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We study a general physical network consisting of a collection of response systems with complex
nonlinear dynamics, influenced by a common driver. The goal is to reconstruct dynamics, regular or
chaotic, that are common to all of the response systems, working from simultaneous time series
measured at the responses systems only. A fundamental theorem is stated concerning the reconstruction
of the common driver. An algorithm is developed, based on the theorem, to carry out the reconstruc-
tion, and is demonstrated with several examples.
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Gaining system information from observed dynamical
data is a key problem in many areas of physics. The
success of conventional signal processing techniques is
due to the great simplification that spectral and related
techniques afford when the generating dynamics are pre-
dominantly linear. Since linear dynamics can be repre-
sented by geometrically simple phase spaces (closed
curves and more generally tori for quasiperiodic mo-
tions), the question of geometry has traditionally played
a minor role in these techniques.

With the recent growth of interest in nonlinear phe-
nomena, geometry has come into the foreground of dy-
namical data analysis. The early papers of Packard et al.
[1] and Takens [2] show that deterministic systems can
indeed produce dynamics whose invariant set is complex
geometrically, and, in particular, fractal. Knowledge of
the geometry of the dynamics, recovered from measure-
ments of the dynamics, has been shown to have numerous
applications to problems that are otherwise intractable
[3]. The capability of these methods for nonlinear sys-
tems, built on advanced reconstruction techniques, far
exceeds the reach of conventional signal processing.

Takens’s Theorem [2] (see also [4] for a formulation
more appropriate for fractal attractors) shows how the
reconstruction of system geometry can be done from
time series [5] measured from the system. This mathe-
matical fact can be successfully applied when the so-
called genericity conditions are verified, but this is not
always possible. In particular, it is necessary for the
observations to be coupled, at least indirectly, to all
modes of the dynamics. Many dynamical network top-
ologies fail to meet this condition.

In this Letter we take a first step toward extending the
work of Takens et al. to analyze networks of nonlinear
systems. Our goal is to lay the groundwork for recon-
structing the individual dynamical components of
coupled networks. Driver-response dynamics, in particu-
lar, where one or the other is chaotic, has attracted a great
deal of interest recently in electronic circuits [6], struc-
tural health monitoring [7], and optics [8], in particular,
where various types of synchronization have been de-
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tected. Our focus here is on the reconstruction of the
driver from measurements taken solely from the response
systems, given no prior knowledge of driver or response.
We introduce a key theorem that shows how to carry out
the reconstruction. The algorithm that implements this
theory is described and applied to several examples.

The most basic configuration to be considered is a
network consisting of a single system A driving a number
of individual response systems B1; . . . ; Bn. The problem
of reconstructing the dynamics of the driver system is a
problem of reconstructing dynamics shared by the re-
sponse systems. Working only from time series output,
there can be a natural ambiguity about where the shared
dynamics lies, whether in the driver or in identical sub-
systems of the response systems. In some cases it will be
impossible to disambiguate the two possibilities, and we
use the term ‘‘shared dynamics’’ for this reason. For many
modeling purposes, the difference is benign.

There are two principal motivations for reconstructing
shared dynamics. First, for some applications, uncovering
the dynamics of the common source may be the primary
goal. This is akin to inverting a filter bank, where the
filters are nonlinear dynamical systems in their own right.
Second, prediction and filtering tasks for each response
system can be done more accurately with extra system
information. In other words, information from one or
several secondary response signals, driven by the same
source, can lead to significantly improved analysis and
geometric reconstruction of the signal from the response
system of interest.

This work depends on a reconstruction theorem for
skew products due to Stark [9] (see also Casdagli [10]).
That theorem states conditions under which the state
space of a system consisting of the combined driver and
response can be reconstructed. In the present article, the
goal is to use the output of several response units to
separate out the dynamics of the driver from the rest of
the dynamics, as a way of breaking the system down into
its component parts.

Let f : A!A represent a continuous, ergodic dynami-
cal map on a compact attractor A, and for i � 1; . . . ; n,
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denote by Bi a dynamical system driven by A. Denote the
driving by gi : A� Bi ! Bi, and require gi�a; �� continu-
ous for each a 2 A. The map gi is called a skew product.
Iterated dynamics is denoted by recursively defining
g�k�i : A�Bi!Bi as g�k�1�

i �a; b� � gi�fk�a�; g
�k�
i �a; b��.

Consider an attractor Z of the product dynamics in A�
B1 � . . .� Bn, and denote by Zi � �i�Z� the projection
of Z into A� Bi. Thus Zi represents the attractor of the
combined dynamics in A� Bi.

Assume hi : Bi ! R are real-valued continuous maps
for i � 1; . . . ; n, interpreted as observation functions. The
values of hi can be viewed as a time series measured from
Bi. The n simultaneous time series, as in Fig. 1, can be
used to construct delay coordinates. For each i the so-
called delay map can be written as

�i�a; b� � 	hi�g
�0�
i �a; b��; . . . ; hi�g

�m
1�
i �a; b���:

The skew product reconstruction theorem of Stark [9]
holds that under mild technical conditions for generic gi
and hi, the delay map �i embeds the product A� Bi into
Rm, for sufficiently large m. In particular, there is a one-
to-one correspondence from Zi to its image Xi � �i�Zi�,
for each i. In particular, each reconstructed xi in Xi is
associated to a unique driver state a in A.

