaces of nonlinear functions.

Definition 2.1. Let F : U ⊂ RN → RM be a C1 function, where U is an open
subset of RN . We say F has almost constant rank (ACR) if there is an integer ρ ≥ 0
such that rank(DF (x)) = ρ for almost every x ∈ U . Define

maxrank(F ) = max
x∈U

rank(DF (x)).(2.1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ROBUSTNESS OF SOLUTIONS 1795

If F is an ACR function such that rank(DF (x)) = ρ for almost every x ∈ U , then
ρ =maxrank(F ), because rank(DF (x)) takes its maximum value on an open set of x.

We note below that real analytic functions have almost constant rank when U is
connected. However, there are C∞ functions that do not have almost constant rank,
such as a monotonic C∞ function F : R→ R for which dF

dx (x) = 0 if and only if x ≤ 0.
Then rank(DF (x)) = 1 if x > 0 and 0 otherwise.

Definition 2.2. For a vector space F of functions F , define

maxrank(F) = max
F∈F,x∈U

rank(DF (x)).(2.2)

We say the vector space F has ACR if for almost every F ∈ F and almost every x,
rank(DF (x)) = maxrank(F).

Definition 2.3. We call an ACR function F ∈ F a rank maximizer for the
vector space F if maxrank(F ) = maxrank(F).

Throughout this paper, we deal with vector spaces F of functions that can be
finite or infinite dimensional. By the phrase “almost every F ∈ F ,” when F is finite
dimensionalfinite-dimensional, we mean almost every with respect to the Lebesgue
measure on the vector space F . If F is infinite dimensional, we mean almost every in
the sense of prevalence. See Appendix A for a short primer on prevalence.

It is clear that every ACR vector space contains a rank maximizer. The next
theorem states the converse. See section 4 for the proof.

Theorem 2.4 (ACR Vector Space). Let F be a vector space of C1 functions
that has a rank maximizer. Then F is ACR.

Definition 2.5 (Robust). Let F : U ⊆ RN → RM . We say a point x is
robust for F if DF (x) has rank M , and x is fragile if it is not robust. A solution
set SolSet(p) is robust if every x ∈ SolSet(p) is robust. That implies SolSet(p) persists
despite small changes in F and p.

This definition is suggested by the implicit function theorem, which says that if
rank DF (x) = M , each solution of F (x) = c persists for small changes in F and c.
The following result is an immediate consequence of the definition.

Corollary 2.6. Let F : U ⊆ RN → RM be an ACR function. Then either

(a) SolSet(p) is robust for almost every p in the domain U , or
(b) SolSet(p) is robust for no p ∈ U .

Many typical function spaces are ACR, including any vector space containing
only real analytic functions. This fact follows from Theorem 2.4 and Proposition 2.8,
which in turn depend on a basic fact about real analytic functions for which Mityagin
published an elementary accessible proof in 2015 and 2020.

Proposition 2.7 (See [8]). Let U be an open connected subset of RN . Let
F : U → RM be a real analytic function that is not identically zero. Then the set of
solutions of F (x1, . . . , xN ) = 0 has Lebesgue measure zero.

Proposition 2.8. Let U be an open connected subset of RN . Let F : U → RM
be a real analytic function. Then rank(DF (x)) is constant for almost every x ∈ U .
Hence, F is ACR.

Proof. Let ρ be the maximal rank of DF (x) for x ∈ RN . Hence, for some
x, DF (x) has a ρ × ρ minor with determinant given by a real analytic function

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1796 SANA JAHEDI, TIMOTHY SAUER, AND JAMES A. YORKE

P (x1, . . . , xN ) that is not identically zero. By Proposition 2.7, the function P (x1, . . . ,
xN ) is zero only on a set of measure zero, and elsewhere it is nonzero.

Since Proposition 2.8 guarantees that every vector space of real analytic functions
on a connected open set has a rank maximizer, it follows that any vector space F
consisting entirely of either linear functions or polynomial functions always has a rank
maximizer. In each of these cases, Theorem 2.4 implies the vector space is ACR. In
this sense such vector spaces are like spaces of linear maps.

Definition 2.9. A structure matrix S is a matrix where certain entries are
allowed to be nonzero and the rest are zero. A function F respects a structure matrix
S where ∂Fi

∂xj
(x) = 0 for all x when Sij = 0. In particular, let L(S) be the set of

all functions Ax, where A is a matrix that respects S. We say a vector space F of
C1 functions that respect a structure is a structured function space, provided F
includes L(S).

Examples of structure matrices are found in Figures 1(b) and 2(b).

