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Chaotic itinerancy based on attractors of one-dimensional maps
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A general methodology is described for constructing systems that have a slowly converging
Lyapunov exponent near zero, based on one-dimensional maps with chaotic attractors. In certain
parameter ranges, these relatively simple systems display the properties of intermittent dynamics
known as chaotic itinerancy. We show that in addition to the local sensitivity characteristic of
chaotic dynamics, these itinerant systems display a global sensitivity, in the sense that fine-scale
additive noise may significantly change the natural measure on the large scak032American
Institute of Physics.[DOI: 10.1063/1.1582332

In this article we build simple examples of systems under- insensitive. In other words, a small infusion of small-scale
going chaotic itinerancy, in order to study mechanisms noise to a chaotic attractor may cause only small, propor-
for its creation. Of particular interest in this article is tional changes to the natural measure of the resulting sto-
building simplest possible examples of globally sensitive chastic dynamical system.

attractors, meaning those that undergo large-scale In this article, we show examples for which the global
changes in natural measure as a consequence of fine-scaleinsensitivity fails. These examples are both locally and glo-
noise contributions. bally sensitive to small dynamical noise. Through the mecha-

nism of chaotic itinerancy, we construct deterministic sys-
tems for which small additve noise creates
I. INTRODUCTION disproportionately large changes in the natural measure of
the resulting stochastic dynamical system. The size of these
The study of chaotic itineranéy has unified interest in changes is controlled by a scaling law whose exponent,
dynamical systems of widely different origins. Although they cajied the “hyperbolicity exponent,” depends on the rate of
may come from deterministic or stochastic models, discretgonyergence of a Lyapunov exponent close to zero. More
or continuous dynamics, they commonly share several inteiyrecisely, this exponent can be expressed in terms of the
esting properties that are relatively intractable at present, inmoments of the probability distribution of finite-time
cluding nonhyperbolicity, slow convergence of Lyapunov ex-| yapunov exponents of the underlying deterministic system.
ponents, metastability and intermittency. Hyperbolic systems are globally stable. The hyperbolic-
Our motivation in this article is to study the mechanismity exponent is a rough attempt to quantify the extent to
of chaotic itinerancy by constructing the simplest possiblgynich a nonhyperbolic system has hyperbolic-like proper-
examples of such behavior. We will begin with a one-tjes \When this exponent is close to zero, the global stability
dimensional map with a chaotic attractor, and build a systeny |ost. The substantial effect of noise on nonhyperbolic sys-
with an attractor that contains the original attractor. The newems has been studied earlier from several different perspec-
system will have a substantial amount of natural measure ofjes. In such systems, noise causes unshadowable
the original attractor but have intermittent excursions from it.yrajectories trajectory deviations from the attractbrand
The repeated alternation between the vicinity of the originak|ow relaxation to the natural measgre.
attractor and the excursions is one of the most straightfor-  of course, small noise added to an attractor near a crisis
ward manifestations of chaotic itinerancy. or other global bifurcation can cause the destruction of a
A particular aspect of chaotic itinerancy that we find pasin, for example as an unstable manifold crosses a stable
most interesting is that it can be accompaniedjtppal sen-  manifold forming the basin boundary. This may result in an
sitivity, by which we mean sensitivity of natural measure t0gprupt change in natural measure, as a function of noise
dynamical noise. A familiar property of chaotic systems iSjevel. Here we are interested in more continuous changes of
local sensitivity to initial conditions. By this we mean that by natural measure, ones that are not caused by destruction of
changing the initial condition of a trajectory a small amount, attractor or basin but by more subtle phenomena.
or by adding dynamical noise along the trajectory, the altered
trajectory diverges quite rapidly from the original. It is per- || cONSTRUCTION OF EXAMPLES
haps a surprising fact that it is common for chaotic systems . ) ]
to be globally insensitive, meaning that even with the sensi- Letg:zR—>R be a one-dimensional map and define a new
tivity on a trajectory-by-trajectory basis, the chaotic attractorMap onR” by

itself (or more precisely, its natural measyuiie relatively f(x,y)=(y,g(y)+sin(y—g(x))(bg' (y)+c)]). (1)
We will be most interested in cases wheris a chaotic map.

dElectronic mail: tsauer@gmu.edu For exampleg(x) =a sin wx with a=1.1 has a chaotic at-
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FIG. 2. The two-dimensional ma(3) formed using the logistic mag(x)
=ax(1—x) with a=3.75. (a) Invariant set under the deterministic system
(3). (b) With added noise of size 18° per iteration.

