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Reconstruction of Network Dynamics from Partial Observations\ast 

Tyrus Berry\dagger and Timothy Sauer\dagger 

Abstract. We investigate the reconstruction of time series from dynamical networks that are partially observed.
In particular, we address the extent to which the time series at a node of the network can be
successfully reconstructed when measuring from another node, or subset of nodes, corrupted by
observational noise. We will assume the dynamical equations of the network are known, and that the
dynamics are not necessarily low-dimensional. The case of linear dynamics is treated first and leads
to a definition of observation error magnification factor (OEMF) that measures the magnification
of noise in the reconstruction process. Subsequently, the definition is applied to nonlinear and
chaotic dynamics. Comparison of OEMF for different target/observer combinations can lead to
better understanding of how to optimally observe a network. As part of the study, a computational
method for reconstructing time series from partial observations is presented and analyzed.

Key words. time series reconstruction, partial observations, data assimilation, chaos in networks, observability
of nonlinear systems
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1. Introduction. The subject of network dynamics is increasingly relevant to physical
process modeling. Networks present a fascinating departure from generic dynamical systems
due to the constraints imposed on direct communication between nodes, resulting in compli-
cated dynamics and nontrivial bifurcation structures [3, 18, 1, 17]. Modeling by networks has
become an important topic in almost every area of physical and biological science, including
distributed mechanical processes, weather and climate, and metabolic, genomic, and neural
networks.

An important aspect of understanding distributed systems is the choice of observables that
facilitate reconstruction of the collective dynamics of the network. The theory of observabil-
ity was pioneered for linear dynamics by Kalman [8]. For nonlinear dynamics, the theory of
attractor reconstruction [23, 20] provides hope that for generic observables of sufficiently high
dimension, the dynamics can be reconstructed. Although observations at single or even mul-
tiple nodes of a network may not be provably generic, some aspects of reconstructibility may
be present by observing even a single node in a strongly connected network, i.e., a network for
which every node is downstream from every other node. The ability to reconstruct dynamics
from partial observations in both linear and nonlinear networks is a topic of intense recent
interest, with close connections to questions of observability [11, 9, 10, 14, 21, 5, 22, 26, 15]
and controllability [12, 13, 25].
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634 TYRUS BERRY AND TIMOTHY SAUER

However, even in the linear case, observability in theory does not guarantee a satisfactory
reconstruction in practice, in particular from data collected from a sparsely connected net-
work, or far from target nodes, even in the case where the equations of motion are known. To
date, even in this more tractable scenario, surprisingly little in the way of general practical
requirements have been developed for inferring information from measurements. A critical
obstruction is the presence of noise in the observations and the tendency of noise to be mag-
nified in efforts to reconstruct the dynamics. In this article, we analyze a definition of error
magnification in reconstruction of network trajectories, first introduced in [4], and exhibit its
behavior for some relevant examples. The main conclusion is that for practical use of network
trajectory reconstruction techniques, theoretical observability may be only a first step, and a
multiplier that measures error magnification, akin to condition number in matrix calculations,
may fundamentally govern the limits of reconstructibility. In short, if the noise level at the
observer is \sigma times the macroscopic variability of the dynamics, then the error magnification
must be on the order of 1/\sigma or lower to allow accuracy in the reconstructed dynamics. Our
first aim is to quantify this magnification for each specific observing subset and target node
of the network.

A second objective of this article is to present a general method to infer the time series of
the entire network using only observations from a fixed subset of the nodes. This objective,
the reconstruction of time series from partial observations, is often called ``spin-up"" in data
assimilation problems. As used in modern applications such as weather forecasting, the spin-
up phase is equivalent to developing a consistent set of initial conditions that the atmosphere,
for example, obeys. This initial condition, along with the known equations, allows the ``digital
twin"" formed by data assimilation techniques to mirror the real system.

Our focus on these two problems is due to the obvious intrinsic utility of not only being
able to reconstruct unmeasured dynamics at nodes by measuring other nodes but also being
able to understand the relative difficulty levels of different potential reconstructions. Such
considerations allow the user to decide where to efficiently observe the network if choices are
available.

