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Abstract

Objective: To discriminate seizures from interictal dynamics based on multivariate synchrony measures, and to identify dynamics of a

pre-seizure state.

Methods: A linear discriminator was constructed from two different measures of synchronization: cross-correlation and phase

synchronization. We applied this discriminator to a sequence of seizures recorded from the intracranial EEG of a patient monitored over 6

days.

Results: Surprisingly, we found that this bivariate measure of synchronization was not a reliable seizure discriminator for 7 of 9 seizures.

Furthermore, the method did not appear to reliably detect a pre-seizure state. An association between anti-convulsant dosage, frequency of

clinical seizures, and discriminator performance was noted.

Conclusions: Using a bivariate measure of synchronization failed to reliably differentiate seizures from non-seizure periods in these data,

nor did such methods show reliable detection of a synchronous pre-seizure state. The non-stationary variables of decreasing antiepileptic

medication (without available serum concentration measurements), and concomitant increasing seizure frequency contributed to the

difficulties in validating a seizure prediction tool on such data.

Significance: The finding that these seizures were not a simple reflection of increasing synchronization in the EEG has important

implications. The non-stationary characteristics of human post-implantation intracranial EEG is an inherent limitation of pre-resection data

sets.

q 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

EEG is a complex signal. As a crude measure of

electrical activity within the brain, we are aware of no single

measure that adequately captures the nature of EEG

dynamics or the dynamics of the underlying brain processes.

Although there have been extensive univariate analyses of

EEG and seizure dynamics, much less exploration of the

role of formal multivariate analysis and discrimination has

been attempted. In principle, multiple independent
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measures of relevant brain and seizure dynamics should

help to discriminate interictal and ictal states with higher

accuracy than any single measure.

Seizures have long been postulated to be a manifestation

of excessive synchronization, and the earliest reference to

‘hypersynchronization’ that we are aware of was by Penfield

and Jasper (1954). Since then, the presumption that seizures

are a manifestation of synchronization has become perva-

sive (Kandel et al., 1991). Indeed, there have been multiple

recent findings consistent with the possibility that a measure

of synchronization might indicate changes in EEG

dynamics prior to seizure onsets (Jerger et al., 2001;

Lehnertz and Elger, 1995, 1998; Lerner, 1996; le Van

Quyen et al., 1998, 1999; Lopes da Silva et al., 1989;

Mormann et al., 2000; Quian Quiroga et al., 2002).
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Multivariate analysis of data has become highly refined

in the 20th century (Anderson, 1984; Johnson and Wichern,

1998). In multivariate analysis, independent measures of

data can be shown to be more sensitive than univariate

discriminators. Furthermore, for correlated variables, a

formal multivariate approach can be far more accurate in

classifying data than multiple independent comparisons.

We here follow the approach of Flury (1997), and

construct a linear discriminator based on measures of cross-

correlation and phase synchronization during seizure and

non-seizure periods. If seizures were a manifestation of

increased synchronization, we hypothesized that a pre-

seizure state could consist of a partial increase in

synchronization bridging the interictal and seizure periods.
Table 1

Performance of 100 discriminators for each seizure

Seizure number Mean P % Discriminators

with P!0.05

1 0.0018 100

2 0.1030 45

3 0.0138 91

4 0.0855 56

5 0.0291 84

7 0.0010 100

9 0.2713 24

11 0.0500 72

12 0.0059 88

Mean bootstrap estimate of probability (P) of falsely rejecting the null

hypothesis is the fraction of resamplings whose standard distance exceeds

the distance between seizure and non-seizure data (see Appendix).
2. Methods

Data set B from the Department of Epileptology,

University of Bonn, was visually inspected in its entirety

by a Board Certified Neurologist and Clinical Neurophy-

siologist (SLW). This data set comprised intracranial

recordings from a patient monitored over 6 days. Unequi-

vocal seizure onsets and offsets were identified from the

EEG as well as the earliest visually evident electrographic

changes. Groups of channels demonstrating similar activity

were identified as clusters. Clusters of electrodes included

the left posterior hippocampal depth electrode (channels

35–38) from which the earliest EEG changes were noted,

the left anterior hippocampal depth electrode (channels

31–33), the site of consistent electrographic seizure onset,

and the contralateral homologous hippocampal depth and

contralateral temporal neocortical electrodes. The choice of

anterior and posterior hippocampal electrode clusters was

supported by Independent Component Analysis (ICA)

which tended to group these two electrode clusters into

similar components (Hyvärinen and Oja, 1997).