Proposition 2.10. Every structured function space F is ACR. In particular,
the vector space of all C∞ functions that respect a structure is ACR.

Proof. Choose F in a structured function space F and x ∈ U so that rank(DF (x))
= maxrank(F). Then from the definition of structured function space, the matrix
A := DF (x) also respects the structure and is in F and its Jacobian DA(x) = A
is independent of x. Hence A is a constant-rank function A ∈ F whose rank is
maxrank(F), so it is a rank maximizer. Since A has constant rank, by Theorem 2.4,
F is ACR.

Example 2.11. A vector space of functions that is not a structured system.
For fixed nonzero constants a and b, let F be a vector space of functions F (x) :=

(f1, . . . , f4) of the form

f1(x1, x2, x3, x4) = c1,

f2(x1, x2, x3, x4) = c2,(2.3)

f3(ax1 + bx2) = c3,

f4(ax1 + bx2) = c4.

Imagine that this system represents two predators, species 3 and 4, and two prey
species 1 and 2, with the assumption that the two prey species both provide the preda-
tors with the same nutrition which is proportional to ax1 + bx2. So the predators are
competing what becomes a single resource ax1+bx2 even if the prey look very different.
One of the predators will almost certainly die, according to the CEP.

For F ∈ F , there are no robust solutions because rank(DF (x)) < 4 for all x ∈ U .
Since the functions f1 and f2 are functions of a single variable, we write f ′1 and f ′2
for their derivatives. In fact, it is clear from the Jacobian

DF =


f11 f12 f13 f14
f21 f22 f23 f24
af ′3 bf ′3 0 0
af ′4 bf ′4 0 0

(2.4)

that maxrank(F ) is three for F ∈ F . In particular

[
af ′3 bf ′3
af ′4 bf ′4

]
has determinant

zero. For this example, we aim at simplicity. For nonzero a and b, there is a change

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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ROBUSTNESS OF SOLUTIONS 1797

of variables that changes F into a structured system, but that is not true of more
complicated systems.

Theorem 2.13 below and its corollary characterize the regularity of general solu-
tion sets, whether they are robust or fragile. The following definition says a function
F essentially partitions the domain U into manifolds when the sets SolSet(p) are
manifolds for almost every p.

Definition 2.12. Let U be an open subset of RN . We say F : U → RM is
“d-flat” if SolSet(p) is a d-dimensional manifold for almost every p ∈ U . We say F
is “flat” if it is “d-flat” for some d.

This definition is also motivated by the implicit function theorem. If rankDF (x) =
ρ, then SolSet(x) is an (N − ρ)-dimensional C∞ manifold in a neighborhood of x. In
this article, we use the term manifold to mean C∞ manifold without boundary. Hence
if U = RN , a sphere {x : ‖x‖ = 1} is a manifold, but a closed disk {x : ‖x‖ ≤ 1}
is not. A manifold can be either compact or unbounded. It can have a countable
number of components, as in the M = N = 1 case of F (x) = cosx, where SolSet(x)
is a 0-manifold for each x ∈ R having countably many components.

The archetypal example of a flat function F : RN → RM is a linear function. Let
ρ be the dimension of F (RN ). For any p ∈ RN , SolSet(p) is a (N − ρ)-dimensional
hyperplane. In the general definition of flat, we allow a measure zero set of exceptional
p. Another example of a nonlinear flat function is the equation F (x1, x2) = x21 + 2x22.
Here SolSet(x1, x2) is an ellipse for all (x1, x2) 6= (0, 0).

As an example of a nonflat C∞ function, where M = N = 1, consider F (x)
which is zero for x ≤ 0, and is strictly monotonically increasing for x > 0, such as
F (x) = exp(− 1

x ) for x > 0. Note that for x ≤ 0, SolSet(x) is one dimensional while
for x > 0, SolSet(x) is a single point, violating the definition of flat. That is, SolSet(x)
does not “have the same dimension except for a measure zero exceptional set of x,”
In addition, for x < 0, SolSet(x) is (−∞, 0] a “manifold with boundary,” which also
violates our definition.

The following result shows that the ACR property is a sufficient condition for
flatness.

Theorem 2.13 (the flat theorem). Let F : U ⊂ RN → RM be a C∞ function.
If F is ACR, then F is d-flat, with dimension d = N− maxrank(F ).

If F is ACR and d = N− maxrank(F ), then for almost every p ∈ U , SolSet(p)
is a d-dimensional manifold and the tangent space of SolSet(p) at p is the kernel of
DF (x).

