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A B S T R A C T

This study evaluates the potential of assimilating phenology observations using a direct insertion (DI) method by
constraining the modeled terrestrial carbon dynamics with synthetic observations of vegetation condition.
Specifically, observations of leaf area index (LAI) are assimilated in the Noah-Multi Parameterization (Noah-MP)
land surface model across the continental United States during a 5-year period. An observing system simulation
experiment (OSSE) was developed to understand and quantify the model response to assimilating LAI in-
formation through DI when the input precipitation is strongly biased. This is particularly significant in data poor
regions, like Africa and South Asia, where satellite and re-analysis products, known to be affected by significant
biases, are the only available precipitation data to drive a land surface model. Results show a degradation in
surface and rootzone soil moisture after assimilating LAI within Noah-MP, but an improvement in intercepted
liquid water and evapotranspiration with respect to the open-loop simulation (a free run with no LAI assim-
ilation). In terms of carbon and energy variables, net ecosystem exchange, amount of carbon in shallow soil, and
surface soil temperature are improved by the LAI DI, although canopy sensible heat is degraded. Overall, the
assimilation of LAI has larger impact in terms of reduced systematic and random errors over the Great Plains
(cropland, shrubland, and grassland). Moreover, LAI DA shows a greater improvement when the input pre-
cipitation is affected by a positive (wet) bias than the opposite case, in which precipitation shows a dry bias.

1. Introduction

Vegetation supports critical functions in the biosphere as it regulates
both the biogeochemical (water, carbon, and nitrogen) and energy
cycles from the local to the global scale. Vegetation also strongly affects
soil characteristics, including soil volume, chemistry, and texture,
which has a feedback on various vegetation characteristics, including
productivity and structure (Kumi-Boateng et al., 2012). Vegetation
dynamics are therefore crucial when modeling the land surface (Littell
et al., 2011). Dynamic vegetation models (DVMs) have been designed
to represent structural and functional variables that control land-sur-
face energy, carbon, nutrient, and water budgets (Wullschleger et al.,
2014, Peterson et al., 2014). DVMs and land surface models (LSMs)
have been combined in the past to improve the estimation of water,
carbon, and energy cycle processes (Clark et al., 2011, Dai et al., 2003).
For instance, the Noah Multi-Parameterization LSM (hereinafter Noah
MP) developed by Niu et al. (2011) uses multiple options for key land
hydrologic processes together with a module that allocates carbon to

various parts of vegetation and soil carbon pools.
Satellite observations offer a valid alternative for monitoring vege-

tation globally, producing maps of indices such the Leaf Area Index
(LAI), defined as the one-sided leaf surface area measured over unit
ground, and the Normalized Difference Vegetation Index (NDVI), based
on spectral reflectance measurements acquired in the red and near-in-
frared regions. LAI has been proven to be a useful indicator of the ex-
change of water vapor and CO2 between the vegetation canopy and
atmosphere (Xiao et al., 2016; Albergel et al., 2017), whereas NDVI is
an indicator of the density of green vegetation on a patch of land (Yang
et al., 2012). For example, the Moderate Resolution Imaging Spectro-
radiometer (MODIS) has been acquiring data in 36 spectral bands since
2000 (Rees and Danks, 2007) at resolutions of 500–1000 m every
4–8 days, and the Advanced Very High-Resolution Radiometer
(AVHRR; Tucker et al., 2005) produces global maps of LAI at a re-
solution of 4 km every 10 days.

Nevertheless, satellite-based observations often have gaps in their
spatial and temporal coverage (mainly due to cloud coverage). In order
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to fill in such gaps and guarantee continuous time series, observations
are commonly merged with model simulations. Data assimilation is a
well-known technique for optimally combining the information from
such observations and model estimates based on their respective un-
certainties (Reichle, 2008). Land Data Assimilation Systems (LDASs)
have been successfully used in the past decades to merge satellite ob-
servations of soil moisture and surface temperature into LSMs (e.g.,
Reichle et al., 2008, Reichle, 2008, Maggioni and Houser, 2017). In the
recent past, a few attempts applied the same concept to vegetation
observations and vegetation dynamics models.

