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Chaotic itinerancy based on attractors of one-dimensional maps
Timothy Sauera)
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A general methodology is described for constructing systems that have a slowly converging
Lyapunov exponent near zero, based on one-dimensional maps with chaotic attractors. In certain
parameter ranges, these relatively simple systems display the properties of intermittent dynamics
known as chaotic itinerancy. We show that in addition to the local sensitivity characteristic of
chaotic dynamics, these itinerant systems display a global sensitivity, in the sense that fine-scale
additive noise may significantly change the natural measure on the large scale. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1582332#
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In this article we build simple examples of systems under-
going chaotic itinerancy, in order to study mechanisms
for its creation. Of particular interest in this article is
building simplest possible examples of globally sensitive
attractors, meaning those that undergo large-scale
changes in natural measure as a consequence of fine-sca
noise contributions.

I. INTRODUCTION

The study of chaotic itinerancy1,2 has unified interest in
dynamical systems of widely different origins. Although th
may come from deterministic or stochastic models, discr
or continuous dynamics, they commonly share several in
esting properties that are relatively intractable at present
cluding nonhyperbolicity, slow convergence of Lyapunov e
ponents, metastability and intermittency.

Our motivation in this article is to study the mechanis
of chaotic itinerancy by constructing the simplest possi
examples of such behavior. We will begin with a on
dimensional map with a chaotic attractor, and build a sys
with an attractor that contains the original attractor. The n
system will have a substantial amount of natural measure
the original attractor but have intermittent excursions from
The repeated alternation between the vicinity of the origi
attractor and the excursions is one of the most straight
ward manifestations of chaotic itinerancy.

A particular aspect of chaotic itinerancy that we fin
most interesting is that it can be accompanied byglobal sen-
sitivity, by which we mean sensitivity of natural measure
dynamical noise. A familiar property of chaotic systems
local sensitivity to initial conditions. By this we mean that b
changing the initial condition of a trajectory a small amou
or by adding dynamical noise along the trajectory, the alte
trajectory diverges quite rapidly from the original. It is pe
haps a surprising fact that it is common for chaotic syste
to be globally insensitive, meaning that even with the sen
tivity on a trajectory-by-trajectory basis, the chaotic attrac
itself ~or more precisely, its natural measure! is relatively

a!Electronic mail: tsauer@gmu.edu
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insensitive. In other words, a small infusion of small-sca
noise to a chaotic attractor may cause only small, prop
tional changes to the natural measure of the resulting
chastic dynamical system.

In this article, we show examples for which the glob
insensitivity fails. These examples are both locally and g
bally sensitive to small dynamical noise. Through the mec
nism of chaotic itinerancy, we construct deterministic sy
tems for which small additive noise create
disproportionately large changes in the natural measure
the resulting stochastic dynamical system. The size of th
changes is controlled by a scaling law whose expone
called the ‘‘hyperbolicity exponent,’’ depends on the rate
convergence of a Lyapunov exponent close to zero. M
precisely, this exponent can be expressed in terms of
moments of the probability distribution of finite-tim
Lyapunov exponents of the underlying deterministic syste

Hyperbolic systems are globally stable. The hyperbo
ity exponent is a rough attempt to quantify the extent
which a nonhyperbolic system has hyperbolic-like prop
ties. When this exponent is close to zero, the global stab
is lost. The substantial effect of noise on nonhyperbolic s
tems has been studied earlier from several different pers
tives. In such systems, noise causes unshadow
trajectories,3 trajectory deviations from the attractor,4 and
slow relaxation to the natural measure.5

Of course, small noise added to an attractor near a c
or other global bifurcation can cause the destruction o
basin, for example as an unstable manifold crosses a st
manifold forming the basin boundary. This may result in
abrupt change in natural measure, as a function of no
level. Here we are interested in more continuous change
natural measure, ones that are not caused by destructio
attractor or basin but by more subtle phenomena.

II. CONSTRUCTION OF EXAMPLES

Let g:R→R be a one-dimensional map and define a n
map onR2 by

f ~x,y!5~y,g~y!1sin@~y2g~x!!~bg8~y!1c!# !. ~1!

We will be most interested in cases whereg is a chaotic map.
For example,g(x)5a sinpx with a51.1 has a chaotic at
© 2003 American Institute of Physics
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tractor contained in the interval@21.1,1.1#, as shown in Fig.
1~a!. Substituting in Eq.~1! results in the two-dimensiona
map

f ~x,y!5~y,a sin py1sin@~y2a sin px!

3~bp cospy1c!# !. ~2!

