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In this paper, we utilize techniques from the theory of nonlinear dynamical systems to define a
notion of embedding estimators. More specifically, we use delay-coordinates embeddings of sets of
coefficients of the measured signal �in some chosen frame� as a data mining tool to separate
structures that are likely to be generated by signals belonging to some predetermined data set. We
implement the embedding estimator in a windowed Fourier frame, and we apply it to speech signals
heavily corrupted by white noise. Our experimental work suggests that, after training on the data
sets of interest, these estimators perform well for a variety of white noise processes and noise
intensity levels. © 2006 American Institute of Physics. �DOI: 10.1063/1.2384909�

In this paper, we introduce a denoising algorithm that is
designed to be efficient for a variety of white noise con-
taminations and noise intensities. We expand a measure-
ment X in a windowed Fourier frame and then we use
delay-coordinates embeddings as a data mining tool to
extract coefficients likely to be generated by some under-
lying signal. We assume such signal belongs to a prede-
termined data set of interest (speech signals in our test
case). The algorithm needs to be trained on the class of
data we want to denoise and on a collection of white noise
distributions with kurtosis up to some maximum allowed
kurtosis K. Once the parameters of the algorithm are
found, we verify that they do not need to be changed as
we change noise variance, or noise probability density
function as long as its kurtosis is less than K.

I. INTRODUCTION

A. Overview of the method

In this work, we analyze time series of the type X�n�
=F�n�+W�n�, n=1, . . . ,N, where F is some sampled speech
signal, and each W�n� is a realization of some white noise
process. Recall that, for a time series X�n�, n=1, . . . ,N, an
embedding dimension d, and a time delay � �in this context
both taken to be positive integers�, the delay-coordinates em-
bedding X�n�= �X�n� ,X�n−�� , . . . ,X(n− �d−1��)�, n= �d
−1��+1, . . . ,N, gives a faithful description of the underlin-

ing finite dimensional dynamics �if any� as long as the em-
bedding dimension d is big enough �at least twice the dimen-
sion of the dynamical system1,2�. We refer to Ref. 3 for a
review of this and other nonlinear time-series techniques.

There are several powerful uses of nonlinear time-series
techniques: among the better known are chaos control4,5 and
chaos synchronization with its applications to communica-
tion theory.6,7 There has been a lot of emphasis on how to
cope with noise and imperfect modeling �see, for example,
Refs. 8 and 9�, a fundamental problem when dealing with
high-dimensional systems. In particular, for delay-
coordinates embeddings, the appropriate choice of delay �
and embedding dimension d is a difficult practical issue, es-
pecially for high-dimensional systems.

This paper suggests a way to deal with this issue for a
specific class of estimation problems and a specific class of
signals, namely signals that have a sparse, localized repre-
sentation in time frequency domain such as speech signals.
Indeed, unlike what happens in most applications of delay-
coordinates embeddings, we do not need in our work a pre-
cise reconstruction of the underlying dynamics. Instead, we
measure the “squeezing” of the local dynamics along the
principal direction, measured by the embedding index I�X�
=��1� /��d�, i.e., the quotient of the largest and smallest sin-
gular values of the embedding image X of X. This point of
view reflects the focus of this particular application on data
mining as compared to system identification.

Singular value decompositions have been used effec-
tively to recover dynamics from noisy measurements glo-a�Electronic mail: dnapolet@gmu.edu
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bally in Ref. 10 and locally in Ref. 11. In this paper, we look
at singular value decompositions locally in a time-frequency
representation, and we iteratively extract interesting dynam-
ics in different such representations. The iterative procedure
reduces the emphasis on reconstruction of a specific and
unique dynamics, and closely connects the delay coordinate
denoising methods to sparsity denoising techniques more fre-
quently seen in signal processing and wavelet literature.

To localize the delay-coordinates embedding method in
the time-frequency domain, we compute the embedding in-
dex for time series supported by line segments belonging to
a collection Cp of horizontal line segments � of length p in a
time-frequency windowed Fourier frame expansion such as
in Fig. 1 �see Ref. 12, Chap. 5 and Sec. I B in this paper for
more on Fourier frames�. We choose this shape for elements
in Cp because speech signals are well represented in win-
dowed Fourier frames and so we expect them to have sparse
and very localized representations in the time-frequency do-
main. Moreover, we observed in practice that speech signals
exhibit a nontrivial, but simple, dynamics along the time axis
in the regions of the time-frequency domain where their rep-
resentation is mostly concentrated. By sparse representation
we mean that only a small fraction of the coefficients will
have large absolute values. Note that white noise does not
have such sparse representation in windowed Fourier frames
�for a review of the idea of sparsity and its applications in
signal processing, see Ref. 13, Chap. 11�.