This simple observation motivates the reconstruction
of the shared dynamics of the Bi. Let �i � �i�i denote
the ith component of the reconstruction of the attractor Z,
and consider two points z � �a; b1; . . . ; bn� and z0 �
�a0; b01; . . . ; b

0
n� in Z. The points z and z0 represent two

states of the entire system A� B1 � . . .� Bn. Assume
that the ith coordinate of the reconstruction agrees at z
and z0, that is �i�z� � �i�z0�. Then �i�z� � �i�z0�, be-
cause �i is one-to-one due to the skew product recon-
struction theorem. Therefore a � a0, meaning that the
driver states of z and z0 agree. Note that this information
is novel when applied to the other subsystems j � i.
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FIG. 1 (color online). Four time series representing output of
B1; . . . ; B4 from (4). Each Bi is driven by an identical input
signal from a period 3 attractor A given in Eq. (3).
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This leads to a classification scheme for the set of
points in the reconstructed attractor Xi of the Bi dynam-
ics. Fix one i arbitrarily. Define A� to be the set of
equivalence classes of reconstructed points in Xi, gener-
ated by the relation xi � �i�z� � x0i � �i�z0� if there ex-
ists a j � i; 1 � j � n and xj such that �j�z� � �j�z0�. In
other words, identical returns in component j of the
reconstruction implies an identical drive state, so the
corresponding component i should be grouped in order
to reproduce the drive. Each set of equivalent points of the
fixed Xi, under this relation, is considered to be a unique
point in A�. It is clear that the construction of A� is
independent of the choice of i, in the sense that any other
choice would result in a set of equivalence classes A� that
is in one-to-one correspondence with any other choice.

There are three functions that can be defined for the set
A�. First, every equivalence class a� in A� has associated
with it a unique a in A, so define the function s from A� to
A by s�a�� � a. The function s is onto, meaning that the
image of s is all of A. (This follows from the fact that the
dynamics f is ergodic on A.) Second, there is a natural
dynamical rule f� from the set A� to itself that is inher-
ited from the dynamics on the delay coordinates. The
equivalence class f��a�� is defined to be the one the
elements of a� are mapped to under the system dynamics
g1. In addition to the functions s and f�, for each 1 � i �
n, the function ti from Xi to A� can be defined by sending
each xi 2 Xi to the equivalence class of xi.

The following diagram shows the relation between the
functions ti; s and the new dynamical system f� on A�.
Because f� is onto, the right half of the diagram shows
that f� satisfies the definition of semiconjugacy. The map
f� : A� ! A� is said to be semiconjugate to the map f :
A ! A if there exists an onto map s : A� ! A satisfying
f � s � s � f�, that is, the left side of the diagram ‘‘com-
mutes’’

The analogous statement about the right side of the
diagram is also true. This is summarized in the following
theorem.

Shared dynamics reconstruction theorem.—Assume A
has ergodic dynamics, and in addition drives Bi, 1 � i �
n. Choose m large enough and f; gi generic such that all
skew products A� Bi are reconstructed in Rm. Define
f� : A� ! A� as above. Then, under genericity condi-
tions, (1) the map f� is semiconjugate to f, and (2) for
each i, the map �igi�
1

i is semiconjugate to f�.
Roughly speaking, if f1 is semiconjugate to f2, then f1

‘‘contains’’ the dynamics of f2. The content of the theo-
rem is that according to the left-hand square of the above
diagram, A� captures at least the dynamics of the driver
198701-2
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FIG. 2. Algorithm finds delay-coordinate points from a small
" neighborhood in the Bj reconstruction (upper trace, in bold),
and collects together the corresponding simultaneous points in
each Bi reconstruction, i � j (lower trace, in bold), indepen-
dent of their proximity in Bi.
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A, and may contain more. However, according to the right
side of the diagram for each i, any extra dynamics in A�

must be common to all of the Xi, due to part (2) of the
theorem. This is the meaning of ‘‘shared dynamics.’’

For example, if all Bi have an identical subsystem that
is moving synchronously, independent of the driver A,
this will also be reconstructed by A�. Alternatively, if part
of the driver’s dynamics is considered part of each Bi, that
will be captured as well by A�. This reflects the fact that
the separation between driver and response depends on
the definition of the A and the Bi. The theorem says only
that (1) all of A must occur in A�, and (2) all dynamics in
A� must be shared by all Bi.

Next we show how this theorem leads to an algorithm
that extracts shared dynamics of the Bi from time series
data observed and reconstructed in the Xi.