With parameter settingsb50.47 andc50.1, this map
has some interesting properties. A trajectory started on
‘‘ghost’’ of the original attractor, defined byy5g(x) in the
plane, will remain on that set. However, adding noise of s
10216, the typical noise present in standard double precis
computations, results in typical trajectories as in Fig. 1~b!.
The tiny added noise has in fact changed the natural mea
of the attractor. More precisely, the stochastic dynamical s
tem consisting of the deterministic dynamics together w
the noise6 has a natural measure whose difference from
original natural measure is around 15 orders of magnit
larger than the noise level.

Another interesting example is

FIG. 1. The two-dimensional map~1! formed using the one-dimensiona
map g(x)51.1sinpx. ~a! Invariant set under the deterministic system~2!.
~b! With added noise of size 10216 per iteration. Four thousand iterations o
a typical trajectory are shown in each frame.
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f ~x,y!5~y,ay~12y!1S~~y2ax~12x!!

3~ba~122y!1c!!!, ~3!

whereg(x)5ax(12x) is the logistic map, and where the s
function of Eq.~1! has been replaced by the sigmoid functi
S(x)5max(min(x,d),2d) for d.0. Note thatS(x) is similar
to the sin function for smallx: S(x)5x for uxu<d, and
S(x)5sign(x)d for uxu.d. The purpose ofS(x) is to re-
strain the two dimensional dynamics from leaving the p
mary basin of the chaotic attractor. In each case we w
choose parametera so that the dynamics ofg are chaotic, and
choose parametersb, c, andd such that the dynamics off are
bounded and the effects of chaotic itinerancy are clearly
ible.

For example, settingb50.7, c50.0, andd50.05 in Eq.
~3! leads to the dynamics shown in Fig. 2. Part~a! shows an
invariant set corresponding to the original one-dimensio
logistic map attractor, whose natural measure is extrem
sensitive to added noise, as shown in Fig. 2~b!. Although on
first glance Fig. 2~b! looks simply like Fig. 2~a! with added
noise of size 1021, something more complex is happening.

FIG. 2. The two-dimensional map~3! formed using the logistic mapg(x)
5ax(12x) with a53.75. ~a! Invariant set under the deterministic syste
~3!. ~b! With added noise of size 10216 per iteration.
cense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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is a combination of noise of size 10216 and itinerant dynam-
ics that causes the strange effect.

The sensitivity of natural measure to small noise is
property of chaotic itinerancy. This property is related
so-called fluctuating Lyapunov exponents. In order to c
struct examples like this, the parametersb andc are tuned to
make one of the Lyapunov exponents close to zero. In
ticular, we will manipulate the finite-time Lyapunov expo
nents. The time-t Lyapunov exponents of a chaotic trajecto
are the averagesl i of the logarithm of local expansion rate
along the trajectory of lengtht, so that an infinitesimal spher
of radiusdr at the beginning of the trajectory would evolv
to an ellipsoid with axesl i

tdr after t time units. An infinite-
length trajectory possesses a distribution of time-t Lyapunov
exponents for any fixedt. The sense in which we will con
sider a Lyapunov exponent ‘‘close to zero’’7 is that along the
trajectory, the mean of the finite-time Lyapunov exponen
small compared to its variance. Figure 3 shows the proba
ity distributions of the time-t Lyapunov exponents of ma
~2!, for t5100.

The classical Lyapunov exponents are the limits of
means of the finite-time distributions in Fig. 3, ast→`. The
width of the distributions tends to zero for larget. In fact,
because the time-t Lyapunov exponents are essentially av
ages oft log expansions, we should expect asymptotica
that the standard deviation of the distributions should sc
as t21/2. We will exploit this fact to estimate the standa
deviation of the time-1 Lyapunov exponent distribution
s1'Ats t for larget. Using larget for this purpose breaks u
the short-term correlations, giving a standard deviation t
is more consistent with the long-time asymptotics, and m
stable to calculate, than the standard deviation directly
culated from the distribution of time-1 exponents.

The characteristic wandering of trajectories that cor
spond to fluctuating Lyapunov exponents are the essenc
chaotic itinerancy, and are closely related to the studies
riddled basins.8 In both cases, as a parameter is varied,
tremely complicated bifurcation sequences are caused
particular bubbling and blowout bifurcations.9 The maps de-
veloped in this section are relatively simple but interest
examples of these phenomena. In this article, we will fo
primary attention on only one implication of these properti
the hypersensitivity of the natural measure to small addi
noise.

III. STOCHASTIC DYNAMICAL SYSTEMS AND
NATURAL MEASURE

The field of deterministic modeling of natural and e
perimental phenomena is in the process of absorbing the
reaching effects of nonlinearity, including the possibility
chaos. In virtually all applications of deterministic modelin
parts of the process remain unmodeled, and are consider
be noise. The effectiveness of a deterministic model of
depends on whether the so-called noise can be safely ign
or at least estimated.