We screened the multivariate synchronization measure

for ipsilateral and contralateral electrode pairings, and

found that the earliest changes in the measure appeared to

occur between the anterior and posterior hippocampal

electrodes ipsilateral to the seizure focus. We here report

a detailed discrimination analysis between these electrodes.

Raw data was analyzed in consecutive 10 s windows

(2000 datapoints at 200 Hz sampling rate) with 1 s window

overlap. The mean voltage within each data window was

removed and the voltages divided by the standard deviation

to normalize the values.

For each data window, cross-correlation and phase

synchronization (Tass et al., 1998) was calculated for each

electrode pair. To characterize the cross-correlation and

phase synchronization between each pair of electrode

clusters (anterior hippocampus vs. posterior hippocampus),

a single value for each window was obtained by averaging

across all combinations of intercluster channel pairs (with

one channel belonging to each cluster).
A linear multivariate discriminator was then constructed

to classify data windows as either seizure or non-seizure.

The discriminator was ‘trained’ using training samples

selected by using the values for all seizure windows

between unequivocal seizure onsets and offsets, and an

equal number of randomly selected non-seizure windows.

Non-seizure windows were selected from the 2 h period

ending 1 h before the identified seizure period, so as not to

include the immediate pre-ictal period. We required that this

2 h period start at least 1 h after a previous seizure to

exclude the post-ictal period (a total of 4 h between seizures

was required). A bootstrap procedure was employed to

determine the significance of the discriminator results. In

order to deal with non-stationarities in the data, the

discriminator was recalculated after each subsequent

seizure.

Full details of the Methods are given in the Appendix of

this paper.
3. Results

The probability that the bivariate synchrony discrimi-

nator classified the training sets correctly varied from 100%

accuracy (seizures 1 and 7), to as low as 24% (seizure 9).

Quite unexpectedly, this synchrony discriminator failed to

achieve over 95% accuracy in classification in 7 of 9

seizures (Table 1).

Fig. 1 shows the number of discriminations (4 of 5

consecutive threshold crossings) for the entire time series.

Before 8 seizures (seizures 3, 5, 6, 7, 8, 10, 11, and 12) the

frequency of discriminations was very high. One might be

tempted to interpret these periods of frequent discrimi-

nations as a ‘preseizure state’.

By constructing the training sets comparing 2 h before

the seizure versus the seizure, excluding the immediate 1 h

pre-seizure, the discriminator was ideally suited to pick up

subtle synchrony changes within the pre-seizure hour.

Although such activity might be ascribed to the hour before



Fig. 1. Entire sequence of seizures over 6 days, indicated by numbered tall bars, and the significant discriminations (4 out of 5 consecutive threshold crossings)

indicated by short bars (further details on discriminations are found in Appendix). Recordings were interrupted for media changes at the dotted lines. Asterisk

(*) indicates recording gap. Medication was restarted at the up-arrow.
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seizures 10 and 13, no such consistent pattern is observed

before other seizures among the full set of data from Fig. 1.

The seizure frequency gradually increased each day

through day 5, and the frequency of discriminations peaked

on day 4.

The frequency of threshold crossings is shown more

clearly in Fig. 2 (third panel). In the top two panels of Fig. 2

are shown the daily seizure count, and the cumulative daily

oral anticonvulsant dosages. The progressive discrimination

frequency peaked (panel 3) as the medication taper was

completed by day 4, when all medication was stopped.

Medication was resumed (with the addition of a new

medication, clobazam) at 2 pm on day 5 (up-arrow, Fig. 1).