For instance, Albergel et al. (2010) assimilated observations of LAI
and surface soil moisture (SSM) within an LSM. The joint assimilation
of SSM and LAI was tested at the local scale in western France and
showed a positive impact on the estimation of carbon, water, and heat
fluxes. Barbu et al. (2011) developed an LSM to simulate photosynthesis
processes, surface carbon fluxes, and vegetation biomass and jointly
assimilated soil moisture and LAI data. In another study by Albergel
et al. (2017), a global land data assimilation system (LDAS-Monde) was
applied over Europe and the Mediterranean basin to improve land
surface variable estimation when SSM and LAI satellite-derived ob-
servations were assimilated using a Simplified Extended Kalman Filter.
LDAS-Monde was more effective in estimating soil moisture in the top-
soil layers, but model sensitivity to SSM decreased with depth and had
almost no impact below 60 cm. Kumar et al. (2019) conducted an ex-
periment for assessing the impact of assimilating satellite-based LAI
using an Ensemble Kalman Filter over the Continental U.S. (CONUS) in
the Noah-MP LSM. Results demonstrated that LAI DA has a beneficial
impact on the simulation of key water budget terms (i.e., soil moisture,
evapotranspiration, terrestrial water storage, and streamflow) and
carbon fluxes (i.e., gross primary production and net ecosystem ex-
change) when compared to a large suite of ground-based reference
datasets. Ling et al. (2019) assimilated Global Land Surface Satellite
(GLASS) LAI data using an Ensemble Adjustment Kalman Filter tech-
nique globally. Results showed that the assimilation was able to reduce
the bias in the LAI especially in low‐latitude regions (from 5 m2/m2

to ± 1 m2/m2). Another recent work by Rajib et al. (2020) assimilated
MODIS LAI data across eastern Iowa in the United States and showed
improvements in the estimation of root zone soil moisture and water
quality indicators.

This work builds upon these past studies, while also introducing
several novelties. First off, it investigates the impacts of assimilating
phenology observations in a land data assimilation system when the
precipitation input data are strongly (either positively or negatively)
biased. This is particularly crucial for assessing the hydrological con-
ditions in data poor regions like Africa and South Asia, where

precipitation information relies on satellite-based and model re-analysis
products, which are well known to be affected by severe biases
(Koutsouris et al., 2016, Singh and Xiaosheng 2019, Steinschneider
et al., 2019). For instance, Ghatak et al. (2018) showed biases up to
70% in a suite of precipitation datasets (both satellite-based and model
re-analyses) that were compared to a gauge-based product across South
Asia. Yoon et al. (2019) compared ten different satellite-based and re-
analysis precipitation datasets across High Mountain Asia and found
average biases of 20%.

Second, this work investigates the efficiency of DI as the data as-
similation approach (i.e., the LAI model state is directly replaced by
observations whenever the latter become available). Although a very
simple method, DI does not require any unbiasedness assumptions to
operate in an optimal mode, as opposed to more sophisticated techni-
ques such as Kalman Filters. Since biases in atmospheric forcing (and
precipitation in particular) are often large and unknown (blind bias) in
data-poor regions, DI represents a unique approach to assess the po-
tential of improving the estimation of land surface variables by assim-
ilating vegetation observations. Being the first attempt to assimilate LAI
using DI under strongly biased precipitation input, this work presents a
synthetic (and therefore fully controlled) experiment across CONUS to
assess the potential of such approach.

2. Methodology

This study proposes an Observing System Simulation Experiment
(OSSE) to better understand and quantify the Noah-MP model response
to assimilating LAI information using DI. The experiment focuses on
CONUS (from 250N, 1250W to 530N, 670W; Fig. 1) during 2011–2015.
The NASA Land Information System framework (LIS; Kumar et al.,
2006), which includes several land surface models and a data assim-
ilation system, has been used in this experiment and Noah-MP, de-
scribed in detail in Section 2.1, is chosen as the LSM.