In cases where the object of dynamical simulations is
compute a long-term average, the critical question is whe
the effects of noise will alter the average. The question
ownloaded 12 Jan 2006 to 129.174.45.207. Redistribution subject to AIP li
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be posed more generally in terms of natural measure, defi
to be the invariant measure generated by almost every in
condition in the sense of probability. The question is whet
the natural measure of the stochastic dynamical sys
formed by adding noise is close to the natural measure of
original deterministic system. Is the determination of t
natural measure a well-conditioned problem?

The goal of this article is to suggest that systems w

FIG. 3. Finite-time Lyapunov exponents of map~2! with c50.1 and various
settings of parameterb. Histograms of FTLE computed over nonoverlappin
sections of 100 iterates are shown.~a! b50.45, ~b! b50.46, ~c! b50.47.
cense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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chaotic itinerancy give examples where the condition nu
ber of this problem is large. For a deterministic mapf (x,y),
define the stochastic system with dynamical Gaussian n
by

f d~x,y!5 f ~x,y!1dh, ~4!

whered is a fixed noise level andhPN(0,1) is chosen from
the standard normal distribution.~The shape of the nois
distribution is not critical to the results shown in the follow
ing. Results obtained with uniform noise of similar streng
differ only slightly.!

Figure 4 illustrates the change in natural measure du
the addition of additive Gaussian noise of sized510212.
Each part of Fig. 4 shows 107 iterations of map~4! wheref is
defined in Eq.~2!. The attractor from Fig. 1 is still visible
~note that only a small part of the original area is shown! in
part ~a!, corresponding to parameterb50.45. The chaotic
itinerancy becomes more noticeable in Fig. 4~b!, where the
parameterb50.46. Finally, whenb50.47 as in~c!, the natu-
ral measure has undergone a significant change.

IV. SCALING LAW FOR NATURAL MEASURE

What causes one-step errors at the fine scale of 10212 to
be manifested in unit-sized changes in the attractor? I
helpful to compare the extreme changes in measure with
fluctuating Lyapunov exponents seen in Fig. 3. As the par
eter b moves from 0.45 to 0.47, the finite-time Lyapuno
exponent closest to zero moves ever closer to zero, in
sense that the mean of the distribution becomes small c
pared to the variance.

In an article on shadowing of numerical trajectories,3 a
scaling law was developed to quantify the size of excursi
from deterministic trajectories caused by additive noise. T
scaling law says that the distribution of the log distanc
along the trajectory between the noise-free and noisy tra
tories is approximately an exponential distribution

p~y!5he2h(y2 ln d) ~5!

for y> ln d, whereh is a scaling exponent quantifying th
fluctuation of Lyapunov exponents:

h5
2umu

s2
, ~6!

called thehyperbolicity exponent. Here m and s represent
the mean and standard deviation, respectively, of the di
bution of the finite-time Lyapunov exponent closest to ze
scaled to timet51. The exponential distribution is the resu
of tiny excursions that periodically move the noisy trajecto
away from the original trajectory, and then return toward

This scaling law was applied in Ref. 10 to develop
scaling law for the change in natural measure, or more g
erally in any averaged observation function on the st
space, due to additive noise. Recall thatf d denotes the noisy
version off, defined in Eq.~4!. It was conjectured in Ref. 10
that for a fixed observation functionr (x) defined on the state
space of the system, the difference between the noisy tra
tory average ofr underf d and the original trajectory averag
of r under f scales with the one-step errord with a scaling
ownloaded 12 Jan 2006 to 129.174.45.207. Redistribution subject to AIP li
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exponent ofh52m/s2, or in terms of expectation over th
natural measure off d and the natural measure off:

^r & f d
2^r & f5Kd h, ~7!

where h represents the hyperbolicity exponent measu
from the Lyapunov exponent lying closest to zero. The sc
ing formula is an asymptotic formula, which holds in th

FIG. 4. Natural measure of Eq.~4! with d510212. The points from a
length-107 trajectory that fall into the square20.2<x,y<0.2 are plotted.
~a! b50.45, ~b! b50.46, ~c! b50.47.
cense or copyright, see http://chaos.aip.org/chaos/copyright.jsp



en
io
vio

v
is

he

x-

th

l
ic

w

10
y.

1

ite

r
a

se

e
u

of
e

the

u-
. The
tely

a-

al
er
nd

951Chaos, Vol. 13, No. 3, 2003 Chaotic itinerancy using 1D attractors

D

limit as d→0, and to the extent that one Lyapunov expon
is significantly closer to zero than all others. The situat
will be more complicated when these assumptions are
lated.