Given a choice of embedding dimension d and time de-
lay �, for each time series X defined on a line of coefficients
in Cp we compute the embedding index I�X� and define
QX�t�, the cumulative index density function that for each t
gives the proportion of lines with index above t. We compute
QX�t� for 10 speech signals Si and for several white noise
time series Wj with bounded kurtosis. We will show that
QX�t� is very similar for all chosen probability density func-
tions. Moreover, the decay of QX�t� is much faster for noise
than for the set of speech signals. If we call QS�t� the average
cumulative density function for our training speech series
and QW�t� the average cumulative density function for the

white noise processes, we can define an index threshold T as
the smallest positive value of t for which QS�T��10QW�T�.

We use the notion of index threshold to build a recursive
algorithm that, given a measurement X=F+W, extracts lines
of coefficients in the windowed Fourier frame to estimate F.
The embedding threshold is used to extract from a measure-
ment X a fraction of lines that are unlikely to be the result of
white noise processes. The algorithm begins by setting the

initial estimate F̃=0. For k=1, . . . ,K, the core steps to be
repeated recursively are as follows:

A. Given a measurement X, compute its windowed Fou-
rier frame coefficients.

B. Extract all coefficient lines in Cp with embedding index
above the set threshold level T.

C. Generate a partial estimate Fk by using only the coef-
ficients from the extracted lines.

D. Attenuate the partial estimate by some small coefficient

��0, i.e., set Fk=�Fk. Put X=X−Fk, F̃= F̃+Fk.

One iteration of A–D essentially does the following:
with steps A and B, we take the coefficients of the measure-
ment X in the time-frequency domain that appear to exhibit
significant dynamics locally along the time axis. With step C,
we use only these significant coefficients to generate a partial
estimate. Since we do not want to disrupt too much the dy-
namics of the windowed Fourier coefficients of X that we do
not extract, in step D we reduce the norm of the partial
estimate, and then we subtract it from the measurement. This
partial estimate is also added to whatever current estimate we
already have.

Since the repeated application of the loop A–D generates
attenuated estimates, to evaluate the performance of the
method we compute the signal-to-noise ratios �SNR� on
measurements, speech signals, and estimates all scaled to
have norm 1. Note that we need to train several parameters
on the data set of interest. A proper selection of such param-
eters is shown to be possible for speech signals. After choos-
ing the parameters, the algorithm is robust with respect to
noise level and noise type. �The algorithm described in this
paper is being patented, with provisional patent application
number 60/562,534 filed on April 16, 2004.� Our work
shows that delay-coordinates embeddings are an effective
tool in denoising speech signals, but the method could be
applied in principle to other types of data sets with a suitable
choice of frames and with a different construction of the
collection Cp.

Threshold estimators in time frequency and time scale
representations have been used effectively to estimate signals
from noisy measurements when it is possible to assume a
sparse representation of the signals of interest. We mention
here the seminal work of Ref. 14 on the optimality of wave-
let threshold denoising for piecewise regular signals cor-
rupted by the addition of Gaussian white noise. Several tech-
niques have been developed to deal with the non-Gaussian
case, some of the most successful are the Efromovich-
Pinsker �EP� estimator �see Ref. 15� and the block threshold
estimators of Cai and collaborators �see Ref. 16 and the more
recent Ref. 17�. In these methods, the variance of the white

FIG. 1. We show part of a windowed Fourier representation of a speech
signal; horizontal axis is the time coordinate, vertical axis is the frequency
coordinate. Lighter areas correspond to coefficients with larger absolute
value.
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process needs to be estimated from the data; moreover, since
the threshold is designed to evaluate intensities �or relative
intensities� of the coefficients in blocks of multiwavelets,
low intensity details may be filtered out, as is the case for
simpler denoising methods.

The method we describe in this paper does not require
knowledge of the noise intensity level �thanks to the use of
quotients of singular values of embedding images�, and it is
remarkably robust to changes in the type of noise distribu-
tion. For the same reason, fine low-intensity details can in
principle be preserved, since quotients of singular values of
embeddings are not dependent on intensity levels of the time
series. This strength is achieved at a price: the inner param-
eters of the algorithm need to be adjusted to the data. This is
true to some extent for the EP and block thresholding algo-
rithms as well, but the number and type of parameters that
need to be trained in our approach are increased by the need
to choose a reasonably “good” delay-coordinates embedding
suitable for the data we would like to denoise. In Sec. III, we
briefly suggest possible ways to make the training on the
data fully automatic, but it is yet to be seen at this stage
which data sets are amenable to the analysis we propose.