2.1. Noah-MP

The Noah-MP model has a semi-tile sub grid scheme in which the
canopy layer is separated from the land surface (Niu et al., 2011). The
shortwave radiation transfer is computed over the entire grid cell, while
longwave radiation, latent heat, sensible heat, and ground heat fluxes
are computed separately over two tiles: a fractional vegetated area
(Fveg) and a fractional bare ground area (1 − Fveg). Multiple options are
available in Noah-MP for surface water infiltration, runoff, ground-
water transfer and storage, dynamic vegetation, canopy resistance, and
frozen soil physics (Niu and Yang, 2007). Specifically, the prognostic

Fig. 1. Land surface classification by MODIS used in the Noah-MP model across the study region. The percentage area for each class is shown in the legend (EN:
Evergreen Needleleaf; EB: Evergreen Broadleaf; DN = Deciduous Needleleaf; DB: Deciduous Broadleaf).
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vegetation growth combines a Ball-Berry photosynthesis-based stomatal
resistance (Ball et al., 1987) with a DVM (Dickinson, 1983) that allo-
cates carbon to various parts of vegetation (leaf, stem, wood, and root)
and soil carbon pools (fast and slow).

In our experiment, Noah-MP is forced with the North American
Land Data Assimilation System – second phase (NLDAS-2; Xia et al.,
2012). NLDAS-2 is an upgraded version of the first phase of the multi-
institution NLDAS-1 (Mitchell, 2004) project, which was initiated to
provide coupled atmosphere–ocean-land models with reliable initial
land surface states for improving weather predictions (Xia et al., 2012).
It has a time window of 40 years (1979-present), 1/8° spatial resolution,
and hourly temporal resolution. Noah-MP is spun up for 30 years
(1981–2010) and run at a 15-min time step. Model daily output are
considered in this study.

2.2. The observing system simulation experiment

Synthetic experiments (e.g., OSSEs) are useful to quantitively assess
the potential impact of land data assimilation systems before they are
developed and deployed (Hoffman and Atlas 2016). OSSEs are mostly
designed to investigate data assimilation ideas and have the advantage
of being controlled experiments in which the reference (or ‘truth’) is
known. In an OSSE, the observations are simulated by a model, rather
than being real observations (Masutani et al., 2010). Such observations
are drawn from a perturbation-free run (the Nature Run, NR), which
serves as the baseline simulation (commonly referred to as ‘synthetic
truth’) to which the output from all the other runs are compared to.

Similarly, in our experiment, described by the framework in Fig. 2,
the output from the NR, which is forced with the original (unperturbed)
NLDAS atmospheric forcing dataset, is considered as the synthetic truth
(in terms of not only LAI, but also for all the other water, carbon, and
energy variables of interest). In order to produce the ‘synthetic ob-
servations’, the LAI output from the nature run (NR-LAI) is aggregated
to daily scale and perturbed by a multiplicative random error model
(with zero mean and a standard deviation of 0.1) to mimic the un-
certainties associated with real observations. This is a simplistic way of
representing such uncertainties and more complex error models (e.g.,
seasonally dependent) could be investigated in future studies that make
use of actual satellite products.

Next, two sets of open-loop (OL) simulations (i.e., no assimilation)

are run by perturbing the NLDAS-2 precipitation to half and double of
the original NLDAS-2 data to generate two extreme cases, the one in
which NLDAS-2 has a dry bias and the one in which NLDAS-2 has a wet
bias. This is obtained by multiplying the precipitation input by a con-
stant scaling factor, i.e., 0.5 and 2.0, for creating the dry and wet
conditions, respectively. Such simple multiplicative error model as-
sumes that the given dataset has perfect detection (neither false alarms
nor missed events), i.e., no-rain (rainy) pixels will remain no-rain
(rainy) pixels in the perturbed forcing dataset. This is a strong as-
sumption for re-analysis precipitation (and for satellite-based products
as well), which are well known to be affected by detection errors.
Nevertheless, a series of articles by Maggioni et al. (2011, 2012, 2013)
showed minimal improvement in soil moisture simulations when a
more complex precipitation error model (that simulates both false
alarm and missed events) was considered in a land data assimilation
system. Thus, a simple error characterization is chosen for this study,
but future work should investigate this issue further.