FIG. 1. The two-dimensional mafil) formed using the one-dimensional
map g(x)=1.1sinmx. (a) Invariant set under the deterministic systém.
(b) With added noise of size 10° per iteration. Four thousand iterations of
a typical trajectory are shown in each frame.

f(x,y)=(y,ay(1-y)+S((y—ax(1-x))
tractor contained in the intervpt-1.1,1.1], as shown in Fig.

1(a). Substituting in Eq{(1) results in the two-dimensional x(ba(1-2y)+c))), 3
map whereg(x) =ax(1—Xx) is the logistic map, and where the sin
) ) , function of Eq.(1) has been replaced by the sigmoid function

f(x,y)=(y,a sin wy+sin(y—a sin wx) S(x) =max(min,d),—d) for d>0. Note thatS(x) is similar

X (b cosmy+c)]). (2)  to the sin function for smalk: S(x)=x for |x|<d, and

S(x) =sign(x)d for [x|>d. The purpose of5(x) is to re-

With parameter settingb=0.47 andc=0.1, this map strain the two dimensional dynamics from leaving the pri-
has some interesting properties. A trajectory started on theary basin of the chaotic attractor. In each case we will
“ghost” of the original attractor, defined by=g(x) in the  choose parametarso that the dynamics afare chaotic, and
plane, will remain on that set. However, adding noise of sizechoose parametels ¢, andd such that the dynamics éfare
1018, the typical noise present in standard double precisiotounded and the effects of chaotic itinerancy are clearly vis-
computations, results in typical trajectories as in Figh)l ible.
The tiny added noise has in fact changed the natural measure For example, setting=0.7, c=0.0, andd=0.05 in Eq.
of the attractor. More precisely, the stochastic dynamical syst3) leads to the dynamics shown in Fig. 2. P@tshows an
tem consisting of the deterministic dynamics together withinvariant set corresponding to the original one-dimensional
the noisé has a natural measure whose difference from thdogistic map attractor, whose natural measure is extremely
original natural measure is around 15 orders of magnitudsensitive to added noise, as shown in Figh) 2Although on
larger than the noise level. first glance Fig. &) looks simply like Fig. 2a) with added

Another interesting example is noise of size 10%, something more complex is happening. It
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is a combination of noise of size 18 and itinerant dynam- 10 ; T
ics that causes the strange effect. 5
The sensitivity of natural measure to small noise is a
property of chaotic itinerancy. This property is related to
so-called fluctuating Lyapunov exponents. In order to con-
struct examples like this, the parametbrandc are tuned to
make one of the Lyapunov exponents close to zero. In par-
ticular, we will manipulate the finite-time Lyapunov expo-
nents. The tim&-Lyapunov exponents of a chaotic trajectory
are the averages; of the logarithm of local expansion rates
along the trajectory of length so that an infinitesimal sphere
of radiusdr at the beginning of the trajectory would evolve

probability
wn
I
|

to an ellipsoid with axe&itdr aftert time units. An infinite- 0 1
length trajectory possesses a distribution of timsrapunov 0.3 0.0 0.5 1.0
exponents for any fixetl The sense in which we will con- (@  time-100 Lyapunov exponent

sider a Lyapunov exponent “close to zefds that along the
trajectory, the mean of the finite-time Lyapunov exponent is
small compared to its variance. Figure 3 shows the probabil-
ity distributions of the time- Lyapunov exponents of map
(2), for t=100.

The classical Lyapunov exponents are the limits of the
means of the finite-time distributions in Fig. 3,tas~. The
width of the distributions tends to zero for largeln fact,
because the timeLlyapunov exponents are essentially aver-
ages oftlog expansions, we should expect asymptotically
that the standard deviation of the distributions should scale
ast™ 2 We will exploit this fact to estimate the standard
deviation of the time-1 Lyapunov exponent distribution as
o1~ \ta, for larget. Using larget for this purpose breaks up
the short-term correlations, giving a standard deviation that
is more consistent with the long-time asymptotics, and more
stable to calculate, than the standard deviation directly cal- 10
culated from the distribution of time-1 exponents.