In Sec. I B, we briefly review windowed Fourier frames
and we formally define the collection of paths Cp. Moreover,
we review the results on delay-coordinates embeddings that
are used in our method. In Sec. II, we explore the properties
of the cumulative density functions attached to the embed-
ding index. In Sec. III, we define the attenuated embedding
estimators that are the core of algorithm A–D and we give a
technical version of the algorithm itself. In Sec. IV, we apply
our method to several speech signals contaminated by four
types of white noise, and we discuss the quality of the esti-
mates.

B. Fourier frames and delay-coordinates embeddings

We now formally define some of the objects and tech-
niques introduced in the previous subsection. Let F�n�, n
=1, . . . ,N, be a discrete signal of length N, and let X�n�
=F�n�+W�n�, n=1, . . . ,N, be a contaminated measurement
of F�n�, where W�n� are realizations of a white noise process
W. For a given discrete orthonormal basis B= �gm� of the
N-dimensional space of discrete signals, we can write X
=�m=0

N−1XB�m�gm, where XB�m�= �X ,gm	 is the inner product
of X and gm.

Note that any discrete periodic signal X�n�, n�Z with
period N can be represented in a discrete windowed Fourier
frame. This frame is a localization of the Fourier transform
that allows us to look at changes of frequency of signals in
short neighborhoods by using a masking window g; more
specifically, the elements of the windowed Fourier frame are
of the form

gm,l�n� = g�n − m�exp
−
i2�ln

N
�, n � Z . �1�

We choose the window g to be a symmetric N-periodic func-
tion of norm 1 and support q. Specifically, we can choose g
to be the characteristic function of the �0,1� interval; we
realize that this may not be the most robust choice for many

applications, but we have deliberately selected this function
to avoid excessive smoothing, which we found to adversely
affect our algorithm. Under the previous conditions, the sig-
nal X can be completely reconstructed from the inner prod-
ucts FX�m , l�= �X ,gm,l	, i.e.,

X =
1

N
�
m=0

N−1

�
l=0

N−1

FX�m,l�g̃m,l, �2�

where

g̃m,l�n� = g�n − m�exp
 i2�ln

N
�, n � Z . �3�

We denote the collection ��X ,gm,l	� by FX. For finite discrete
signals of length N, this reconstruction has boundary errors.
However, the region affected by such boundary effects is
limited by the size q of the support of g, and we can there-
fore have perfect reconstruction if we first extend X suitably
at the boundaries of its support and then compute the inner
products FX. More details can be found in Refs. 12 and 18.

We now recall a fundamental result about reconstruction
of the state space realization of a dynamical system from its
time-series measurements. Suppose S is a dynamical system,
with state space Rk, and let h :Rk→R be a measurement, i.e.,
a continuous function of the state variables. Define moreover
a function F of the state variables X as

F�X� = �h�X�,h„S−��X�…, . . . ,h„S−�d−1���X�…� , �4�

where by S−j��X� we denote the state of the system with
initial condition X at j� time units earlier. We say that A�Rk

is an invariant set with respect to S if X�A implies St�X�
�A for all t. Then the following theorem is true �see Refs. 1,
2, and 19�:

Theorem: Let A be an m-dimensional submanifold of Rk

which is invariant under the dynamical system S. If d�2m,
then for generic measuring functions h and generic delays �,
the function F defined in (6) is one-to-one on A.

Keeping in mind that generally the most significant in-
formation about g is the knowledge of the attractive invariant
subsets, we can say that delay maps allow a faithful descrip-
tion of the underlying finite dimensional dynamics, if any.
The previous theorem can be extended to invariant sets A
that are not topological manifolds; in that case more sophis-
ticated notions of dimension are used �see Ref. 2�.