Finally, two data assimilation (DA) runs (wet and dry) are per-
formed by directly replacing the LAI model state with observations
obtained by the perturbed NR-LAI. In a DI DA, the observation is fully
trusted (Kumar et al., 2008) and model estimates are replaced by the
observations whenever the latter are available (Reichle, 2008). In this
case the model is replaced by the synthetic LAI observations every day
at 1:00 am. DI, one of the simplest data assimilation methods, was
chosen in this experiment mainly because it does not require any un-
biased model or observation. Furthermore, DI is computationally effi-
cient and easy to implement, as the updating algorithm does not ac-
count for system dynamics or measurement statistics (Walker et al.,
2003). In the past, DI has been successfully used to assimilate snow
cover, freeze/thaw state, soil moisture, surface albedo in land surface
models, as well as radiances in aerosols transport models (Alavi et al.,
2010, Kumar et al., 2020, Liston et al., 1999, Sun, 2004,Weaver et al.,
2007, Xue et al., 2019). In this work, we propose to apply the same
concept to vegetation data, by not only updating LAI, but also the
modeled leaf biomass, computed by dividing the LAI value by the
specific leaf area. The root mass and stem mass are not updated in this
experiment.

Fig. 2. Schematic diagram of the experimental setup. Parallelograms represent input data, rhombi represent models/simulations, and rectangles represent output
variables.
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2.3. Evaluation variables and metrics

Daily water, carbon, and energy variables (listed in Table 1) from
the OL and DA output for both wet and dry conditions are compared to
the corresponding “true” output from the NR run. In terms of water
variables, we consider: surface soil moisture (SSM; m3/m3), defined in
Noah-MP as the water content in the top 10 cm of the soil column;
rootzone soil moisture (RZSM; m3/m3), defined as the water content in
the top 100 cm of soil; intercepted liquid water (ILW; mm), defined as
the amount of precipitation that does not reach the soil, but that instead
gets absorbed by canopy, plants, and forest floor; and total evapo-
transpiration (ET; kg/m2s), defined as the total amount of water re-
leased to the atmosphere from land and plant. As carbon and energy
variables, we select: net ecosystem exchange (NEE; g/m2s), defined as
the amount of carbon exchange between plant and atmosphere; short-
lived carbon in shallow soil (CSS; g/m2), defined as the short-lived
carbon pool, which is the summation of total leaf and root turnover and
total amount of dead leaf; canopy sensible heat (CSH; W/m2), defined
as the total amount of heat transferred to the air from ground and ve-
getation; and surface soil temperature (SST; K), defined as the tem-
perature of the soil in the top 10 cm.

Two performance metrics are considered: the relative bias (RB) and
the normalized unbiased root mean square error (NUbRMSE). Metrics
are computed at each grid cell separately for all the experiments (OL
and DA) during the 5-year study period. RB is an estimate of the sys-
tematic error and defined here as the normalized difference between
the estimated value (either from OL or DA) and the reference NR
variable:

=RB 100%
x X

N
X
N

( )

( )

NR

NR
(1)

where x represents the output variable from either OL or DA runs
(either from dry or wet conditions), XNR is the corresponding NR
variable, and N is the number of days.

In order to investigate the random error alone, we use the
NUbRMSE, following the definition of Bhuiyan et al. (2018), Falck et al.
(2018), and Zhang et al. (2020), in which we first remove the bias from
the OL and DA output variables and then normalize by the reference
(i.e., NR values):
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Normalized metrics allow for easier comparison among variables of
different nature and units. In this work, both RB and NUbRMSE are
shown as percentage values and computed for every model pixel across
the study area.

3. Results

Changes in LAI due to DA (with respect to the corresponding OL
run) are shown in Fig. 3. In the dry condition, the application of DA
introduces additional vegetation to the system to balance the negative
bias in the input precipitation. In other words, the model tends towards
the dry side, but the observations see more vegetation than the one
estimated by the model, whereas the wet condition case shows the exact
opposite (i.e., lower LAI in the DA run). Both in the dry and wet con-
dition, the central part of CONUS is particularly impacted by LAI DA.
Some areas over the eastern part of CONUS also show large changes due
to the application of LAI DA. Such areas mainly correspond to

Table 1
List of variables with corresponding acronyms and units.