The reflection of medication taper and seizure frequency

seen in discrimination frequency was not reflected in the

univariate cross-correlation and phase synchronization

averages shown in the bottom two panels of Fig. 2. Thus

medication dosage and seizure frequency appeared to

contribute to significant non-stationarity of the data

throughout the 6 days of recording.
4. Discussion

Using a bivariate measure of synchronization failed to

reliably differentiate seizures from non-seizure periods in

these data, nor did such methods show reliable detection of a

synchronous pre-seizure state.
There are several possibilities to account for such

discriminator behavior. In using a measure of synchroniza-

tion to characterize seizures, we make the assumption that a

pre-seizure state would reflect a subtle development of the

same dynamics that characterize the upcoming seizure. One

hopes that by using a sensitive quantitative measure and

discriminator, that such detection of a pre-seizure state can

be made in advance of the unequivocal electrographic

seizure onset or of the clinical manifestations of the seizure.

One possibility is that the discriminations as seen in

Fig. 1 are nearly all reflective of a pre-seizure state.

Certainly, each flurry of discriminations was followed

within minutes or hours by a seizure. Unfortunately, we do

not now have the physiological or dynamical understanding

to delineate a pre-seizure state.

Another possibility is that seizures, and a possible pre-

seizure state, are not reflected in a simple increase or

decrease in a synchronization measure. If this were true,

then the frequent discriminations shown in Fig. 1 would not

have a straightforward relationship to impending seizures.

One reason for such complexity is non-stationarities in the

data.

There were several non-stationary features of this data

set that are typical of patients monitored following

intracranial implantation of electrodes for seizure localiz-

ation. Time is at a premium once electrodes are implanted,

since the risks of infection, electrode breakage, and costs all

increase with time. Consequently, antiepileptic medication



Fig. 2. Cumulative daily seizure count is shown in the top panel, and cumulative daily anticonvulsant dosages are shown in the second panel (grey indicates

lamotrigine, black indicates carbamazepine, and white indicates clobazam, shown with its own scale since dosages are much smaller for this medication). The

third panel shows the probability (average number) of bivariate discriminations in 6 h periods. The bottom two panels show 6 h averages of the univariate

cross-correlation and phase synchronization indices, respectively.
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is rapidly tapered in the days following surgery (Yen et al.,

2001). Such a practice encourages the rapid emergence of

seizures in most chronically epileptic subjects, but the EEG

dynamics are then recorded during a background of rapidly

decreasing drug levels in the brain. Fig. 2 demonstrates that

the performance of the discriminator appeared to correlate

with changing antiepileptic medication dose. Such a feature

in the dynamics would render the discrimination threshold a

continually moving target, and may have accounted for

some of the difficulty in applying our measure.

As a consequence of seizures in the setting of decreasing

medication levels, such patients also frequently express an

increasing frequency of seizures, resulting in increased

clustering of seizures such as seen in these data (Figs. 1

and 2). The presence of frequent seizures and seizure

clusters may indicate that the brain would not have had

adequate time to recover dynamically to its normal interictal

state before the next seizure occurs. This is another source

of non-stationarity that may have contributed to the failure

of our discriminator.

Unfortunately, non-stationarities due to recent surgical

trauma, decreasing drug levels, and increasing seizure

frequency, are largely inherent in data sets collected from

patients implanted with electrodes for seizure localization.

In data sets such as the one analyzed here, the concept of a

‘preseizure’ state becomes difficult—the findings from

Fig. 1 may indeed have revealed that the patient was in a

continual pre-ictal state. Without an independent dynamical
definition of a pre-ictal state (and ictal state for that matter),

there will remain no way to validate a seizure predictor in

such data. The ideal data set required to validate a seizure

predictor would be from a long term chronically implanted

patient, with stable anticonvulsant medication levels, going

about the activities of daily living and experiencing a

‘normal’ seizure frequency. Since such data sets are not

available, non-stationarity renders validation of a prediction

tool rather problematic.

