
Convergence of Rank-Type Equations

Timothy Sauer
George Mason University

September 8, 2009

Abstract

Convergence results are presented for rank-type difference equa-
tions, whose evolution rule is defined at each step as the kth largest
of p univariate difference equations. If the univariate equations are
individually contractive, then the equation converges to a fixed point
equal to the kth largest of the individual fixed points of the univari-
ate equations. Examples are max-type equations for k = 1, and the
median of an odd number p of equations, for k = (p+1)/2. In the non-
hyperbolic case, conjectures are stated about the eventual periodicity
of the equations, generalizing long-standing conjectures of G. Ladas.

1 Introduction

For a set of p real numbers {r1, . . . , rp}, denote the kth-largest element of
the set by k-rank{r1, . . . , rp}. Thus 2-rank{6, 2, 5, 3} = 5, and 1-rank is
synonymous with max.

Let fi : R → R for i = 1, . . . , p be real-valued functions. Consider the
difference equation

xn = k-rank{f1(xn−1), f2(xn−2), . . . , fp(xn−p)} (1)

for initial data x1, . . . , xp. We will call such an equation a rank-type difference
equation. If the fi are continuous, then xn is a continuous function of
xn−1, . . . , xn−p. Special cases of rank-type equations include

xn = max{f1(xn−1), f2(xn−2), . . . , fp(xn−p)}, (2)
xn = min{f1(xn−1), f2(xn−2), . . . , fp(xn−p)}, (3)

and
xn = median{f1(xn−1), f2(xn−2), . . . , fp(xn−p)}. (4)
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in the case where p is odd.
Max-type equations, corresponding to the special case k = 1 in difference

equation (1), have been extensively studied [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13,
14, 15, 16, 17, 18]. The purpose of this article is to note that, perhaps
surprisingly, many of the properties of max-type equations are shared more
generally by rank-type equations for k > 1.

Definition The function f is called contractive if there exists 0 ≤ α < 1
and a real number r such that |f(x)− r| ≤ α|x− r| for all x.

Definition The solution {xn}∞n=1 of a difference equation is called glob-
ally convergent if there exists r such that for every set of initial values,
limn→∞ xn = r. In this case, the equilibrium r is called globally attractive.

In the next section we show that if the fi are contractive with fixed
points ri, then the difference equation (1) is globally convergent for any
set {x1, . . . , xp} of initial values, converging in the limit to the fixed point
k-rank{r1, . . . , rp} .

This result is a generalization of the convergence theorem for max-type
equations, the k = 1 case [11]. If p is odd and k = (p+ 1)/2, then the con-
vergence result corresponds to replacing max by median. The corresponding
statement for mean is false; see Example 2.6.

Theorem 2.3 below is the main global convergence result, proved in a
context slightly more general than (1). The techniques used to prove The-
orem 2.3 can also be applied to prove a local convergence version, Theorem
3.1. In the final section, we relax the hyperbolicity restriction and state some
conjectures, generalizing well-known conjectures of Ladas [9, 7] on max-type
equations.

2 Global convergence

The following lemma from [11] is required.

Lemma 2.1 Let p be a positive integer, r and 0 ≤ α < 1 real numbers, and
let {xn}∞n=1 be a sequence of real numbers. Assume that for each n there
exists i, possibly depending on n, 1 ≤ i ≤ p, such that |xn−r| ≤ α|xn−i−r|.
Then limn→∞ xn = r.

The next lemma generalizes Lemma 2.2 of [11].
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Lemma 2.2 Let u1, u2, y1 ≤ y2, and s2 ≤ r ≤ s1 be real numbers, and
assume |yi − si| ≤ α|ui − si| for i = 1, 2 for some 0 ≤ α < 1. Then

(i) |y2 − r| ≤ α|uj − r| for either j = 1 or j = 2, and
(ii) |y1 − r| ≤ α|uj − r| for either j = 1 or j = 2.

Proof We give the proof of (i). The proof of (ii) follows by applying (i) to
−u1,−u2,−y2,−y1,−s1,−r,−s2.