The proof of the above theorem is given in the next section. It uses Sard’s 1965
theorem [12], which is a considerable generalization of his better known 1942 result
[11].

For a function F we say a point p is exceptional if rank(DF (p)) < maxrank(F ).
Let EF denote the set of exceptional points of F . The proof of Theorem 2.13 requires
us to show not only that EF has measure zero, but that the union of SolSet(p) over
all p ∈ E also has measure zero. The following example shows how SolSet(p) can be
much larger than p for an exceptional point p.

Example 2.14. A simple but nontrivial application of Theorem 2.13 is the function
F (x1, x2) = x1x2 from R2 to R1. The function F is ACR because rank DF (x) is one
except at x = (0, 0). The conclusion of the theorem is that SolSet(p) is a smooth C∞

manifold of dimension one, the union of two branches of a hyperbola, except for p on

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1798 SANA JAHEDI, TIMOTHY SAUER, AND JAMES A. YORKE

either of the x1 or x2 axes. Then, the solution set is the union of the axes, which is
not a manifold.

Note that for points p = (x1, 0) or (0, x2) with x1 6= 0 or x2 6= 0, the implicit
function theorem implies the manifold property locally, but the solution set SolSet(p)
is globally the union of the axes—not a manifold. Therefore these points p lie in the
measure-zero set where flatness fails.

The surprising fact about Theorem 2.13 is that the same behaviors seen in the
example also follow for every C∞ functions F , as long as the ACR property holds.
Furthermore, the following result is an immediate corollary of Theorems 2.4 and 2.13.

Corollary 2.15. Assume F is an ACR vector space of C∞ functions F : U →
RM . Then almost every F ∈ F is d-flat with dimension d = N−maxrank(F).

3. Applications. In this section we discuss examples that illustrate Corollary
2.6 and Theorem 2.13. Systems of equations collected into vector spaces are common-
place in engineering applications. To begin, consider the following simple example of
mechanical linkage problems in the spirit of those in [4, 14, 17].

Example 3.1. The robotic arm has two interior joints, at u1 ∈ R3 (the elbow) and
u2 ∈ R3 (the wrist), each of which is considered a variable. One end is fixed at a pivot
point s1 ∈ R3, the shoulder, and the other end is fixed at a pivot point s2 ∈ R3, the
end of a hand. The joint positions u1 and u2 satisfy the following length restrictions:

||s1 − u1||2 = c1,

||s2 − u2||2 = c2,(3.1)

||u2 − u1||2 = c3.

More generally the equations for u1 and u2 have the following form:

f1(u1) = c1,

f2(u2) = c2,(3.2)

f3(u1, u2) = c3.

Write p = (u1, u2) ∈ R6 and F = (f1, f2, f3). Theorem 2.13 implies the following
global result. Almost every C∞ function F : R6 → R3 that has the form (3.2) has the
following property: For almost every p ∈ R6, SolSet(p) is a manifold of dimension 3.

Example 3.2. Consider the ordinary differential equation

ṁ1 = f1(m1, p1, p2),

ṁ2 = f2(m2, p1),

ṗ1 = f3(m1, p1),

ṗ2 = f4(m2, p2)

modeling a two-gene regulatory network [2]. Here mi, pi represent the concentrations
of mRNA and protein of gene i for i = 1, 2. The model assumes that gene 1 is an
activator/regressor of genes 1 and 2, and gene 2 is an activator/regressor of gene 1
only. To find equilibria of the network we set the left sides to zero. Let F denote the
function space of C∞ functions F = (f1, f2, f3, f4) : R4 → R4 of this form, which is
ACR by Proposition 2.10. Then Corollary 2.6 states that either solution is robust for
almost every F ∈ F , or fragile for almost every f ∈ F . It is easy to check that the
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ROBUSTNESS OF SOLUTIONS 1799

maximum rank of the 4 × 4 Jacobian of the system is equal to 4, so the former case
holds.

Example 3.3. The following structure graph represents the “JaK (Janus kinase)
/Stat” signaling pathway. There is clinical evidence that confirms that Jak/Stat sig-
naling pathway is often activated in hematologic cancers [16]. Therefore, understand-
ing this signaling pathway could help in designing more efficient targeted therapies
to suppress this pathway. This graph is motivated by model MedB-1 in [10]. For
the convenience of the reader we write the structured system associated with model
MedB-1 below.