The characteristic wandering of trajectories that corre-
spond to fluctuating Lyapunov exponents are the essence of
chaotic itinerancy, and are closely related to the studies of
riddled basing.In both cases, as a parameter is varied, ex-
tremely complicated bifurcation sequences are caused, in
particular bubbling and blowout bifurcatioRdhe maps de-
veloped in this section are relatively simple but interesting
examples of these phenomena. In this article, we will focus
primary attention on only one implication of these properties,
the hypersensitivity of the natural measure to small additive ;
noise. 0 |
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IIl. STOCHASTIC DYNAMICAL SYSTEMS AND

NATURAL MEASURE FIG. 3. Finite-time Lyapunov exponents of me) with c=0.1 and various

. L . settings of parametdr. Histograms of FTLE computed over nonoverlapping
The field of deterministic modeling of natural and eX- sections of 100 iterates are showa) b=0.45, (b) b=0.46, (c) b=0.47.

perimental phenomena is in the process of absorbing the far-

reaching effects of nonlinearity, including the possibility of

chaos. In virtually all applications of deterministic modeling, be posed more generally in terms of natural measure, defined

parts of the process remain unmodeled, and are consideredtmbe the invariant measure generated by almost every initial

be noise. The effectiveness of a deterministic model ofterrondition in the sense of probability. The question is whether

depends on whether the so-called noise can be safely ignorélde natural measure of the stochastic dynamical system

or at least estimated. formed by adding noise is close to the natural measure of the
In cases where the object of dynamical simulations is taoriginal deterministic system. Is the determination of the

compute a long-term average, the critical question is whethematural measure a well-conditioned problem?

the effects of noise will alter the average. The question can The goal of this article is to suggest that systems with
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chaotic itinerancy give examples where the condition num-
ber of this problem is large. For a deterministic nfdg,y),
define the stochastic system with dynamical Gaussian noise

by
f&(X,Y):f(X:Y)+577, (4)

whered is a fixed noise level ang e N(0,1) is chosen from
the standard normal distributioriThe shape of the noise
distribution is not critical to the results shown in the follow-
ing. Results obtained with uniform noise of similar strength
differ only slightly.)

Figure 4 illustrates the change in natural measure due to
the addition of additive Gaussian noise of side 10 12
Each part of Fig. 4 shows 1terations of magt4) wheref is
defined in Eq.(2). The attractor from Fig. 1 is still visible
(note that only a small part of the original area is shpwn
part (a), corresponding to parametér=0.45. The chaotic
itinerancy becomes more noticeable in Figb)4 where the
parameteb=0.46. Finally, wherb=0.47 as in(c), the natu-
ral measure has undergone a significant change.

0.2

IV. SCALING LAW FOR NATURAL MEASURE

What causes one-step errors at the fine scale of210
be manifested in unit-sized changes in the attractor? It is
helpful to compare the extreme changes in measure with the
fluctuating Lyapunov exponents seen in Fig. 3. As the param-
eter b moves from 0.45 to 0.47, the finite-time Lyapunov
exponent closest to zero moves ever closer to zero, in the
sense that the mean of the distribution becomes small com-
pared to the variance.

In an article on shadowing of numerical trajectories,
scaling law was developed to quantify the size of excursions
from deterministic trajectories caused by additive noise. The
scaling law says that the distribution of the log distances
along the trajectory between the noise-free and noisy trajec-
tories is approximately an exponential distribution

p(y)=he hy=ino (5

for y=In 6, whereh is a scaling exponent quantifying the
fluctuation of Lyapunov exponents:

_2m|
0'2 ,

(6)

called thehyperbolicity exponentHere m and o represent
the mean and standard deviation, respectively, of the distri- 0.2 -0.1 0 0.1 0.2
bution of the finite-time Lyapunov exponent closest to zero, (© X
scaled to timeé= 1. The exponential distribution is the result I )

. . L . . FIG. 4. Natural measure of Eq4) with §=10 "% The points from a
of tiny excursmns_ that pe“_Odlca"y move the noisy traJeCtO_rerngth—ld trajectory that fall into the square 0.2<x,y<0.2 are plotted.
away from the original trajectory, and then return toward it. (3) h=0.45, (b) b=0.46, (c) b=0.47.