Variable Acronym Unit

Surface Soil Moisture SSM m3/m3

Rootzone Soil Moisture RZSM m3/m3

Intercepted Liquid Water ILW mm
Total Evapotranspiration ET kg/m2s
Net Ecosystem Exchange NEE g/m2s
Short Lived Carbon in Shallow Soil CSS g/m2

Canopy Sensible Heat CSH W/m2

Surface Soil Temperature SST K

Fig. 3. Difference in LAI simulated by the OL and DA runs for dry (left) and wet (right) conditions. Red (blue) indicates an increase (decrease) in LAI due to the DA of
LAI. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Relative bias (%) between output variables from the OL (or DA) run and output
variables from the NR averaged across CONUS for both dry and wet conditions.
The difference (%) between DA and OL is also reported.

Dry condition Wet condition

OL DA |OL|-|DA| OL DA |OL|-|DA|

SSM −11.0 −12.0 −1.00 9.30 9.50 −0.20
RZSM −10.3 −11.7 −1.40 8.80 9.30 −0.50
ILW −44.7 −28.7 16.0 83.1 35.6 47.5
ET −29.9 −28.2 1.70 28.9 26.0 2.90
NEE 90.5 57.6 32.9 −110 −50.2 60.2
CSS −1.80 −1.00 0.80 1.70 0.50 1.20
CSH 0.10 19.3 −19.2 −2.80 −11.1 −8.30
SST 0.20 0.10 0.10 −0.20 −0.10 0.10

Table 3
Same as in Table 2 but for NUbRMSE (%).

Dry condition Wet condition

OL DA |OL|-|DA| OL DA |OL|-|DA|

SSM 6.87 7.08 −0.21 7.22 7.44 −0.22
RZSM 6.55 7.32 −0.77 6.76 6.93 −0.17
ILW 154 106 48.0 335 166 169
ET 48.9 47.5 1.40 63.2 61.5 1.70
NEE 133 79.8 53.2 176 91.0 85.0
CSS 1.31 0.72 0.59 1.18 0.41 0.77
CSH 43.2 29.8 13.5 42.8 22.6 20.2
SST 0.41 0.33 0.08 0.50 0.50 0.00
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shrublands and croplands (Fig. 1). This is due to the fact that plants
characterized by smaller roots are more affected by precipitation,
whereas plants with longer roots (i.e., woodlands and forests) are more
resistant to changes in precipitation, because they can pull water from
the deeper layer of the soil.

The overall systematic and random errors of the eight variables si-
mulated by the OL (or DA) runs with respect to the reference NR output
are computed for both wet and dry conditions. RB and NUbRMSE are
averaged across CONUS and presented in Tables 2 and 3, respectively,
together with differences between the OL and DA runs, which highlight
whether DA improves (positive sign) or worsens (negative sign) the
corresponding OL run. SSM, RZSM, and CSH show a degradation (with
respect to the OL) in the average RB after LAI is assimilated under, with
larger degradation under dry condition. Similarly, LAI DA worsens the
NUbRMSE of soil moisture, with a larger degradation in the dry con-
dition for RZSM, but with no difference between dry and wet condition
for SSM and an improvement in CSH. On the other hand, ILW, ET, NEE,
and CSS improve after the application of LAI-DA in terms of both sys-
tematic and random error, with a consistently higher improvement in
the wet condition compared to the dry condition, with the exception for
SST whose statistics only slightly change after the implementation of
the LAI DA scheme.

In order to further investigate these overall performances, we

investigate time series during one selected year (i.e. 2013) for averages
of all select variables across CONUS. We also assess the spatial varia-
bility of the improvement/degradation in the evaluation metrics in-
troduced in Section 2.3, by showing maps of differences in RB and
NUbRMSE. As a last analysis, we explore the dependency of the model
performance as a function of four main vegetation covers (Forest and
woodland, Shrubland, Grassland, and Cropland). Results are presented
in sub-section 3.1 for the water variables (SSM, RZSM, ILW, and ET)
and in sub-section 3.2 for the carbon and energy variables (NEE, CSS,
CSH, and SST) and further discussed in Section 4.