One of the fascinating biological features of this study

was the finding that synchronization was not able to reliably

differentiate seizure from non-seizure training periods in 7/9

seizures (Table 1). Note that the discriminator did not

differentiate between an increase or decrease in syn-

chrony—only whether the synchronization consistently

differed between seizure and interictal periods in the

training sets. One way to account for our findings would

be if synchronization followed a complex course during the

seizure period.

Experimental evidence that seizures might contain both

desynchronous and synchronous phases has recently been

observed from dual intracellular recordings (Netoff and

Schiff, 2002). Such findings are fully consistent with

previous observations of multiple single neurons in vitro

(Perez Velazquez and Carlen, 1999), and some of the rare

multiunit recordings from human seizures in vivo (see, e.g.

Figs. 7–9 from Wyler et al., 1982). Such observations are

also consistent with a growing body of theoretical literature
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demonstrating that the maintenance of persistent activity in

a neuronal network (Gutkin et al., 2001), or the activity of

inhomogenous networks as coupling strength is increased

(Golomb and Hansel, 2000), may all require asynchrony.

Although the link between single neuron interactions and

EEG is not clear, our findings are consistent with the

possibility that the seizures from this data set were not

characterized by a simple increase in synchronization.

These findings suggest that a more successful seizure and

pre-seizure discrimination strategy may require a more

detailed analysis of the time course of the dynamical

properties of seizures.
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Appendix

For each data window, cross-correlation at zero delay,

C(0), was calculated from the normalized electrode pair data

x1 and x2 as Cð0ÞZ ð1=NÞ
PN

iZ1 x1ðiÞx2ðiÞ where N is the

number of data points (2000).

For each time window phase was assigned by calculating

the Hilbert transform, x̂, on each time series x as x̂ðtÞZ
ð1=NÞ Im½2

PN=2
kZ1 f ðk=NÞeKi2pkt=N� where Im[ ] indicates the

imaginary part, and f(k/N) is the Fourier transform of x(t).

The values of the Hilbert transform supplied the imaginary

part of the Gabor analytic signal, xðtÞC ix̂ðtÞ, and the phase,

4(t), was assigned as 4ðtÞZarctan x̂ðtÞ=xðtÞ. Phase synchro-

nization between two electrodes was determined as follows.

Two sequences of phase angles, 41(t) and 42(t) for

electrodes x1 and x2, respectively, were subtracted to obtain

a sequence of phase angle differences, 41(t)K42(t), with

length equal to the original data window (2000 datapoints).

Such a sequence reflects the strength of one to one phase

locking (Tass et al., 1998). The first and last 1 s (200 values)

were discarded from each data window to minimize phase

calculation edge artifacts (Mormann et al., 2000). We have

avoided narrow band filtering of data prior to Hilbert

transformation (Netoff and Schiff, 2002).

For each data window, we therefore calculated one value

of cross-correlation at zero phase lag, and 1600 values (over

8 s) of phase difference. Because windows were overlapped

by 1 s, a phase difference was assigned for each time point

in the data. We reduced this set of phase difference values to

one measure per window by creating a histogram of values

with hZ20 bins, and quantifying the deviation from

uniform (randomly distributed) phase differences using a

measure of entropy, s, similar to Tass et al. (1998), where

sZKð1=hÞ
Ph

jZ1 PðjÞlogðPðjÞÞ, and the probabilities, P(j),

were estimated from P(j)Zm(j)/1600, where m(j) represents

the number of values within each bin j. The values of s were
normalized against the maximal possible entropy, SmaxZ
log N, to give SZ ðSmaxKsÞ=Smax. This entropy S yielded a

numerical value between 0 (complete asynchrony, where all

phase differences were equally probable), and 1 (perfect

synchrony where all phase differences fell within one bin).

To characterize the cross-correlation and phase synchro-

nization between each pair of electrode clusters (anterior

hippocampus vs. posterior hippocampus), a single value for

each window was obtained by averaging across all

combinations of intercluster channel pairs (with one channel

belonging to each cluster).