This scaling law was applied in Ref. 10 to develop a
scaling law for the change in natural measure, or more gen-
erally in any averaged observation function on the stat@xponent ofi=2m/o?, or in terms of expectation over the
space, due to additive noise. Recall thatlenotes the noisy natural measure dff; and the natural measure bf
version off, defined in Eq(4). It was conjectured in Ref. 10 (r) —(r)= Koh 7)
that for a fixed observation functiar{x) defined on the state g
space of the system, the difference between the noisy trajeevhere h represents the hyperbolicity exponent measured
tory average of underf 3 and the original trajectory average from the Lyapunov exponent lying closest to zero. The scal-
of r underf scales with the one-step errérwith a scaling ing formula is an asymptotic formula, which holds in the
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TABLE |. Finite-time Lyapunov exponent statistics for two-dimensional
map (1). Only the second-largest Lyapunov exponent is considered here,
because it is the one that fluctuates around zero. The mean and standard
deviation of the time-100 Lyapunov exponent are denotedntynd o1qq,
respectively. The hyperbolicity exponemis computed from Eq(6).

b c m o100 o, h

0.38
0.22
0.08

0.45 0.1
0.46 0.1
0.47 0.1

—0.0557
—0.0335
—0.0122

0.0545
0.0545
0.0548

0.545
0.545
0.548

limit as 6— 0, and to the extent that one Lyapunov exponent
is significantly closer to zero than all others. The situation
will be more complicated when these assumptions are vio-
lated.

Equation(7) clarifies the role of a fluctuating Lyapunov
exponent in the sensitivity of natural measure to small noise
perturbations. If the hyperbolicity exponemis near 1, little
propagation of error will occur from the small scale to the
large. Additive Gaussian noise of sizewill cause “errors”
in the natural measure of about the same sé&l®©n the
other hand, ith=0, there may be a large difference in ex-
pected values, of the observation functiofx) under the
noisy and deterministic probability measures. Note that the
proportionality constanK in Eq. (7) is dependent on the
observation functiorr. In fact, K may be zero or small
enough to make the bias undetectably small for some choices
of r, and large for others.

We can compute the hyperbolicity expondnfrom the
moments of the lower finite-time Lyapunov exponent shown
in Fig. 3. They are given in Table I. For parameter
=0.45, the mean and standard deviation of the time-100
Lyapunov exponents are 0.0557 and 0.0545, respectively.
To scale the standard deviation from time 100 to time 1
requires multiplying byy100=10. The hyperbolicity expo-
nent is computed as

2|m| 2(0.055%
h=—-= > ~0.
o (0.545

from formula(6).

The choice of timet=100 is arbitrary. As mentioned
earlier, the calculation of the standard deviation of the finite-
time Lyapunov exponents distribution is simplified when
>1 is used. Any large would work as well, and give an
approximately similar value df.

For the nearby parameter settibg-0.47, the result is
completely different. The hyperbolicity exponent is
~0.08, meaning that reduction in additive noi8ef more
than 10 orders of magnitude is required to reduce error in
natural measure by a single order of magnitude. In this case
natural measure is extremely sensitive to additive noise.

Chaotic itinerancy using 1D attractors
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FIG. 5. Changes, by adding noise, in long-term averages of two observa-
tion functions under the dynamics of E@d). The functions corresponding to
the top, respectively bottom curve aréx,y)=(y—g(x))? and r(x,y)
=1q, whereQ is the sef0,0.2X[—0.2,0]. (a) b=0.45, (b) b=0.46, (c)
b=0.47.

Figure 5 illustrates the bias in long-term averages causenhinistic attractor, which falls on the curveg=g(x). The

by additive noise, as predicted by formy@. Two observa-

lower curve plots the average of the indicator function on the

tion functionsr, designed to register maximum impact of the squareQ defined by G=x<0.2,—0.2<y=<0, the lower-right

change in measure evident in Fig. 4, were selected. The upguarter of Fig. 4. The lower curve therefore directly calcu-
per curve in Fig. 5 plots the average over’ literates of lates the natural measure on a fixed square in state space. The
r(x,y)=(y—g(x))2. This directly measures the deviation of slopes of the best line fit to the averages are approximately
the noisy attractor from the original one-dimensional deter0.4,0.24, and 0.09, respectively, fdr=0.45,0.46,0.47.
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These compare closely with the hyperbolicity exponents irwould be interesting to develop a more sophisticated formula

Table I, as expected by E7). that gives more information about the general case and more
accuracy in all contexts.

V. DISCUSSION
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