3.1. Water variables

As shown in the time series in Fig. 4, DA pushes the modeled SSM
and RZSM in the opposite direction with respect to the NR, degrading
the original (OL) model simulation. This is corroborated by the maps of
RB and NUbRMSE differences in Figs. 5 and 6, respectively, presenting
a clear degradation in soil moisture (both SSM and RZSM) in several
regions of the continental US. Nevertheless, some other areas do show
an improvement thanks to DA, e.g., SSM RB in the southeastern US
under wet condition. Overall, the degradation in soil moisture is con-
sistently less pronounced under wet condition. In the dry experiment,
Noah-MP is fed by only half of the NLDAS-2 precipitation and there is

Fig. 4. Time series of water, carbon and energy variables averaged over CONUS from the NR, OL, and DA runs during 2013 and for both dry and wet condition
experiments.
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no additional water source. LAI DA introduces more vegetation to the
system and that results in more water absorption, which worsens the
estimation of soil moisture. On the contrary, in the wet condition ex-
periment, precipitation is doubled, adding more water to the system.
When the soil saturates, soil moisture reaches its maximum value and
no longer changes, which translates into smaller variability in soil
moisture under the wet condition compared to the dry condition ex-
periment.

As shown by the time series in Fig. 4 and more clearly by the maps
in Figs. 5 and 6, the DA simulations of ILW and ET improve compared to
their corresponding OL runs, moving them towards the synthetic truth.
A decrease in RB is evident across CONUS for both variables and under
both precipitation bias conditions (Fig. 5). However, some locations in
the south and northeastern US, present a degradation in NUbRMSE
(Fig. 6) in the dry and wet condition experiments, showing that the LAI
DA cannot correct for the random error in all cases.

Fig. 7 summarizes the performance of the proposed DA scheme as a
function of land cover. In general, LAI DA degrades soil moisture but
improves ILW and ET across all vegetation covers under wet and dry
conditions and in terms of both systematic and random errors. For SSM,
ILW, and ET, forest and woodland areas are less impacted by the LAI DA
compared to the other vegetation covers. Forest and woodland regions
have vegetation with deeper roots, while shrubland, grassland, and
cropland are characterized by plants with shallower roots. The lack of
rain (dry condition experiment) makes the plants with smaller roots dry
out and die, whereas plants with longer roots can still survive by pulling
water from the deeper soil (Bonan, 2002). Thus, LAI DA does not have a
strong impact on water variables in forest and woodland areas,

although it does in other regions like the Great Plains. RZSM in the dry
condition and in forest and woodland areas shows a larger impact
compared to other variables, because long rooted plants would pull
even more water from the rootzone, while precipitation is reduced.

3.2. Carbon and energy variables

All four carbon and energy variables (NEE, CSS, CSH, and SST)
present an overall improvement after the application of DA in terms of
RB and NUbRMSE (Tables 2 and 3). Fig. 4 shows how NEE and CSS are
consistently pushed towards the NR by the DA scheme during the whole
year. Specifically, NEE decreases in June-July, when the LAI is the
highest, which indicates less carbon in the atmosphere and more ve-
getation on the ground. CSS presents an increasing trend, which de-
monstrates that total amount of living carbon in the soil increases over
during the year, especially after fall when the leaf and root turnover is
the highest. However, DA-CSH has a noticeable degradation during
summer under both dry and wet condition. Differences between OL-SST
and DA-SST are minimal (as already highlighted in Tables 2 and 3).
with an improvement during the summer. OL-SST is higher than the NR
during the summer in the dry run and vice versa in the wet run (Fig. 4).
This happens because a decrease (increase) in vegetation, which is due
to less (or more) precipitation in the model input, increases (decreases)
soil temperature. SST-DA shows slight degradation in the winter, when
vegetation is less abundant and soil temperature depends not only on
air temperature, but also on SSM, which degrades after the application
of LAI-DA.

Figs. 8 and 9 confirm the overall improvement in the selected

Fig. 5. Change in the RB (difference between the DA run and the OL run) for the four water variables for dry and wet conditions across CONUS during 2011–2015.
Blue (red) color indicates improvement (degradation) after DA with respect to the NR output variables. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 6. Same as in Fig. 5 but for NUbRMSE.