Let now the measuring function h be the identity func-
tion and assume from now on that � is an integer delay so
that F�W�n��= [W�n� ,W�n−�� , . . . ,W�n− �d−1���]. Note that
if the delay-coordinate procedure is applied to the time series
W�n�, n=1, . . . ,N, for W an uncorrelated random process,
then for any embedding dimension d the state space will be
filled according to a spherically symmetric probability distri-
bution. In other words, the expected value of the embedding
index I�W�=

�1

�d
is 1 regardless of the choice of embedding

parameters. Indeed, since W is a white noise process, each
coordinate of F�W�n�� is a realization of some random vari-
able with some given probability density function g, there-
fore F�W� is a realization of a multivariate random variable
of dimension d and symmetric probability distribution.
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Since speech signals exhibit smooth and regular dynam-
ics locally, we expect their embedding index computed on
elements of Cp to be far from 1, i.e., not to fill the state space
uniformly. This observation motivates our attempt to sepa-
rate �locally in time frequency space� structure belonging to
speech signals from background noise in the windowed Fou-
rier frame, by using the embedding index. Note, however,
that, even when X is a pure white noise process, the win-
dowed Fourier frame will enforce a certain degree of
smoothness along each line in Cp since consecutive points in
each line segment are inner products of frame atoms with
partially overlapping segments of X. So there will be some
correlation in the coefficients along elements of Cp even
when X is an uncorrelated time series, and the embedding
index calculated along lines in Cp may be much larger than 1
even for such pure noise processes. We need, therefore, to
carefully analyze in the next section the value distribution of
the embedding index I to understand whether it behaves
differently for uncorrelated random processes and for signals
in a database of speech signals.

II. SEPARATING SPEECH SIGNALS
AND RANDOM PROCESSES

Our interest in this paper is in estimating speech signals
from noisy measurements, and much of the structure of
speech signals in the time frequency domain is contained in
localized “ridges” that are oriented in the time direction �as
we can see from Fig. 1�. Given this localization property of
speech signals, we expect the collection Cp of double-
indexed horizontal lines

�m̄,l̄ = �gm,l such that l = l̄,m̄ � m � m̄ + p� , �5�

where p is some positive integer, to be relatively sensitive to
local time changes of such ridges, since each element in Cp

is a short line segment in the time frequency domain oriented
in the time direction. For a given time series X and choice of
parameters �q , p ,� ,d� �recall q is the length of the window in
the windowed Fourier frame�, we compute the collection of
embedding indexes I�FX�= �I�FX�� ,��Cp�. Define now
formally the index cumulative function as

QX�t� =
#�� such that I�FX�� � t�

#���
, �6�

i.e., for a given t, QX�t� is the fraction of paths that have
index above t. A simple property of QX will be crucial in the
following discussion.

Lemma 1: If X is a white noise process and X�=aX is
another random process that component by component is a
rescaling of X by a positive number a, then the expected
function QX and QX� are equal.

Proof: Each set of embedding points generated by one
specific path � is, coordinate by coordinate, a linear combi-
nation of some set of points in the original time series.
Therefore, if X�=aX, FX��=aFX�, but the quotient of singu-
lar values of a set of points is not affected by rescaling of all
coordinates, therefore the distributions of I�FX� and I�FX��
are equal. Since QX� and QX are defined in terms of I, they
are equal as well.

Remark 1: The choice of p in Cp is very important in
practice. The speech signals that we consider are sampled at
a sampling frequency of about 8100 Hz. We choose support
of the window q=64 and length of the paths p=28. This
assures that the length of each path is at least of the same
order of magnitude as the duration of stationary vocal emis-
sions. Given this length p for �, we need to have embedding
dimension d and time delay � so that d��p, so that for each
path we will generate a sufficiently large number of points in
the embedding image. Because of these restrictions, we set
d=4 and �=4, which give d�=24�p=28; we generate in
this way 240 points for each path. We heuristically adjusted
the embedding parameters d and � and the length p of the
paths so that the qualitative behavior of speech signals and
white noise processes was as distinct as possible. See the
discussion in Sec. III, remark 4 for a possible way to make
the choice of parameters automatic. We now expand some
uncorrelated zero mean random processes of length N=211

on the windowed Fourier frame with the parameters q=64,
p=28, d=4, and �=8.

Noise distributions: The specific random processes we
use are time series with each point a realization of a random
variable with the following:

�1� Gaussian probability density function �pdf�.
�2� Uniform probability density function.
�3� Tukey probability density function, that is, a sum of two

normal distributions with uneven weight: each point of
the time series is a realization of the random variable
W=RN1+ �1−R�4N2 /�r+16�1−r�, where N1 and N2 are
Gaussian random variables, and R is a Bernoulli random
variable with P�R=1�=0.9 and r= P�R=1�. This is an
interesting example of heavy-tail distribution �used in
Ref. 15 as well�.

�4� Discrete bimodal pdf with values in �−V ,V� for some
positive V.

All probability density functions are set to have mean zero
and variance 1, since by Lemma 1 we know Q* will not be
affected by changes of the variance. The Tukey pdf has
heavy tail and is therefore a good example of highly non-
Gaussian distribution. The kurtosis is 3 for the pdf in �1�,
about 1.8 for the pdf in �2�, about 13 for the pdf in �3�, and
about 1.2 for the pdf in �4�.