Rec ẋ1 = f(x1, x2),
Rec i ẋ2 = f2(x1, x2),

IL13 Rec ẋ3 = f3(x1, x3, x7),
p IL13 Rec ẋ4 = f4(x3, x4, x7),

p IL13 Rec i ẋ5 = f5(x4, x5),
JAK2 ẋ6 = f6(x3, x4, x6, x7, x11),

pJAK2 ẋ7 = f7(x3, x4, x6, x7, x11),
STAT5 ẋ8 = f8(x7, x8, x9),

pSTAT5 ẋ9 = f9(x7, x8, x9),
SOCS3mRNA ẋ10 = f10(x9),

SOCS3 ẋ11 = f11(x10, x11),
CD274mRNA ẋ12 = f12(x9).

(3.3)

The above pathway starts by binding an enzyme called IL13 to receptor Rec (vari-
able x1) and ends up in the production of two mRNAs, CD274mRNA (x12) and
SOCS3mRNA (x10). What triggers the transcription of these two mRNAs is a mole-
cule called pSTAT5 (x9). Once x9 is produced, either it triggers the transcription of
CD274mRNA or SOCS3mRNA. If a suppressor gene is used to block the transcription
of CD274mRNA, then the process of translation of protein SOCS3 from SOCS3mRNA
will be a robust path and it will not be sensitive to perturbations.

The vector space of functions that respects this structure has maxrank 11. Hence,
Theorem 2.13 implies that almost every steady state solution to the above system lies
on a one-dimensional manifold. On the other hand, by knocking out the node x12
(suppressing the gene that leads to production of CD274mRNA), the above struc-
ture would be robust to perturbations. One may use such a method to assess what
will happen under a certain treatment regimen. For example, blocking the produc-
tion of CD274mRNA (x12) using gene suppressors will make the alternative pathway
(production of SOCS3mRNA) robust.

Example 3.4. Consider the “trophic” ecosystem of three predator species and
two prey species illustrated in Figure 4. This is a slightly more complicated version
of Figures 1 and 2. Let F be the function space of structured systems of this form.
Note that the Jacobian matrix has the form

DF =


0 0 0 f14 f15
0 0 0 f24 f25
0 0 0 f34 f35
f41 f42 f43 0 0
f51 f52 f43 0 0

(3.4)
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1800 SANA JAHEDI, TIMOTHY SAUER, AND JAMES A. YORKE

1 2 3

4 5

Fig. 4. Trophic systems. Predator species numbered 1, 2, and 3 interact with prey species 4, 5,
with no intralevel interactions. The system represented by this graph cannot have robust equilibrium
solutions. Adding one well-placed arrow, however, changes the structured system into one with
robust solutions for almost every choice of C∞ functions.

1 2 3 4 5 6 7

8 9
10

11 12 13 14 15

16 17 18 19

20 21 22 23 24 25 26

Fig. 5. The graph represents a proposed ecosystem of Solé and Montoya in [15]. The max
rank of the Jacobian of the equilibrium equations for the 26 species is 20. No solutions are robust.
By Theorem 2.13, for almost every F of this form, for almost every p, solution set solset(p) is a
6-dimensional C∞ manifold in the domain R26.

which has max rank 4, and is fragile for every F ∈ F . According to Theorem 2.13,
SolSet(p) is a one-dimensional manifold for almost every F ∈ F .

Note that adding one more connections to the network, say an arrow from predator
species 1 to predator species 2, changes the max rank to 5. In this case, Corollary
2.6 implies that solutions are robust for almost every F ∈ F . Therefore, unlike the
original system, the revised system has plausible biological solutions.

Example 3.5. Figure 5 shows an ecosystem proposed by Solé and Montoya in
[15]. One can show that in this 26-species system, the max rank of the Jacobian
matrix is 20. Therefore robust solutions do not exist. According to Theorem 2.13,
when solutions do exist, they belong to 6-dimensional C∞ manifolds for almost every
F : R26 → R26 in the structured function space of the system.

4. Proofs of theorems. In this section, we prove Theorems 2.4 and 2.13. We
will find versions of Fubini’s theorem helpful in several ways.

To make clear what almost every and “measure 0” mean, we sometimes write
Leb-almost every when we mean Lebesgue measure almost every, and write Lebd to
denote ad-dimensional Lebesgue measure. We denote Lebesgue measure on a finite-
dimensional Euclidean space Y by Leb(Y ).
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ROBUSTNESS OF SOLUTIONS 1801

Fubini theorem. Let X and Y be finite-dimensional Euclidean spaces. Let E
be a measurable subset of X × Y . Then E has Leb(X × Y ) measure zero if and only
if for Leb(Y ) almost every y ∈ Y , (X × {y}) ∩ E has Leb(X) measure zero.

In the following result, there are infinitely many linear coordinate choices one
could use to define Lebesgue measure on Y , but the resulting Lebesgue measures all
agree on which sets have measure 0.