The proof of (i) is divided into four cases.
Case 1: y2 ≤ r, u1 ≥ s1. In this case,

|y2 − r| = r − y2 ≤ s1 − y2 ≤ s1 − y1 = |s1 − y1|
≤ α|s1 − u1| = α(s1 − u1) ≤ α(u1 − r) = α|u1 − r|.

Case 2: y2 ≤ r, u1 ≤ s1.

|y2 − r| = r − y2 ≤ r − y1 = r − s1 + s1 − y1 = r − s1 + |y1 − s1|
≤ r − s1 + α|u1 − s1| = r − s1 + α(s1 − u1)
≤ r − s1 + α(s1 − u1) + (1− α)(s1 − r) = α(r − u1) ≤ α|r − u1|.

Case 3: y2 ≥ r, u2 ≥ r.

|y2 − r| = y2 − r = y2 − s2 + s2 − r = |y2 − s2|+ s2 − r
≤ α|u2 − s2|+ s2 − r = α(u2 − s2) + s2 − r
≤ α(u2 − s2) + s2 − r + (1− α)(r − s2) = α(u2 − r) = α|u2 − r|.

Case 4: y2 ≥ r, u2 ≤ r.
If u2 ≥ s2, then

r − s2 ≤ y2 − s2 = |y2 − s2| ≤ α|u2 − s2| = α(u2 − s2) ≤ α(r − s2),

a contradiction. So in addition, we may assume u2 < s2 ≤ r. Then

|y2 − r| = y2 − r ≤ y2 − s2 = |y2 − s2|
≤ α|u2 − s2| = α(s2 − u2) ≤ α(r − u2) = α|u2 − r|,

which completes the proof.

Theorem 2.3 Consider p nonnegative integers q1, . . . , qp, and let 0 ≤ α <
1. Assume for each i, j satisfying 1 ≤ i ≤ p, 1 ≤ j ≤ qi there exists a
function fij : R→ R and a real number rij satisfying

|fij(x)− rij | ≤ α|x− rij |
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for all x. Then for any k and for any set {x1, . . . , xp} of initial values, the
solution of the difference equation

xn = k-rank1≤i≤p,1≤j≤qi{fij(xn−i)} (5)

converges to k-rank1≤i≤p,1≤j≤qirij, the kth-largest of the rij.

Proof There are q ≡
∑p

i=1 qj functions fij , each with fixed point rij . Rank
the q fixed points as follows:

ri1j1 ≥ ri2j2 ≥ · · · ≥ riqjq .

We need to prove that the sequence xn = k-rank{fij(xn−i)} converges to
r ≡ rikjk = k-rank rij .

To apply Lemma 2.1, we need to find |xn − r| ≤ α|xn−i − r| for some
1 ≤ i ≤ n. For a fixed n, define im, jm so that xn ≡ k-ranki,j{fij(xn−i)} =
fimjm(xn−im). To apply Lemma 2.1, we will find xn−i satisfying |xn − r| ≤
α|xn−i − r| where 1 ≤ i ≤ p.

If m = k, then |xn− r| ≤ α|xn−ik − r|, as required. If m < k, then there
exists an integer h ∈ {k, k+1, . . . , q} such that fihjh(xn−ih) ≥ fimjm(xn−im).
Thus m < k ≤ h, or in other words, rimjm ≥ rikjk ≥ rihjh . Now we can apply
Lemma 2.2 with s2 = rihjh ≤ r = rikjk ≤ s1 = rimjm , y1 = fimjm(xn−im) ≤
y2 = fihjh(xn−ih), and u1 = xn−im , u2 = xn−ih . The result of part (ii) of the
lemma is that

|xn − r| = |k-rank1≤i≤p,1≤j≤qi{fij(xn−i)} − r| ≤ α|z − r| (6)

where z = xn−im or xn−ih , as required. Finally, if m > k, there exists
h ∈ {1, 2, . . . , k} such that fihjh(xn−ih) ≤ fimjm(xn−im). Thus h ≤ k < m,
or in other words, rihjh ≥ rikjk ≥ rimjm . Part (i) of Lemma 2.2 with s2 =
rimjm ≤ r = rikjk ≤ s1 = rihjh , y1 = fihjh(xn−ih) ≤ y2 = fimjm(xn−im), and
u1 = xn−ih , u2 = xn−im yields (6) as before.