Because of the extensive published work on related problems, it is important to clarify
our goals in this article. The term ``network reconstruction"" often refers to determination of
the network structure: Inferring unknown structural elements of a network from observations,
either ab initio or under certain known constraints. In this article, we are attacking a dif-
ferent problem, which we will call ``network trajectory reconstruction."" In this scenario, the
network, including all network connections and relations between nodes, is known, and we
are seeking to reconstruct the trajectory. As mentioned above, in cases of partial observation,
network reconstruction alone does not complete the analysis of a system, because the ability
to reconstruct network trajectories is highly dependent on where the observations are made.
Even in a completely known, strongly connected network, we will find that the reconstruction
error depends in a complicated way on the location of the observations. Therefore, aware-
ness of the error magnification that occurs between observation and reconstruction is crucial
for the modeler. There is a close analogy to the question in numerical linear algebra, even
when a matrix is completely known, about how errors are magnified from the input data to
the output solution. The influential work of Wilkinson [27], based on a suggestion of Turing
[24], popularized the key concept of condition number to shed light on this issue. The error
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RECONSTRUCTION OF NETWORK DYNAMICS 635

magnification factor developed below is a network reconstruction analogue to this valuable
concept.

Thus we are not directly addressing many other pertinent questions about dynamical net-
works, for example, (1) reconstructing dynamics at other network nodes without governing
equations, rather from previous observations only, or (2) reconstructing the network or net-
work equations themselves from full or partial observations. Problem (1) is connected with
Takens' theorem and its analogues, and it is unlikely to be effective outside the domain of low-
dimensional dynamics. In contrast, no dimensional restrictions are necessary in the current
work. Problem (2) is also under intense development but is not the subject of this paper.

We begin in section 2 with a review of observability in the discrete linear case, presented
in a way to simplify our later discussion of error magnification. In section 3 we define the
Observation Error Magnification Factor, and in section 4 we present a numerical method for
reconstruction for nonlinear time series. Section 5 contains results of applying the methods
to nonlinear networks.

2. Discrete linear networks. In this section, we collect some elementary principles of
observing networks in the simplest case of linear dynamics. Most of these ideas date back at
least to Kalman [8]. Our description is designed to lead to a practical notion of observational
error magnification that we can later extend to the nonlinear case.

Consider the discrete linear dynamical system xk+1 = Axk on Rn, where A is an n \times n
matrix. We can write down the relation between the initial state x0 = [x01, x

0
2, x

0
3, . . . , x

0
n]

and the time series observed at an arbitrary node j, which is denoted by sk = (Akx0)j for
k= 0.1.2. . . .. For t > 0, consider the matrix

Mt,j =

\left[       
0 \cdot \cdot \cdot 0 1 \cdot \cdot \cdot 0

(A)j1 \cdot \cdot \cdot (A)j,j - 1 (A)jj \cdot \cdot \cdot (A)jn
(A2)j1 \cdot \cdot \cdot (A2)j,j - 1 (A2)jj \cdot \cdot \cdot (A2)jn

...
...

...
...

(At - 1)j1 \cdot \cdot \cdot (At - 1)j,j - 1 (At - 1)jj \cdot \cdot \cdot (At - 1)jn

\right]       =

\left[     
(A0)j
(A1)j

...
(At - 1)j

\right]     .(2.1)

That is, the rows of Mt,j consist of the jth rows of Ak for 0\leq k < t. Note that

Mt,j

\left[       
x01
x02
x03
...
x0n

\right]       =

\left[       
s0
s1
s2
...

st - 1

\right]       ,(2.2)

which is the connection between initial conditions and observations that we will be able to
exploit. First, we define the concept of a kernel node.

Definition. Let M be an m\times n matrix. Call node i (or variable i) a kernel node (or vari-
able) for M if vi \not = 0 for some vector v= [v1, . . . , vn] in the nullspace of M , and a regular node
otherwise. More generally, let M be a structured matrix, i.e., one with only certain specified
nonzero entries. We call node i a generic kernel node for M if, for Lebesgue-almost every
choice of specified nonzero entries in M , respecting the structure of M , there is v \in null(M)
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636 TYRUS BERRY AND TIMOTHY SAUER

such that vi \not = 0; we call i a generic regular node if vi = 0 for every vector v \in null(M) for
almost every choice of entries in M .

By definition, for a specific matrix M , every node is either a kernel node or a regular node.
Interestingly, the same is true for nodes of a generic linear network.

Fact 1. [7] For matrices M with a given structure, every node is either a generic kernel
node or a generic regular node.

IfMt,j cannot be made to be full rank by taking t sufficiently large, there are distinct initial
states which result in the same observations at the jth node and thus produce indistinguishable
time series. The vectors in the kernel ofMt,j will have nonzero entries for nodes that are related
to the indistinguishable states. Conversely, if every vector in the kernel of Mt,j has a zero
entry for the ith node, this indicates that the ith node does not participate in any of the
indistinguishable states, and so the state of the ith node will be identifiable from observations
at the jth node. These properties are summarized in the following proposition.

Proposition 1. Consider the observations sk = (Akx0)j at node j. The following are equiv-
alent:

(1) The initial state of node i is uniquely determined by infinite sequence \{ s0, s1, . . .\} .
(2) The initial state of node i is uniquely determined by finite sequence \{ s0, . . . , sn - 1\} .
(3) Node i is a regular node of Mn,j.