Fubini corollary. Let X and Y be finite-dimensional vector spaces with X ⊆ Y .
Let E be a measurable subset of Y .

Then E has measure zero in Y if and only if

(X + y) ∩ E has Leb(X) measure zero for almost every y ∈ Y,(4.1)

where Leb(X) measure zero means with respect to the translated Lebesgue measure
on X + y.

We will use the above Fubini corollary by showing that if there is a subspace X
for which the property (4.1) holds, then it holds for every subspace X. Below in the
proof of Theorem 2.4, we apply this indirectly for Y of dimension N + 1 and we use
two choices of X, one with dimension 1 and the other with dimension N .

The following maximal rank result for a vector space of linear functions is ele-
mentary and is included as an illustrative example of an almost every property and
as a method of proof we use later. In particular, the vector space V in Proposition
4.1 is ACR.

Proposition 4.1. Let V be a subspace of M × N matrices RMN . Let ρ =
maxA∈V rank(A). Then almost every matrix A in V has rank ρ (almost every with
respect to Lebesgue measure on V ).

Proof. Let B be a matrix in V with maximal rank(B) = ρ. We will show that
for each A ∈ V , rank(A + cB) = ρ for almost every scalar c. There is at least one
nonsingular ρ× ρ submatrix Bρ of B. The corresponding ρ× ρ submatrix of A+ cB
has a determinant that is a degree ρ polynomial in c. We need to show the polynomial
is not identically zero. It equals cρ · detρ(

1
cAρ + Bρ) for c 6= 0. It is not identically

zero since for large c, det( 1
cAρ + Bρ) approaches detρ(Bρ), which by assumption is

nonzero. By the fundamental theorem of Algebra, A + cB has rank ρ for all but a
finite set of c. Now the Fubini corollary applies, where y = A, Y = V , and X is
the one-dimensional subspace including B, and E is the exceptional subset of V of
matrices with rank < ρ.

Proof of Theorem 2.4. Let ρ = maxrank(F). Let Fmax be a rank maximizer
function in F . Then, rank(DFmax(x)) = ρ for almost every x ∈ U .

Let Fubini corollary subspace X be the one-dimensional subspace of F consisting
of the functions cFmax for c ∈ R. Define Uρ := {x : rank(DFmax(x)) = ρ}. To
prove the theorem, it is sufficient to show that for each F ∈ F , F + cFmax is a rank
maximizer for almost every c ∈ R, i.e., for each F , for almost every x ∈ Uρ,

rank(D(F + cFmax)(x)) = ρ for almost every c ∈ R.(4.2)

Fix an F . Let E = {(x, c) : rank(D(F + cFmax)(x)) < ρ} and Ex = {(y, c) ∈ E : y =
x}.

Since c ∈ R, we will first show Ex has one-dimensional measure zero for each
x ∈ Uρ. For each x ∈ Uρ, apply the argument in the proof of Proposition 4.1 (where a
ρ×ρ submatrix is chosen) and conclude that Ex contains at most finitely many points
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1802 SANA JAHEDI, TIMOTHY SAUER, AND JAMES A. YORKE

and so has measure 0. Apply the Fubini corollary to conclude that since Lebesgue
almost every “slice” Ex of E has measure 0, so does E.

Next we switch the roles of x and c and prove that for almost every c,

rank (D(F + cFmax)(x)) = ρ for almost every x ∈ U.(4.3)

That is, F + cFmax is a rank maximizer for almost every c ∈ R.
Define Ec := {(x, s) ∈ E : s = c}. Above by using Fubini’s theorem we showed

that the set E has measure zero, which implies by Fubini’s theorem that for almost
every c ∈ R, Ec has measure zero, proving (4.3).

The Hausdorff dimension of a set can be defined by first defining measure zero
for a Hausdorff measure of dimension s, which is an extension of Lebesgue measure
zero.

Definition 4.2. We say that B has s-Hausdorff measure zero if for each
ε > 0 there is a countable cover of B by sets for which the sum of the sth powers
of the “diameters” of the covering sets is less than ε. The diameter of a set C is
sup ‖x − y‖ over x, y ∈ C. Let d be the infimum of s for which B is s-Hausdorff
measure zero. Then d is the Hausdorff dimension of B. We will also encounter
a ρ-dimensional Hausdorff measure on a manifold of dimension ρ, in which case the
Hausdorff measure equals the Lebesgue measure of the manifold.