This satisfies the hypotheses of Lemma 2.1, so

lim
n→∞

xn = r = k-rank {rij}.

Setting all qi = 1 in Theorem 2.3 covers the special case referred to as
equation (1) in the introduction:

Corollary 2.4 Let r1, . . . , rp be real numbers and assume fi : R → R for
i = 1, . . . , p satisfy |fi(x)− ri| ≤ α|x− ri| for all x, where 0 ≤ α < 1. Then
for any set {x1, . . . , xp} of initial values, the solution of difference equation

xn = k-rank {f1(xn−1), . . . , fp(xn−p)} (7)

converges to k-rank{r1, . . . , rp} as n→∞.
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Example 2.5 As an application of Corollary 2.4, consider the difference
equation

xn = k-rank{ 1
a1 + b1x2

n−1

, . . . ,
1

ap + bpx2
n−p
} (8)

where 0 < ai, 0 ≤ bi < (ai + 1
4)4 for i = 1, . . . , p. Under these conditions, for

each i, the first derivative of fi(x) = 1/(ai+bix2) is smaller than 1 in absolute
value for all x. By the Mean Value Theorem, the hypotheses of Corollary 2.4
hold where ri denotes the real root of the equation bix3 +aix = 1. Therefore
all solutions of (8) must converge to k-rank{r1, . . . , rp}.

A particular case of (8) for k = 2 is the difference equation

xn = median
{

1
1.2 + 0.7x2

n−1

,
1

1 + x2
n−2

,
1

1.1 + 0.9x2
n−3

}
(9)

The fixed points of

f1(x) =
1

1.2 + 0.7x2
, f2(x) =

1
1 + x2

, f3(x) =
1

1.1 + 0.9x2

are approximately r1 = 0.6632, r2 = 0.6823, and exactly r3 = 2/3, respec-
tively. Corollary 2.4 implies that all solutions of (9) converge to r3 = 2/3,
the median of the three fixed points.

Remark Corollary 2.4 implies that if p is odd, then the median differ-
ence equation (4) converges to the median of the individual fixed points of
f1, . . . , fp. However, if p is even, this statement fails to hold, as shown in
the next example.

Example 2.6 If a1 + a2 < 2 for positive numbers a1, a2, the equation

xn = median{a1xn−1 + b1, a2xn−2 + b2} (10)

is equivalent to

xn = mean{a1xn−1 + b1, a2xn−2 + b2}

and converges to the fixed point

lim
n→∞

xn = (b1 + b2)/(2− a1 − a2).

This disagrees in general with the mean of the fixed points of f1(x) = a1x+b1
and f2(x) = a2x+ b2, which is b1/2(1− a1) + b2/2(1− a2).
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Example 2.7 Consider the difference equation

xn = k-rank{A1x
α1
n−1, . . . , Apx

αp
n−p} (11)

where Ai > 0,−1 < αi < 1 for i = 1, . . . , p, and x1, . . . , xp are initial
values. Set yn = log xn. In these coordinates, the ith equation is yn =
αiyn−i + logAi, and due to monotonicity of the logarithm, (11) is replaced
with

yn = k-rank{α1yn−1 + logA1, . . . , αpyn−p + logAp}.

Corollary 2.4 shows that for any set of positive initial values x1, . . . , xp, the
yn sequence converges to k-rank{logAi/(1− αi)}, so that

lim
n→∞

xn = k-rank1≤i≤pA
1

1−αi
i .

This proves asymptotic convergence of (11) for −1 < αi < 1, Ai > 0, and
for all positive initial conditions. The max-type version of the problem,
corresponding to k = 1, was previously treated in [14, 12, 11].

3 Local convergence

Definition The constant solution xn = r of a difference equation wiil be
called locally attractive if for some p-dimensional open neighborhood of ini-
tial values (x1, . . . , xp) = (r, . . . , r), the solution converges to the constant
solution r.