Fig. 7. Difference in RB (left) and UbRMSE (right) between the OL run and corresponding DA run across different vegetation covers (Forest and Woodland,
Shrubland, Grassland, and Cropland) during 2011–2015 for all the water variables. Positive (negative) values correspond to an improvement (degradation) thanks to
DA.
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carbon and energy variables. However, RB seems to increase after DA in
a region in the Southwestern US and the NEE NUbRMSE has a similar
behavior in some areas in the northeastern and northwestern US. CSH
shows a degradation in RB in both dry and wet experiments over the
eastern and central part of US, but an improvement in NUbRMSE al-
most all over CONUS. Such degradation in CSH corresponds to the same
locations where soil moisture shows the largest degradation after DA.
As highlighted in section 2.3, CSH is the combined heat flux from
ground and vegetation to the atmosphere, with the ground-to-air heat
flux being the dominant factor (Bonan, 2002). The heat flux from the
ground is highly correlated with the soil water content, which is part of
the reason why CSH worsens after DA (Hwang, 1985, Guan et al.,
2009).

The change in SST once again is minimal, with some regions
showing no change between the OL and DA runs, and some others
presenting a slight improvement or a slight degradation. This latter is
only evident in the NUbRMSE under wet condition and specifically over
forest/woodland and cropland areas (as demonstrated in Fig. 10). DA in
wet condition reduces the vegetation amount modeled by Noah-MP,
which would bring SST up. However, in the northern part of the US SST
is more affected by air temperature, rather than the surface condition.
In forest/woodland and cropland areas, all the variables show an im-
provement after the application of LAI-DA, except for CSH in the dry
condition, (Fig. 10). For all the carbon and energy variables forest and
woodland areas are the least impacted after the application of DA, just
like for the water variables.

4. Discussion

In the proposed OSSE, we assimilate daily synthetic observations of
LAI that mimic temporally smoothed MODIS observations, commonly
available every 8 days. Obtaining satellite observations at such fre-
quency is challenging due to frequent cloud coverage during winters.
Thus, the proposed experiment and associated results should be con-
sidered as a best-case scenario in which LAI observations are con-
sistently available every 8 days. Assimilating observations every 8 days
may cause instability in the model dynamics, so an alternative approach
is proposed here to interpolate between observations and update the
model state more often (i.e., every day).

When actual satellite-based LAI observations are assimilated in the
LSM and ground-based measurements are used as reference for vali-
dation purposes, the LAI DA performance may differ to the one pre-
sented in the results section, and what looks like a degradation in the
OSSE may be an improvement in the actual data experiment. For in-
stance, in this experiment, the LAI DA could not largely improve the RB
and NUbRMSE associated with surface and root zone soil moisture, but
this may be different if real satellite products are merged within an
LSM, especially in irrigated fields that are not modeled within the
current Noah-MP framework. As a matter of fact, Kumar et al. (2019)
show an improvement not only in ET, but also in RZSM thanks to the
assimilation of satellite-based LAI within a LSM using an Ensemble
Kalman Filter across the central plains in US, mainly characterized by
crops. Future work should therefore analyze LAI-soil moisture feedback
in the model simulations during different seasons to illustrate why LAI
assimilation degrades soil moisture estimates in some regions. This

Fig. 8. Change in the RB (difference between the DA run and the OL run) for the four carbon and energy variables for dry and wet conditions across CONUS during
2011–2015. Blue (red) color indicates improvement (degradation) after DA with respect to the NR output variables. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Same as in Fig. 8 but for NUbRMSE.

Fig. 10. Difference in RB (left) and UbRMSE (right) between the OL run and corresponding DA run across different vegetation covers (Forest and Woodland,
Shrubland, Grassland, and Cropland) during 2011–2015 for the carbon and energy variables. Positive (negative) values correspond to an improvement (degradation)
thanks to DA.
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would be particularly useful for future ecohydrology data assimilation
studies.

Systematic errors (quantified by RB) are reduced thanks to LAI DA
for most variables considered in this study (except for SSM, RZSM, and
CSH) in both dry and wet condition experiments and across the whole
study area. In terms of random errors (NUbRMSE), DA improves most of
the variables for both wet and dry conditions except the SSM and
RZSM, with some regions also showing a degradation in NEE. Similarly,
the work by Kumar et al. (2019) mentioned above shows an improve-
ment in NEE, except in the Northwestern region of the US and areas
around the Great Lakes. In general, the improvement in both RB and
NUbRMSE is larger when the precipitation forcing has a positive bias
(wet condition) than in the dry condition experiment. This is because,
in the latter case, the amount of water available in the system is limited,
but the assimilation of LAI observations introduces vegetation, which
causes more root water uptake from the soil and worsens the soil
moisture estimation.