Notation for Lemma 4.3 and its proof. Let F : U ⊂ RN → RM be a C∞

function, and define ρ := max
x∈U

rank(DF (x)). Define Uρ := {x ∈ U : rank(DF (x)) =

ρ}, an open subset of RN . As mentioned above, Lebk denotes thek-dimensional
Lebesgue measure.

Define Aρ−1 := {F (x) : x ∈ U and rank(DF (x)) ≤ ρ− 1}. Sard [12] proved that
Aρ−1 has Hausdorff dimension ≤ ρ − 1. Of course there may also be x′ for which
F (x′) ∈ Aρ−1 and rank(DF (x′)) = ρ.

For any set A ⊂ RM , let F−1(A) = {x : F (x) ∈ A}. For the proof of Theorem
2.13 we need to show that Uρ ∩ F−1(Aρ−1) has measure 0 in RN .

Lemma 4.3. Let A ⊂ RM have ρ-Hausdorff measure 0. Then Uρ ∩ F−1(A) has
Lebesgue measure 0.

Proof. Assume the notation in the lemma. We will prove that if A has ρ-Hausdorff
measure 0 and B = Uρ ∩ F−1(A), then B has measure 0 in RN .

Suppose the contrary, that B has positive LebN -measure. Choose a point q ∈ Uρ
so that every neighborhood Uq of the point p intersects B in a set of positive LebN -
measure. The constant rank theorem (Theorem 11.1 in [18]) says that under the
above hypothesis, there is a neighborhood Uq of q in Uρ on which F is the projection:

F (x1, . . . , xN ) = (x1, . . . , xρ, 0, . . . , 0) ∈ RM(4.4)

for some smooth choice of coordinates in the domain Uq and range RM . We apply
the Fubini theorem to the projection (4.4). Let X be the subspace of RN of points
(x1, . . . , xρ, 0, . . . , 0) and Y the complementary space of points y = (0, . . . , 0, yρ+1, . . . ,
yN ). Let B∗ = {x ∈ X : (x+ Y ) ∩ (B ∩ Uq) have positive LebN−ρ-measure}. Fubini
says B having positive LebN -measure, implies B∗ has positive Lebρ-measure in Y , as
sketched in Figure 6.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

01
/0

4/
23

 to
 1

29
.1

74
.2

40
.2

13
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



ROBUSTNESS OF SOLUTIONS 1803

B

\BbbR N - \rho 

\BbbR \rho 

\BbbR M - \rho 

\BbbR \rho 

x+ Y
B\ast F (B\ast ) = F (B)

Fig. 6. Sketch of Lemma 4.3. Projection of the set B where F is defined in (4.4).

The ρ-dimensional Hausdorff measure of a set F (B ∪ Uq) is its ρ-dimensional
Lebesgue measure on the subspace Zρ = {(z1, . . . , zρ, 0, . . . , 0) : for all z1, . . . , zρ ∈
R} ⊂ RM , and F (B∗) has the same measure (ρ -dimensional Lebesgue measure) as B∗.
This is the ρ-dimensional Hausdorff measure of F (B ∪ Uq) in RM . We conclude that
F (B∗) has positive measure, and therefore A has positive measure since F (B) ⊂ A,
contradicting our assumption that A has measure zero.

Lemma 4.4. Let F : U ⊂ RN → RM be a C∞ function. Let ρ = maxrank(F ) :=
maxx∈U rank(DF (x)). Assume some p ∈ U has the following property: DF (x) has
rank ρ for all x ∈ SolSet(p). Then SolSet(p) is a manifold of dimension N − ρ.

Proof. Note that if DF (p) has rank ρ, then there are ρ vectors in RN whose images
under DF (p) are linearly independent. That is an “open” property in the sense that
p has an open neighborhood in which those vectors are independent. Since ρ is the
maximum of rank(DF (x)), there is an open neighborhood of SolSet(p) on which the
rank of DF (x) is ρ. This is the precise setting of Theorem 11.2 of the “constant-rank
level set theorem” in [18]. There F is assumed to be a C∞ map between manifolds,
which in our case are U and RM .

Next we give a proof of Theorem 2.13. When ρ = M , the proof can be simplified
and follows from Sard’s 1942 theorem [11]. The general case, including ρ < M ,
requires Sard’s 1965 theorem [12] involving Hausdorff dimension.

Proof of Theorem 2.13. Assume F is C∞ and is ACR. Let ρ =maxrank(F ).
Following Sard [12], for each integer n ≥ 0, we define the set

An = {c ∈ RM : there exists an x such that F (x) = c and rank (DF (x)) ≤ n}.