Equation~7! clarifies the role of a fluctuating Lyapuno
exponent in the sensitivity of natural measure to small no
perturbations. If the hyperbolicity exponenth is near 1, little
propagation of error will occur from the small scale to t
large. Additive Gaussian noise of sized will cause ‘‘errors’’
in the natural measure of about the same scaled. On the
other hand, ifh'0, there may be a large difference in e
pected values, of the observation functionr (x) under the
noisy and deterministic probability measures. Note that
proportionality constantK in Eq. ~7! is dependent on the
observation functionr. In fact, K may be zero or smal
enough to make the bias undetectably small for some cho
of r, and large for others.

We can compute the hyperbolicity exponenth from the
moments of the lower finite-time Lyapunov exponent sho
in Fig. 3. They are given in Table I. For parameterb
50.45, the mean and standard deviation of the time-
Lyapunov exponents are20.0557 and 0.0545, respectivel
To scale the standard deviation from time 100 to time
requires multiplying byA100510. The hyperbolicity expo-
nent is computed as

h5
2umu

s1
2

5
2~0.0557!

~0.545!2
'0.38

from formula ~6!.
The choice of timet5100 is arbitrary. As mentioned

earlier, the calculation of the standard deviation of the fin
time Lyapunov exponents distribution is simplified whent
@1 is used. Any larget would work as well, and give an
approximately similar value ofh.

For the nearby parameter settingb50.47, the result is
completely different. The hyperbolicity exponent ish
'0.08, meaning that reduction in additive noised of more
than 10 orders of magnitude is required to reduce erro
natural measure by a single order of magnitude. In this c
natural measure is extremely sensitive to additive noise.

Figure 5 illustrates the bias in long-term averages cau
by additive noise, as predicted by formula~7!. Two observa-
tion functionsr, designed to register maximum impact of th
change in measure evident in Fig. 4, were selected. The
per curve in Fig. 5 plots the average over 107 iterates of
r (x,y)5(y2g(x))2. This directly measures the deviation
the noisy attractor from the original one-dimensional det

TABLE I. Finite-time Lyapunov exponent statistics for two-dimension
map ~1!. Only the second-largest Lyapunov exponent is considered h
because it is the one that fluctuates around zero. The mean and sta
deviation of the time-100 Lyapunov exponent are denoted bym ands100,
respectively. The hyperbolicity exponenth is computed from Eq.~6!.

b c m s100 s1 h

0.45 0.1 20.0557 0.0545 0.545 0.38
0.46 0.1 20.0335 0.0545 0.545 0.22
0.47 0.1 20.0122 0.0548 0.548 0.08
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ministic attractor, which falls on the curvey5g(x). The
lower curve plots the average of the indicator function on
squareQ defined by 0<x<0.2,20.2<y<0, the lower-right
quarter of Fig. 4. The lower curve therefore directly calc
lates the natural measure on a fixed square in state space
slopes of the best line fit to the averages are approxima
0.4,0.24, and 0.09, respectively, forb50.45,0.46,0.47.

FIG. 5. Changes, by addingd noise, in long-term averages of two observ
tion functions under the dynamics of Eq.~1!. The functions corresponding to
the top, respectively bottom curve arer (x,y)5(y2g(x))2 and r (x,y)
51Q , whereQ is the set@0,0.2#3@20.2,0#. ~a! b50.45, ~b! b50.46, ~c!
b50.47.
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These compare closely with the hyperbolicity exponents
Table I, as expected by Eq.~7!.

V. DISCUSSION

We have presented a framework for constructing
amples of chaotic itinerancy through one-dimensional ma
but by slightly modifying Eq.~1! it can be used with higher
dimensional attractors as well. The result will be a determ
istic attractor whose natural measure is hypersensitive
added noise for certain values of the parameters.

Considerations about natural measure are critical in m
dynamical simulations where averages are sought. Nume
shadowing studies11 are concerned about this problem, wh
the noise comes from machine rounding or discretization
ror. Although these forms of noise are not Gaussian, i
likely that the qualitative issues are the same as in the Ga
ian case.

Whether a long-term average computed from a simu
tion is susceptible to noise depends also on the observa
function that is being averaged. If the constantK in Eq. ~7! is
small, the average may still be computed accurately e
when the hyperbolicity exponenth is near zero.

The key formula~7! for change in natural measure is a
asymptotic limit for the case when one finite-time Lyapun
exponent distribution is nearer to zero than the others
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would be interesting to develop a more sophisticated form
that gives more information about the general case and m
accuracy in all contexts.
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