This definition concerns local convergence, for cases when nearby initial val-
ues are attracted to a given constant solution. In the context of rank-type
equations, in order to make conclusions about local convergence, an extra
hypothesis that is not strictly local needs to be added to control the contrac-
tivity between the individual fixed points, as shown in the next theorem.

Theorem 3.1 Consider p nonnegative integers q1, . . . , qp, and let 0 ≤ α <
1. Assume for each i, j satisfying 1 ≤ i ≤ p, 1 ≤ j ≤ qi there exists a contin-
uously differentiable function fij : R → R and a real number rij satisfying
fij(rij) = rij. Let ik, jk be integers satisfying rikjk = k-ranki,jrij. Assume
that for each i, j, |f ′ij(x)| ≤ α for x between rij and rikjk . Then the constant
solution xn = rikjk of the rank-type difference equation

xn = k-rank1≤i≤p,1≤j≤qi{fij(xn−i)} (12)

is locally attractive.
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Proof Choose ε > 0 such that for each i, j, |f ′ij(x)| ≤ α1 ≡ (α + 1)/2 < 1
for rij − ε < x < rikjk + ε. For each i, j and rij − ε < x < rikjk + ε, the
Mean Value Theorem implies |fij(x) − rij | ≤ α1|x − rij |. Define the open
set U = {(x1, . . . , xp) : |xi − rikjk | < ε, 1 ≤ i ≤ p}.

The remainder of the proof is similar to the proof of Theorem 2.3.
Choose (x1, . . . , xp) from U , and for each n > p, choose i′, j′ such that xn =
maxi,j{fij(xn−i)} = fi′j′(xn−i′). Apply Lemma 2.2 with u1 = xn−ik , y1 =
fikjk(xn−ik), u2 = xn−i′ , y2 = fi′j′(xn−i′), s1 = rikjk , and s2 = ri′j′ . Lemma
2.2 implies that

|xn − rikjk | = |max
i,j
{fij(xn−i)} − rikjk | ≤ α1|z − rimjm |

where z = xn−ik or xn−i′ . This implies that (a) xn belongs to U and (b) we
can apply Lemma 2.1 to conclude that limn→∞ xn = rikjk .

The qi ≡ 1 special case is the local version of Corollary 2.4.

Corollary 3.2 Assume that the continuously differentiable functions fi :
R → R and real numbers ri for i = 1, . . . , p satisfy fi(ri) = ri. Let ik
be an integer satisfying rik = k-rank1≤i≤pri, and assume that there exists
0 ≤ α < 1 such that for 1 ≤ i ≤ p, |f ′i(x)| ≤ α for x between ri and rik .
Then the constant solution xn = rik of the difference equation

xn = k-rank{f1(xn−1), . . . , fp(xn−p)} (13)

is locally attractive.

We revisit two examples of max-type equations from [11], and discuss
them in the more general context of Corollary 3.2.

Example 3.3 As a first example, consider the rank-type equation involving
Ricker maps [10]

xn = k-rank{xn−1e
a1(1−xn−1/c1), . . . , xn−pe

ap(1−xn−p/cp)} (14)

where each map fi(x) = xeai(1−x/ci) in (13) has growth parameter ai ≥ 0
and carrying capacity ci ≥ 0. Since f ′i(0) = eai ≥ 1, fi is not contractive,
and the hypotheses of Corollary 2.4 are not satisfied.

However, note that If 0 < ai < 2, then ci is a stable fixed point for fi,
since the derivative of fi(x) = xeai(1−x/ci) is f ′i(x) = (1− aix/ci)eai(1−x/ci),
and |f ′i(ci)| = |1−ai| < 1. In addition, the second derivative shows that f ′i(x)
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is decreasing on the interval [ci, 2ci/ai) from f ′i(ci) = 1− ai to f ′i(2ci/ai) =
−eai−2, and increasing on the interval (2ci/ai,∞) from f ′i(2ci/ai) = −eai−2

to 0. It follows immediately that |f ′i(x)| ≤ max{|1 − ai|, eai−2} < 1 for
ci ≤ x. Now the main hypothesis of Corollary 3.2, that for each i, |f ′i(x)| =
|(1 − aix/ci)eai(1−x/ci)| ≤ α ≡ maxi{|1 − ai|, eai−2} < 1 for x between ci
and cik , is verified. Therefore the constant solution {cik , cik , . . .} is locally
attractive for the rank-type equation (14), where cik = k-rank{ci} is the
kth-largest of the carrying capacities of the p individual Ricker maps.