When ρ is the largest value of rank(DF ), as it is in our case, then the ρ-Hausdorff
measure of Aρ is positive, and by Sard’s 1965 paper, Aρ has dimension ρ while Aρ−1
has dimension at most ρ−1, and its ρ-Hausdorff measure is 0. We need F−1(Aρ−1)∩Uρ
to have measure 0 in RN . This is assured by Lemma 4.3. Hence for almost every point
p ∈ Uρ, SolSet(p) ⊂ Uρ, in which case all points q ∈ SolSet(p) satisfy rank(DF (q)) =
ρ. By Lemma 4.4, SolSet(p) is a manifold of dimension N − ρ.

5. Discussion. Structured systems of equations are common in scientific appli-
cations where detailed information about the relationships between variables is scarce.
Section 3 shows several examples of structured systems in ecology, genetic networks,
and engineering systems.
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1804 SANA JAHEDI, TIMOTHY SAUER, AND JAMES A. YORKE

Our interest in this study was to explore the implications of such a structure on
generic properties of solutions, regardless of the specific functions involved, in the
same manner that the CEP imposes limits on what solutions can be robust. By
generic properties, we mean properties held by almost every function in the vector
space of functions with that structure.

To better understand global properties, we coined the term ACR. It turned out
that this property, possessed by all linear systems, was the pivotal property that
encodes the common properties that vector spaces of structured systems have. Our
main results are stated in the more general context of ACR vector spaces of functions,
of which structured systems are examples.

The theory presented here is related to and can be compared with Sard’s 1942
and 1965 theorems and the implicit function theorem.

Comparison with Sard’s Theorems. Let U ⊂ RN be open and let F : U →
RM . Theorem 2.13 can be viewed as a dual of (S2), below, which is a consequence of
Sard’s 1965 theorem [12]. Our statement is about the domain U ⊂ RN of a function
F , while Sard’s is about the range space RM .

Let ZF := {x ∈ U : rank(DF (x)) < M}. Theorem 2.4 concludes under certain
circumstances that for almost every F , ZF has Lebesgue measure zero. In contrast,
Sard’s 1942 theorem, which we denote by S1942, says its image F (ZF ) has Lebesgue
measure zero [11].

Write F−1(c) = {x : F (x) = c}. Sard’s S1942 together with our Proposition 4.4
implies the following.

(S1) = (S1942+ Proposition 4.4). For (Lebesgue) almost every c ∈ RM ,
F−1(c) either is a manifold of dimension N −M or is the empty set.

Let ρ = maxx rank(DF (x)). When ρ < M , (S1) tells us nothing about the solu-
tions since in this case, for almost every c, F−1(c) is empty. In 1965 Sard generalized
his 1942 result in a manner that is important for us. Sard’s 1965 theorem, which we
denote by S1965, says the following: Let Xρ−1 = {x ∈ U ⊂ RN : DF (x) has rank ≤
ρ − 1}. Then the set F (U) has Hausdorff dimension ρ and F (Xρ−1) has Hausdorff
dimension ≤ ρ − 1. That implies that almost every c ∈ F (U) (with respect to ρ-
dimensional Hausdorff measure), c /∈ F (Xρ−1). The following is a consequence.

As argued in [12], since maxx rank(DF (x)) = ρ, ρ is the Hausdorff dimension
of F (U), and the ρ-dimensional Hausdorff measure of F (U) is positive and possibly
infinite.

(S2) = (S1965+ Proposition 4.4). For almost every c ∈ F (U) (almost every
with respect to ρ-dimensional Hausdorff measure), whenever F (x) = c, DF (x) has
rank ρ. Therefore, F−1(c) is a manifold of dimension N − ρ.

The role of the implicit function theorem (IFT). Theorem 2.13 can be
viewed as a globalization of the IFT. If it is known that the Jacobian DF (p) maps
onto the target tangent space for almost every p in the domain, then the IFT shows
that locally, the solution set has a smooth manifold structure in a neighborhood of
such points p. However, as Example 2.14 shows, this does not mean that the solution
set is a manifold, globally speaking. The problem is that as the solution set is followed
beyond the local neighborhood, a point may be encountered in the solution set where
the Jacobian rank drops. The fact that this is almost always avoided is precisely the
extra information that Theorem 2.13 provides. When combined with Theorem 2.4,
we find that this behavior is actually prevalent, in the formal sense, in vector spaces
with the ACR property.
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ROBUSTNESS OF SOLUTIONS 1805

In this treatment, we have restricted discussion to vector spaces of functions
F : U ⊂ RN → RM , for simplicity. However, the proofs extend almost without
change to vector spaces of functions between C∞-manifolds of dimensions N and M .
See [1] for a parametric approach to the problem of rank.