In the OSSE proposed here, some water variables (e.g., ET and ILW)
show an improvement both in dry and wet bias conditions, though the
improvement under dry biases is marginal. These results corroborate
what shown in the work recently published by Zhang et al. (2020), who
performed an OSSE at the global scale to assimilate LAI with an En-
semble Kalman Filter technique and observed only marginal improve-
ments in soil moisture contents, a degradation in SSM under dry pre-
cipitation conditions, and significant improvements in ET in wet bias
conditions.

Furthermore, we evaluate the LAI-DA impact on carbon and energy
variables, most of which (except CSH), improve across the entire do-
main under both wet and dry bias conditions. Results show that crop-
lands, grasslands, and shrublands are the most impacted by the appli-
cation of LAI DA (as highlighted in Figs. 7 and 10), as plants with
smaller roots are more affected by precipitation (which is perturbed in
the OL and DA simulations), while plants with longer roots (that
characterize woodlands and forests) can pull water from the deeper soil
and are therefore more resistant to changes in precipitation. This also
aligns with the findings by Zhang et al. (2020) who showed a larger
impact of the LAI DA in regions characterized by short root plants when
compared to forests and woodlands.

In summary, DI of LAI can improve almost all the carbon and energy
variables under both wet and dry conditions and across different ve-
getation covers. Nevertheless, the proposed DA scheme was not able to
improve surface and rootzone soil moisture. Soil moisture plays a
fundamental role in land surface processes and in the water, carbon,
and energy cycles, as it i) controls the partitioning of the energy in-
cident on the land surface; ii) is a storage component for precipitation
and radiation (and therefore impact cloud formation, precipitation,
runoff, and evapotranspiration); and iii) governs several feedbacks at
the local, regional, and global scale (e.g., soil moisture-temperature and
soil moisture-precipitation). Previous work on the joint assimilation of
LAI and soil moisture observations has shown promising improvements
in both water and carbon dioxide fluxes (Albergel et al., 2010, Albergel
et al., 2017, Barbu et al., 2011, and Bonan et al., 2019). However, these
studies have only focused on limited domain or for a specific crop type.
Thus, future research work should look at dual assimilation methods
that merge different types of observations (e.g., surface soil moisture
and LAI) if the goal is to improve land surface processes as a whole.

5. Conclusions

This work proposes a synthetic experiment to investigate the impact
of assimilating LAI observations within a land surface model through
DI. The experiment is performed across the continental US during a 5-
year time period (January 2011-December 2015), adopting the Noah-
MP LSM forced with NLDAS-2 meteorological forcing data. The effi-
ciency of LAI DA is investigated in terms of several water, carbon, and
energy states and fluxes under strongly (both negatively and positively)

biased precipitation forcing. Although DI is a very naïve DA approach,
it does not require any unbiasedness assumptions to optimally operate
(as opposed to the more sophisticated Kalman Filter), which is critical
since biases in atmospheric forcing (and precipitation in particular) are
often large and unknown.

In summary, this study demonstrates how assimilating LAI ob-
servations through the simplest DA method available (i.e., direct in-
sertion) has the potential to improve LSM estimation of some water
(e.g., ILW), carbon (e.g., NEE), and energy (e.g., SST) variables. These
improvements are often a function of the land cover, as demonstrated in
this work. Thus, future work should be directed towards a more in-
depth investigation of such dependence to identify what vegetation
types would gain the most from assimilating LAI observations.
However, as results from this study demonstrate that soil moisture
variables would not benefit from the assimilation of LAI alone, the
combined assimilation of both LAI and surface soil moisture observa-
tions should also be explored.

This work opens new research directions as real observational data
(e.g., MODIS and GLASS products) available globally could be assimi-
lated in the proposed DA framework, which could then be expanded to
the global scale and benefit several regions of the world where ground
monitoring of water, energy, and carbon states and fluxes is limited but
extremely important (e.g., Amazon forest, High Mountain Asia). The
efficiency of the proposed DI that adopts a simple multiplicative pre-
cipitation error model should be also compared to more sophisticated
techniques (e.g., Ensemble Kalman Filter) and more complex pre-
cipitation error models that simulate false alarms and missed events in
the original products.
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