Example 3.4 Assume −1/4 < ai < 3/4 for 1 ≤ i ≤ p. Then the fixed

point ri = ai + 1
2 −

√
ai + 1

4 of fi(x) = (x− ai)2 is an attracting fixed point.

Note that each fixed point lies in the interval [0, 1
4).

We can apply Corollary 3.2 to the difference equation

xn = k-rank{(xn−1 − a1)2, (xn−2 − a2)2, . . . , (xn−p − ap)2} (15)

Note that for each j and for x between x = ri and x = 1
4 , f ′i(x) is in-

creasing from f ′i(ri) = 1 −
√

4ai + 1 to f ′i(
1
4) = 2(1

4 − ai), so that |f ′i(x)| ≤
max{|1−

√
4ai + 1|, |2(1

4−ai)|} < 1, satisfying the main hypothesis of Corol-
lary 3.2. It follows that the constant solution xn = rik , the kth-largest of
the p individually attracting fixed points of the fi, is locally attractive for
the rank-type equation (15).

4 Non-hyperbolic case

Far less is known in the non-hyperbolic case, where the restriction that
α < 1 is relaxed. Because of the lack of hyperbolicity, convergence cannot
be expected for general initial conditions. In many cases the solution be-
comes periodic for sufficiently large n. A particularly rich case concerns the
difference equation

xn = k-rank{−xn−1 + b1, . . . ,−xn−p + bp}. (16)

Remark First define ik to be the index of the kth-largest bi, namely bik =
k-rank {b1, . . . , bp}. Then it is straightforward to check that (16) has a
fixed-point solution x1 = x2 = . . . = 1

2bik .

With more assumptions, many more periodic solutions can be generated.
We say that a solution has prime period s if it is periodic with period s and
with no lower period.
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Proposition 4.1 Assume that the b1, . . . , bp in (16) are ordered as

bi1 ≥ . . . ≥ bik−1
> bik > bik+1

≥ . . . ≥ bip .

That is, assume that bik , the kth-largest bi, is not repeated in the list. Then
there are uncountably many solutions of (16) with prime period 2ik.

The solutions can be described as follows. Define

β =
1
2

min{bik−1
− bik , bik − bik+1

}.

(If k = 1, set β = 1
2(bik − bik+1

); if k = p, set β = 1
2(bik−1

− bik)). Define
the p initial conditions x1, . . . , xp to be any p consecutive elements of the
sequence

x1, . . . , x2ik , x1, . . . , x2ik , . . .

where

x1 =
bik
2

+ β1

...

xik =
bik
2

+ βik

xik+1 =
bik
2
− β1

...

x2ik =
bik
2
− βik

and such that the βi satisfy |βi| < β. For each n,

xn = k-rank
{
−bik

2
− βj1 + b1, . . . ,−

bik
2
− βjp + bp

}
.

Since bik−1
− 2β ≥ bik ≥ bik+1

+ 2β, we have

−bik
2

+ bik−1
− 2β ≥ −bik

2
+ bik ≥ −

bik
2

+ bik+1
+ 2β,

so that the kth largest of the set is −xn−ik + bik . This verifies that each xn
defined by the difference equation (16) follows the same pattern, and satisfies
xn = xn−2ik . If the β1, . . . , βk are chosen all distinct, then the solution is
not periodic of any lower period, so its prime period is 2ik.
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Remark In addition to the solutions of prime period 2ik, there are solutions
of prime period 2ik/d for any odd natural number d dividing evenly into ik.
They are special cases of the above solutions obtained by setting βs+1 =
−β1, βs+2 = −β2, . . . , β2s = −βs, β2s+1 = β1, . . ., where s = ik/d.