Shared Dynamics Algorithm.—Choose m large enough
to unfold the dynamics on each A� Bi, and use delay
coordinates to create the reconstructed attractor Xi,
which is in one-to-one correspondence with Zi. Choose
one of the Bi arbitrarily, say B1. The basis of the algo-
rithm is to group together points in B1 that lie over the
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same point in A, the so-called fibers over A. According to
the theorem, at each time t when the dynamics returns to
the same point in Bj, the value of a in A is the same.
Figure 2 shows three nearly identical delay vectors in Xj.
Although at the corresponding times, the vectors in Xi for
i � j look unconnected, they must in fact be different
points lying over (approximately) the same a. With this
information, one can search for delay vectors in Xj that
are close in the delay reconstruction, and return infor-
mation to X1 about points over the same a. A neighbor-
hood size " must be chosen to decide the meaning of
nearly identical, for this purpose. The degree of discreti-
zation of the resulting dynamical attractor A� will depend
on this choice.

Using this method of associating points to the fibers
over A, one proceeds through all points of the recon-
structed attractor X1 to fit them in an appropriate equiva-
lence class. Choosing representatives for the equivalence
classes from a chain of overlapping " neighborhoods
retains the topological form imposed by the original
dynamics. Note that no reembedding is necessary, since
the points of A� constitute a subset of the reconstructed
X1, which has no self-intersections by assumption.

We demonstrate first with a simple example. Let A be a
circle with irrational rotation dynamics driving two dis-
crete response systems, a period-two orbit in B1 and a
period-three orbit in B2. Under additive driving, the
attractors Z1 and Z2 will typically be unions of two and
three topological circles, respectively. The above theorem
implies that the reconstructed set A� is semiconjugate to
an irrational rotation on A, and Z1 and Z2 are individually
semiconjugate to A�. Since Z1 and Z2 have no dynamics
in common except for the drive, A� must be an irrational
rotation on a circle. In this case, the driver dynamics are
reconstructed completely: A � A�.

The shared dynamics algorithm was applied to this
problem, where A is an irrational rotation x ! x�! of
approximately 0:06 Hz on a circle, B1 is the logistic map
with period-two dynamics

y ! a1y�1
 y� � b1; (1)

where a1 � 3:2, b1 � 0:1, and B2 is the circle map

y ! a2 sin6�y� y� 1=3� b2x�mod1�; (2)
FIG. 3. Shared dynamics algorithm
for system (1) and (2). (a) Union of
reconstructed attractors X1 and X2.
(b) The set A� determined by the algo-
rithm exhibits a circle rotation.
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FIG. 4. Shared dynamics algorithm
for system (3) and (4). (a) Recon-
struction of X1 shown; X2; X3; X4 are
similar in appearance. (b) The set A�

determined by the algorithm agrees
with the period-three dynamics of the
driver A.
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where a2 � b2 � 0:1, undergoing period-three dynamics.
The attractors X1 and X2 were reconstructed from a
length 1 K time series, using h1 � h2 to be the identity
functions, and are displayed together in Fig. 3(a). The
output A� of the algorithm is shown in Fig. 3(b). The set
A� comprises equivalence classes based on the part of X1

at upper right in Fig. 3(a). The topology of the driver A, a
circle, is reconstructed up to the discretization enforced
by the neighborhood size " set in the algorithm. Although
quasiperiodic circle dynamics is used for the sake of
clarity in this example, driving with fractal chaotic at-
tractors yields similar results (not shown).

A second example shows that the algorithm success-
fully discriminates shared behavior even when the Bi are
nearly identical but different systems. In addition, the
example shows that continuity in the dynamics is not
essential. Define the driver A to be the logistic map in
the period-three window

x ! �x�1
 x�; (3)

with � � 3:835, and let Bi; i � 1; . . . ; 4 be discontinuous
logistic maps

y ! aiy�1
 y� � bix�mod1�; (4)

where a1 � 3:81; a2 � 3:82; a3 � 3:83; a4 � 3:84, and
bi � 0:45 for all 1 � i � 4. Time series from the Bi, using
the identity function for hi, are shown in Fig. 1.

Figure 4(a) shows the skew dynamics of B1, recon-
structed from a time series of length 1 K. The remaining
Bi are not shown, but bear great similarity to B1. Despite
the similarity, the algorithm is able to correctly group all
fibers over points in the driver A. Figure 4(b) shows that
A� � A, which is the correct answer.

The efficiency of reconstructing the driver dynamics
from the response signals grows with the length of time
series, as the neighborhood size " in the algorithm can be
decreased accordingly. For example, the A� in Fig. 3(b)
can be extracted with greater resolution using a larger
data set. Efficiency also depends on the heterogeneity of
the Bi. The more alike the Bi dynamics, as in Eq. (4), the
more difficult the discrimination between fibers over A,
and the more data will be required.

Nonlinear and chaotic dynamical systems are known
for emergent properties and other obstructions to reduc-
tionist analysis. We do not expect to develop a theory of
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nonlinear transfer functions analogous to the relatively
well-understood linear case. However, it is our hope that
the theorem and associated algorithms presented here
spur the development of methodologies to break down
nonlinear systems into smaller, simpler parts where pos-
sible. This kind of nonlinear network analysis will be
useful whenever less than full connectivity exists, a sce-
nario that essentially contradicts the assumptions made in
Takens’s theory. In addition to physical systems, many
biological systems where ‘‘wiring diagrams’’ are known
to connect important subsystems may provide fertile
application areas for this type of analysis.
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