A linear multivariate discriminator was then constructed

to classify data windows as either seizure or non-seizure.

Average cross-correlation, �Cð0Þ, and phase synchronization,
�S values for each of the windows were combined into a

vector X

X Z
�Cð0Þ

�S

 !

The training samples were selected by using the values

for all seizure windows (X1), between unequivocal onsets

and offsets, and an equal number of randomly selected non-

seizure windows (X2). Non-seizure windows were selected

from the 2 h period ending 1 h before the identified seizure

period, so as not to include the immediate pre-ictal period.

We required that this 2 h period start at least 1 h after a

previous seizure to exclude the post-ictal period.

Discriminators were obtained by first computing the

bivariate mean, �X, and covariance matrix, Ji for seizure

samples ( �X1 and J1) and non-seizure samples ( �X2 and J2).

The pooled covariance matrix, J, was then calculated as

J Z
1

N1 CN2 K2
ððN1 K1Þ$J1 C ðN2 K1Þ$J2Þ

where N1 and N2 are the number of seizure and non-seizure

samples, respectively. The inverse of this matrix, JK1,

multiplied by the vector of mean differences between

seizure and non-seizure classes ðdZ �X1 K �X2Þ, yields the

coefficients of the linear discriminant function

b Z JK1d Z
b1

b2

 !

where b1 and b2 are the coefficients of the cross-correlation

and phase synchronization discriminant variables, respect-

ively. The univariate linear discriminant function, v, can

then be expressed as (Flury, 1997)

v Z bT$X Z b1x1 Cb2x2

where T indicates transpose.

A bootstrap procedure that did not require that the data

were normally distributed was employed to determine the

significance of the discriminator results. The null hypothesis

is that the standard distance,
ffiffiffiffiffiffiffiffi
dTb

p
, between the values of X1

from seizure windows and the values of X2 from non-seizure



Fig. A1. A single linear multivariate discriminator of cross-correlation and phase synchronization successfully discriminates (PZ0.003) seizure (closed

circles, C) and non-seizure (open circles, B) samples for seizure 1 of this data set (see Appendix for details). In the top panel, the black line shows the optimal

linear discriminator for these data. In the bottom panel, are shown the results of the bootstrap procedure used to evaluate the significance of the discrimination

results in the top panel. The assignment of the data values to ‘seizure’ or ‘non-seizure’ was randomized, and the standard distance was recalculated. It is shown

that the standard distance for the actual seizure and non-seizure data (asterisk, *) are rarely exceeded by the resampled results, and are thus very unlikely to be

due to chance.
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windows were due to chance. Rejecting the null hypothesis

requires us to demonstrate that the particular arrangement of

values into X1 and X2 is unusual. We therefore performed

1000 random resamplings of the training values of X

reassigning the values to seizure and non-seizure groups.

The significance of falsely rejecting the null hypothesis, P,

is therefore equal to the fraction of the 1000 resamplings for

which the standard distance between the bootstrap groups

exceeded the standard distance between the original seizure

and non-seizure groups (Fig. A1). For each seizure, 100

discriminators were constructed by selecting the seizure and

a different randomly selected set of non-seizure windows

(from applicable non-seizure windows as specified in

Section 2), and the significance of the discrimination

reevaluated by the bootstrap procedure. The percentage of

these 100 discriminators that successfully classified seizure

versus non-seizure (P!0.05) are reported in Table 1. The

slope and intercept from the successful linear discriminators

(each is equivalent to a straight line as in Fig. A1) for each

seizure were then averaged to obtain the discriminator to use

until the next seizure occurred.

In order to deal with non-stationarities in the data, the

averaged discriminator was recalculated after each sub-

sequent seizure. A significant discrimination was said to

have occurred if the discriminator classified 4 out of 5
consecutive windows as significant (for independent events,

the binomial probability of such an occurrence would be

!0.0001). Seizures were excluded from being used as a

training set if another seizure occurred within 4 h prior to it.

Seizures 6, 8, 10, and 13 were excluded on this basis,

leaving 9 seizures as training sets.
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