Note that difference equation (16) is the additive version of the multi-
plicative difference equation

xn = k-rank
{
A1

x1
, . . . ,

Ap
xp

}
(17)

where Ai > 0. If we set yi = log xi as in Example 2.7, we recover the form
(16). The monotonicity of the logarithm implies that ranks of the xi and yi
are unchanged. Equation (17) in the case k = 1 is the subject of extensive
conjectures of Ladas [9, 7]. In the following, we extend Ladas’s max-type
conjectures to the context of general rank-type equations. We state them in
additive form (16), though they are easily translated to the multiplicative
form (17).

Definition The solution {xn} of a difference equation is called eventually
periodic with period p if there exists an integer N > 0 such that xn+p = xn
for all n ≥ N .

Conjecture 4.2 Consider the difference equation (16) where the b1, . . . , bp
are ordered as

bi1 > . . . > bik−1
> bik > bik+1

> . . . > bip ,

that is, bik is the kth largest of distinct bi. Then all solutions are eventually
periodic with period 2ik. (The prime period may be a divisor of 2ik.)

For example, the case p = 3, k = 2 concerns the equation

xn = median{−xn−1 + b1,−xn−2 + b2,−xn−3 + b3}. (18)

The conjecture holds that for any initial conditions, the solution is eventually
periodic with period

2 if b2 < b1 < b3 or b3 < b1 < b2,

4 if b1 < b2 < b3 or b3 < b2 < b1,

6 if b1 < b3 < b2 or b2 < b3 < b1.
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The requirement in Conjecture 4.2 that bik is nonrepeating is important.
If this requirement is lifted, although eventual periodicity is still expected,
the formula for the period is more complicated. Continuing the case p =
3, k = 2 we have:

Proposition 4.3 Uncountably many solutions of the equation (18) exist
with prime periods

2 if b1 = b3 6= b2,

3 if b1 = b2 6= b3,

4 if b1 = b2 = b3,

5 if b2 = b3 6= b1.

Proof It is easily checked that the following sequences satisfy the difference
equation (18).

Case 1: b1 = b3 6= b2. For any β, define

x1 =
b1
2

+ β

x2 =
b1
2
− β

Then x1, x2, x1, x2, . . . is a solution.
Case 2: b1 = b2 6= b3. Set

x1 =
b1
2

+ β

x2 =
b1
2

+ β

x3 =
b1
2
− β

where β is any number between 0 and (b3−b1)/2. Then x1, x2, x3, x1, x2, x3, . . .
is a solution.

Case 3: b1 = b2 = b3. For any β, set

x1 =
b1
2

+ β

x2 =
b1
2

+ β

x3 =
b1
2
− β

x4 =
b1
2
− β.
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Then x1, x2, x3, x4, x1, x2, x3, x4, . . . is a solution.
Case 4: b2 = b3 6= b1. Define

x1 =
b1
2

+ β

x2 =
b1
2

+ β

x3 =
b1
2

+ β

x4 =
b1
2
− β

x5 =
b1
2
− β

where β is any number between 0 and (b1−b2)/2. Then x1, x2, x3, x4, x5, x1, x2, x3, x4, x5, . . .
is a solution, completing the proof.

We conjecture that the periodic solutions found above represent all pos-
sible periods for the p = 3, k = 2 rank-type equation. More precisely, we
propose the following:

Conjecture 4.4 Consider the difference equation (18). Then all solutions
are eventually periodic, with period

2 if b2 < b1 < b3 or b3 < b1 < b2,

4 if b1 < b2 < b3 or b3 < b2 < b1,

6 if b1 < b3 < b2 or b2 < b3 < b1,

2 if b1 = b3 6= b2,

3 if b1 = b2 6= b3,

4 if b1 = b2 = b3,

5 if b2 = b3 6= b1.

See [16] for a proof of analogous results for the p = 3, k = 1 case. We expect
that similar methods may suffice to prove Conjecture 4.4.
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