The main theoretical results of this article, Corollary 2.6 and Theorem 2.13, show
that generic properties of solutions of structured systems depend crucially on a single
number, the generic rank of the structure matrix S of the system. The rank is in
turn connected to the topological properties of the associated directed graph of the
system, which will be addressed more fully in future work.

Appendix A. A brief overview of prevalence. The concept of prevalence
is useful when a vector space F is infinite dimensional. Prevalence is a concept that
is used to extend the idea of “Lebesgue almost every” to infinite-dimensional vector
spaces [13, 6, 9]. The term “prevalence” was introduced by Sauer, Yorke, and Casdagli
[13] and generalized in [6]. For a 1972 similar definition by Christensen see also [3, 7].
Prevalence can be compared with full measure in finite dimensions from the Fubini
corollary in section 4. There we stated the corollary for determining if a set was
measure 0. Here we state it for full measure sets. The wording is chosen so that the
prevalence definition is a small change in the wording of the orollary, following the
old practice of turning a theorem (or corollary) into a definition.

Fubini Corollary 2. Let Y and X ⊂ Y be vector spaces where X and Y are
finite dimensional. Let G be a measurable subset of Y .

Then the corollary says “almost every y ∈ Y is in G” if for almost every p ∈ Y
and almost every x ∈ X, x+ p is in G.

Infinite-dimensional spaces Y have no Lebesgue measure to give meaning to al-
most every p ∈ Y so we substitute every p ∈ Y . We can extend the definition of
measurable by saying G ⊂ Y is measurable in the sense of prevalence if for each
finite-dimensional plane Z ⊂ Y , Z ∩G is measurable.

Prevalence Definition. Let Y and X ⊂ Y be vector spaces where X is finite
dimensional. Let G be a measurable subset of Y .

Then we define almost every y ∈ Y is in G (in the sense of prevalence) if for every
p ∈ Y and almost every x ∈ X, x+ p is in G.

The following are some examples of how prevalence can be helpful in getting a
general insight intocommon properties in an infinite-dimensional vector space.

(P1) For 1 < p ≤ ∞ almost every sequence (ai) ∈ lp(R) has the property that∑∞
i=1 ai diverges. Here, a convenient probe space is the one-dimensional

subspace spanned by the infinite sequence of 1’s.
(P2) In 1994 Hunt [5] showed that almost every (continuous) function in C([0, 1])

is nowhere differentiable. The proof requires a two-dimensional probe space.
(P3) The following is a generalization of the Whitney embedding theorem. Whit-

ney proved that if Q is a manifold of dimension d and M > 2d, then for
topologically generic F : RN → RM , F is one-to-one on Q. That has a
prevalence generalization that is useful in investigating chaotic attractors.
Whitney’s manifold is replaced by an arbitrary compact set Q ⊂ RN of box
dimension d. Then for almost every F : RN → RM , F is one-to-one on Q.
In particular, the dimension d does not need to be an integer [13]. There are
many other examples of application of prevalence in [13, 6, 7, 9].

Prevalence has two important properties that make it a useful extension of prob-
abilistic almost every: (1) If the vector space V is finite dimensional, prevalence is
the same as “almost every in the sense of Lebesgue measure,” and (2) prevalence
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implies dense, so that it meets and exceeds a common topological version of typi-
cal. Even in finite-dimensional Euclidean spaces, dense (and residual) sets can have
arbitrarily small measure, so the stronger property of prevalence is a handy addi-
tion to characterize typical behavior in infinite-dimensional spaces. In this paper,
we use the definition of prevalence introduced by Sauer, Yorke, and Casdagli [13].
Hunt, Sauer, and Yorke [6] introduced a slightly more general definition of preva-
lence that is a bit more complicated. For that definition, the countable intersection
of prevalent sets is a prevalent set. Hence it is analogous to “residual sets,” which
are used in defining “topologically generic properties.” Many properties are known
to be “topologically generic” in RN but have low or zero probability. We believe it
is not relevant to scientists and engineers to be told that a property is topologically
generic. Hunt, Sauer, and Yorke’s [6, pp. 219–221] paper discusses this issue and gives
examples of topologically generic sets that have measure zero. We feel the concept of
prevalence, which is an extension of the definition of full measure, is appropriate for
scientific purposes. Every set that is prevalent in our sense is prevalent in the more
general sense. Hence, our theorems are also true for the extended definition of the
prevalence.

Acknowledgments. We thank Dima Dolgopyat, Shuddho Das, and Roberto De
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