In Fig. 2�a�, we plot QX�t� for the white noise processes
generated with pdf’s in �1�–�4�, averaged over ten repetitions
for each random distribution. Note that the qualitative behav-
ior of QX is very similar for all chosen distributions; in par-
ticular, they all exhibit a very fast decay for larger values of
t. The maximum L2 distance between any two QX in the
interval �0,40� is 0.54 �or some 6% of the average L2

norm of the QX�; we found that even for distributions with
kurtosis up to 50, the maximum distance was less that 0.8
�about 8.5% of the average L2 norm of QX�, irrespective of
the specific pdf, moreover most of the error is concentrated
in regions of high intensity of the derivative and it does not
affect much the behavior of the right tail of the curves QX.

Remark 2: To speed up the computation, we sampled

the indexes �m̄ , l̄� of the lines in �5�; specifically we selected
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a sampling length of Sm̄=1 for the frequency index m̄ and a
sampling length of Sl̄= p for the time index.

The implication of our computations is that moderately
heavy tail distributions will not exhibit a significantly differ-
ent behavior for QX with respect to the Gaussian distribution,
supporting our claim that QX is robust with respect to the
choice of white noise distribution. For each probability den-
sity function, the shape of QX is affected by the correlation
introduced by the length of q �the window support of the
windowed Fourier frame�: if ��q, some coordinates in each
embedding point will be correlated and this will cause the
decay of QX to be slower when � is smaller. Compute now
QX �with the same choice of parameters� for a collection of
10 randomly selected segments of speech signals of length
211. The rate of decay of the functions QX is significantly
different, and the tail of the functions is still considerably
thick by the time the rate of decay of QX for most random
processes is almost zero �see Fig. 2�b��. To have a signifi-
cantly larger fraction of paths retained for speech signals
rather than noise, we select the threshold T as follows:

Determination of threshold (DT): Given a choice of
�q , p ,� ,d�, a collection of training speech time series �Sj�,
and a selection of white noise processes �Wi�, choose T0 to
be the smallest t so that the mean of QSj

�T0� is one order of
magnitude (10 times) larger than the mean of QWi

�T0�.
This heuristic rule gives, for the parameters in this sec-

tion, T028.2. Rule �DT� gives us as experimental way to
determine a threshold T=T0 for the index I that removes
most of the time frequency structure of some predetermined
noise distributions, while it preserves a larger fraction of the
time frequency structure of speech signals. Since, moreover,

“reasonable” distributions exhibited a QX similar to the one
of Gaussian distributions, we can in practice train the thresh-
old only on Gaussian noise and be assured that it will be a
meaningful value for a larger class of distributions.

Note that even though very low energy paths could have
in principle a high embedding index, the energy concentra-
tion in paths that have very high index tends to be large for
speech signals. To see that, for a given signal X, let

EX�t� =
���FX��2 such that I�FX�� � t�

��FX��2
�7�

be the fraction of the total energy contained in paths with
index above t. We can see in Fig. 3 that the amount of energy
contained in paths with high index value is significantly
larger for speech signals than for noise distributions. More
precisely, the fraction of the total energy of the paths carried
by paths with I�T0 is on average 0.005 for the noise distri-
butions and 0.15 for the speech signals, or an increase by a
factor of 30. It seems, therefore, that the embedding index I,
with our specific choice of parameters, is quite effective in
separating a subset of lines that are likely to be generated by
speech signals. Note, moreover, that similar results can be
obtained by perturbing p, �, and d, which suggests an intrin-
sic robustness of the separation with respect to the param-
eters.

The ability of the embedding index to detect significant
lines of coefficients in Cp is mostly attributed to the very nice
properties of speech signals as they are well represented in
windowed Fourier frames and so we expect them to have
sparse and very localized representations in the time fre-

FIG. 2. From top to bottom, this figure
shows Q*, as defined in Eq. �6� for �a�
uncorrelated random processes �1� to
�4� defined in the text; �b� ten ran-
domly selected segments of speech
signal from the TIMIT database.
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quency domain, while white noise does not have such sparse
representation. Moreover, the absolute value of the coeffi-
cients of speech signals will smoothly, but irregularly, oscil-
late along the time axis in those regions of the time fre-
quency domain where the signals are well represented.
Therefore, speech signals appear to exhibit a nontrivial, but
relatively simple, dynamics locally along the time axis in the
regions of the time frequency domain where their represen-
tation is mostly concentrated.

There is a large literature on possible ways to distinguish
deterministic dynamical systems from random behavior �see,
for example, the articles collected in Ref. 20�. Generally, the
identification of the “best” � and d that allow a faithful rep-
resentation of the invariant subset is considered very impor-
tant in practical applications of delay-coordinates embed-
dings �as discussed, for example, in Ref. 21�, as it allows to
make transparent the properties of the invariant set itself;
specifically, we want to deduce from the data themselves the
dimension m of the invariant set �if any� so that we can
choose a d that is large enough for the theorem to apply.
Moreover, the size of � has to be large enough to resolve the
image far from the diagonal, but small enough to avoid deco-
rrelation of the delay coordinates point.22

The algorithm A–D outlined in Sec. I uses the structure
of the embedding in such a way that the identification of the
most suitable � and d is not crucial �as it would be if we were
interested in extracting the exact dynamics underlying the
time series�. While we do need to train the algorithm on the
available data to find the most suitable �, d, and embedding
threshold T �by analyzing the cumulative density functions
Q*�t� of the embedding index�, such analysis does not re-

quire a full resolution of the underlying dynamics and is
conceptually quite simple.

The use of embedding techniques in the context of com-
putational harmonic analysis frees us from the need to use
embedding techniques to effectively model the signals. In-
stead, we use time delay embeddings as data mining tools.
We specifically use the term “data mining” to highlight the
necessity of adjusting the parameters of the algorithm ac-
cording to predetermined training sets of signals of interest
and of relevant white noise distributions. The goal becomes
simply to “separate” to some extent the behavior in the time
frequency domain of the embedding index of the two train-
ing sets of interest by a suitable choice of parameters.

Remark 3: Note that if the dimension of the invariant
set A is dA=0, then for any white noise process W, X+W has
spherically symmetric embedding image and

�1

�d
1 for any

embedding dimension d as in the case of pure white noise.
This means that an estimator based on I is not able to esti-
mate noisy constant time series on a given path �. This re-
striction can be eased by allowing information on the dis-
tance of the center of the embedding image to be included in
the definition of the embedding threshold estimator. In this
paper, for simplicity we assumed dA�0 for all lines in Cp.
This seems to be sufficient since, as we already pointed out,
speech signals generally have nontrivial dynamics locally
along lines of Cp in the regions of the time frequency domain
where they are mostly concentrated.

III. ATTENUATED EMBEDDING ESTIMATORS

In this section, we refine the denoising algorithm A–D
based on the embedding index. Essentially we use the em-

FIG. 3. From top to bottom, this figure
shows E*, as defined in Eq. �7� for �a�
the uncorrelated random processes �1�
to �4� defined in the text; �b� the seg-
ments of speech signals as in Fig. 1�b�.
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bedding index to select those coefficients in the window Fou-
rier frame that are likely to carry significant information on
the signal, and we recursively extract them to generate partial
estimates of the signal itself. Following the structure of
threshold estimators �see Refs. 14 and 12, Chap. 10�, we
define an embedding estimator in the windowed Fourier
frame as follows:

F̃ =
1

N
�
m=0

N−1

�
l=0

N−1

dI,T�FX�m,l��g̃m,l, �8�

where dI,T�FX�m , l��=FX�m , l� if I�FX�m̄,l̄
�	T for some

�m̄,l̄ containing �m , l�, and dI,T�FX�m , l��=0 if I�FX�m̄,l̄
�

�T for all �m̄,l̄ containing �m , l�.
Essentially the embedding estimator in �8� is a modifi-

cation of the reconstruction formula in �2� where we use only
coefficients contained in lines with large embedding index.
This estimator is the core of our algorithm A–D, but it is
slightly modified to improve the actual performance by at-
tenuating each partial estimate in algorithm A–D by the co-
efficient �. To implement a relatively fast version of the
algorithm, we define tubular neighborhoods for each atom in
the windowed Fourier frame,

O�gm,l� = �gm�,l� s.t. �l� − l� � 1, �m� − m� � 1� , �9�

and we make a decision on the value of the coefficients in
the two-dimensional neighborhood of the line of coefficients
FX� based on the embedding index of the one-dimensional
line of coefficients FX�.

The following is a technical version of the method A–D
described in the Introduction. We assume that embedding
dimension d and time delay � have already been set. Let K be
some large integer, set values for the windows qk, k
=1, . . . ,K, and use �DT� to find the thresholds T�qk�
=T�d ,� ,qk�. We denote by F̃ the partial current estimate of

the signal and by R the current residue. Set initially F̃=0 and
R=X, where X is the given measurement. Choose a positive

small attenuation coefficient �. For k=1, . . . ,K, repeat Ã–D̃.

Ã Given R, expand R in a windowed Fourier frame
with window size qk.

B̃ Set FY�m , l�=FR�m , l� if I�FR��	T�qk� for some �
containing gm�,l�, gm�,l��O�gm,l�, otherwise set
FY�m , l�=0 if I�FR���T�qk� for all � containing
gm�,l�, gm�,l��O�gm,l�.

C̃ Let Y be the inverse image of FY.

D̃ Set Y =�Y. Set F̃= F̃+Y and R=R−Y.

Note that the details of the implementation Ã-D̃ are in
line with the general strategy of greedy regression.22 The

window length q in step Ã can change from one iteration to
the next to “extract” possible structure belonging to the un-
derlining signal at several different scales. The “thickening”
of the lines in Eq. �9� increases the number of nonzero coef-

ficients chosen in B̃, while the attenuation performed in D̃
decreases their contribution. In this way, we are allowing
more information to be taken at each iteration of algorithm,
but in a slow learning fashion that in practice increases the

sharpness of the estimate since it does not disrupt too much
the dynamics of the coefficients of the measurements at each
iteration. On the general issue of attenuated learning pro-
cesses, see the discussion in Ref. 23, Chap. 10. Note that the
attenuation of coefficients leads to improved results only
when it is part of a recursive algorithm, otherwise it gives
only a rescaled version of the estimate.

Choice of parameters: One drawback of the algorithm

Ã–D̃ is the need to choose several parameters. We choose the
window q for the windowed Fourier frames, the length p of
lines in Cp, the embedding parameters � �time delay� and d
�embedding dimension�, and the learning parameters T
�threshold level�, � �attenuation coefficient�, and K �number
of iterations�.

We stress that all such choices are context-dependent,
and are the price to pay to have an estimator that is relatively
intensity-independent and applicable to wide classes of noise
distributions. We give here some general indications on how
to select these parameters. First of all, the algorithm is not
very sensitive to the choice of the length q of the window in
the Fourier frame, while the use of several windows is found
to be always beneficial. Let us explore now the relation of
parameters associated with Cp, embedding parameters � and
d, and threshold T. Recall that for the collection Cp we have

as parameters the time and frequency sampling rates l̄ and m̄

and the length p of the paths. The frequency sampling rates l̄
and m̄ are necessary only to speed up the algorithm; ideally
we would like a dense sampling. The same considerations
apply to the “thickening” of the lines in �9�. We basically try
to speed up the algorithm by collecting more data at each
iteration. The truly essential parameters are the path length p,
the embedding parameters, and the threshold T. Essentially
we want to set these parameters so that the number of paths
that have index I�T is sizeable for a training set of speech
signals and marginal for the white noise time series of inter-
est. Our experience is that such a choice is possible and
robust; in the previous section, we gave a simple rule to find
the threshold T in step �DT�, given a choice of �q , p ,� ,d�.
The choice of � and K is completely practical in nature: we
probably want � as close to zero as possible and K as large
as possible, but, to avoid making the algorithm unreasonably
slow, we must set values that are found to give good quality
reconstructions on some training set of speech signals while
they require a number of iterations of the algorithm that is
compatible with the computing and time requirements of the
specific problem.

Remark 4: We did not give an automatic algorithm to
select the paths’ length and embedding parameters: a possi-
bility in this direction is to build a learning algorithm to find
all of T, line length p, and embedding parameters. More

specifically, let Q̄S�x� be the mean of the functions QSi
�x� for

a training set of speech signals Si and Q̄W�x� be the mean of
the functions QWi

�x� for a set of white noise time series Wi.
We can split the process so that we first find d, �, and p such

that the distance of the functions Q̄W�x� and Q̄S�x� is maxi-
mum in the L2 norm. After finding these parameters, we can
find a value of T according to rule �DT�.
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IV. RESULTS AND DISCUSSION

In this section, we explore the quality of the attenuated
embedding threshold as implemented in the windowed Fou-
rier frame and with our class of lines Cp. We apply the algo-
rithm to 10 speech signals from the TIMIT database contami-
nated by different types of white noise with several intensity
levels. We show that the attenuated embedding threshold es-
timator performs well for all white noise contaminations we
consider.

The embedding dimension is chosen to be d=4, the de-
lay along the paths �=4, the length of the paths is p=28, and
we set the window length of the windowed Fourier transform
to be qk=25 for k even and qk=100 for k odd �to detect both
features with good time localization and those with good
frequency localization�. For these parameters and for the
speech signals that we used as a training set, we have T
26.8 when qk=100 and T27.4 when qk=25 using the
procedure �DT� of Sec. II. The sampling interval of the paths
in the frequency direction is Sm̄=3 and along the time direc-
tion is Sl̄= p /2 We select �=0.1 and K=6. The algorithm is
applied to short consecutive speech segments to reduce the
computational cost of computing the windowed Fourier
transform on very long time series.

We note that the attenuated embedding threshold is able
to extract only a small fraction of the total energy of the
signal f , exactly because of the attenuation process, therefore
the signal-to-noise ratio �SNR� computations are done on

scaled measurements X, estimates F̃, and signals F set to be
all of norm 1. We call such estimations scaled SNR or
sSNR, and we explicitly write, for a given signal F and
estimation Z,

sSNR�Z� = 10 log10
1

E��F/�F� − Z/�Z���
.

We compute sSNR�X� and sSNR�F̃� by approximating the

expected values E��F / �F �−X / �X � �� and E��F / �F �−F̃ / �F̃ � ��

with an average over several realizations for each white
noise contamination.

In Fig. 4, we show the gains of the scaled SNR of the
reconstructions �with the attenuated embedding threshold es-
timator� plotted against the corresponding scaled SNR of the
measurements. Each curve corresponds to one of 10 speech
signals of approximately one second used to test the algo-
rithm. From the top left in the clockwise direction, we have
measurements contaminated by random processes with pdf’s
�1� to �4� as defined in Sec. II and with several choices of
variance. Note that the overall shape of the sSNR gain is
similar for all distributions �notwithstanding that the discrete
plots do not have exactly the same domain�. The maximum
gain seems to happen for measurements with sSNR around 1
decibel. Note that the right tail of the sSNR gains takes often
negative values; this is due to the attenuation effect of the
estimator that is pronounced for the high-intensity speech
features, but it is not necessarily indicative of worse percep-
tual quality with respect to the measurements. Some of the
figures in the following will clarify this point.

For Gaussian white noise, we compared our algorithm to
the block thresholding algorithm described in Ref. 16. We
used the Matlab code implemented in Ref. 24, made avail-
able at www.jstatsoft.org/v06/i06/codes/ as a
part of their comparison of denoising methods. As the block
thresholding estimator was implemented in a symmlet wave-
let basis that is not well adapted to the structure of speech
signals, a more compelling comparison would require the
development of an embedding threshold estimator in a wave-
let basis. In Fig. 5, we show the sSNR gain for all tested
speech signals using the block threshold estimator �right
plot� and attenuated embedding estimator �left plot�. Note
how, for the embedding threshold estimator, there is a higher
maximum sSNR gain and how the sSNR improvement is
more uniform for all tested speech signals. Consider that, for
very low sSNR of the measurements, the degradation of the

FIG. 4. Scaled SNR gain in decibel of
the attenuated embedding estimates
plotted against the scaled SNR of the
corresponding measurements. From
top left in clockwise order we consider
the case of �a� Gaussian white noise;
�b� uniform noise; �c� Tukey white
noise; �d� discrete bimodal
distribution.
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block thresholding estimates is mostly due to a loss of low-
intensity details. We believe the performance of the embed-
ding threshold estimators is particularly compelling exactly
in these cases; most speech structures are detected even in
very noisy measurements with our method.

In Fig. 6, we show, on the left, top to bottom, three
measurements of decreasing sSNR with added Tukey white
noise and on the right the corresponding embedding thresh-
old estimates. In particular, subplots �f� and �g� show mea-
surement and estimate for measurement sSNR1 �i.e., cor-
responding to the “peak” of the sSNR gain curve�. Note how
the shape and position of all speech envelopes is detected in
this extremely high noise case; this is even more striking
considering the highly non-Gaussian nature of the added
Tukey noise �with kurtosis equal to 13�. In all cases, the
perceptual quality of the estimates appears to be better than
that of the noisy measurements. It must be noted, though,
that the estimates for bimodal and uniform noise were not
intelligible at the peak of the sSNR gain curve �just as the
measurements were not�.

We stress that even though the threshold T was found
using only Gaussian white noise as the training distribution,
none of the parameters of the algorithm were changed as we
went from Gaussian white noise contaminations to more
general white noise processes, yet the sSNR gain was simi-
lar, Data files for the signal, measurement, and reconstruc-
tions used to compute the quantities in all the figures are
available upon request for direct evaluation of the perceptual
quality.
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