Proof. By the Cayley--Hamilton theorem, the matrix A satisfies its own characteristic
equation, so the row vectors eTj A

0, . . . , eTj A
n are linearly dependent, where ej denotes the jth

column of the identity matrix. This implies that rows n + 1, n + 2, . . . , t of Mt,j are linear
combinations of the rows of Mn,j . Therefore for t\geq n, v \in ker Mt,j if and only if v \in ker Mn,j ,
and it reduces to proving (2) and (3) are equivalent.

If v \in ker Mn,j and vi \not = 0, then for any solution x = [x1, . . . , xn] of (2.2), x + \alpha v are
also solutions, and the ith coordinates have many different values, contradicting uniqueness.
Conversely, if there are solutions with two different values at the ith coordinate, then there is
a kernel node with nonzero ith coordinate.

Example 1. Figure 1(a) shows a 4-node network that is fully reconstructible, in the sense
that generically, measurements at any node can be reconstructed from observations at any
other node. The edge weight matrix A is

(a) (b) (c)

Figure 1. Three example networks. (a) A 4-node network that is reconstructible from any node for generic
weights. (b) An undirected network, also reconstructible from any node. (c) A 3-node network that exhibits a
bottleneck for generic weights, which obstructs the reconstruction of nodes 2 or 3 from observations at node 1.
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RECONSTRUCTION OF NETWORK DYNAMICS 637

A=

\left[    
0 0 0 a14
a21 0 0 0
0 a32 0 0
0 0 a43 0

\right]    ,

where the aij are arbitrary entries into this structured matrix, and the rest of the entries are
fixed at zero. Without loss of generality, consider observing at node j = 1, for which the
observation matrix is

M4,1 =

\left[    
1 0 0 0
0 0 0 a14
0 0 a14a43 0
0 a14a43a32 0 0

\right]    .

The determinant of the matrix is a314a
2
43a32. It follows that for generic entries (avoiding the

lower-dimensional hypersurface defined by the determinant) there are no kernel nodes, so
according to Proposition 1, we will be able to reconstruct each node from the time series at
node 1.

Example 2. Figure 1(b) shows a 4-node network that is also fully reconstructible, in the
same way as Example 1. The edge weight matrix A is

A=

\left[    
0 a12 0 a14
a21 0 a23 0
0 a32 0 a34
a41 0 a43 0

\right]    ,

where the aij are arbitrary entries into this structured matrix, and the rest of the entries are
fixed at zero. Without loss of generality, consider observing at node j = 1, for which the
observation matrix is

M4,1 =

\left[    
1 0 0 0
0 a12 0 a14

a12a21 + a14a41 0 a12a23 + a14a43 0
0 m42 0 m44

\right]    ,

where m42 = a12(a12a21 + a14a41) + a32(a12a23 + a14a43) and m44 = a14(a12a21 + a14a41) +
a34(a12a23 + a14a43). The determinant of the matrix is a (nonzero) degree 6 polynomial
in the aij . For generic entries (avoiding the lower-dimensional hypersurface defined by the
determinant) there are no kernel nodes, so according to Proposition 1, the time series at each
node is reconstructible from the time series at node 1.

Next we consider how the topology of the network affects reconstructibility from a node.
One might expect, for example, that trajectories of all upstream nodes can be successfully
reconstructed from a downstream node. We say that a node i is upstream from node j if there
is a path through the directed network from a node i to the node j. Can the trajectories at
node i be reconstructed from the time series observed at node j? The answer is no, even if
we assume the network weights are generic.

Example 3. A simple instance is shown in Figure 1(c). If we assume the weights of the
graph are a12 and a13 on the left and right arrows, respectively, then the identically zero time
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638 TYRUS BERRY AND TIMOTHY SAUER

series observed at node 1 can be explained by zeros on nodes 2 and 3, or alternatively by any
multiple of the constant time series ( - a13, a12). Therefore the time series at nodes 2 and 3
are not uniquely determined by measurements at node 1.

This is an illustration of Proposition 1, since

A=

\left[  0 a12 a13
0 0 0
0 0 0

\right]  , M3,1 =

\left[  1 0 0
0 a12 a13
0 0 0

\right]  ,

so nodes 2 and 3 are identified as kernel nodes for M3,1, no matter what the values a12 and
a13 are.

Example 4. Consider the graph in Figure 2(a). Its edge weight matrix is

A=

\left[        

0 a12 a13 0 0 0
0 0 0 a24 a25 a26
0 a32 0 a34 a35 a36
a41 0 0 0 0 0
0 0 0 a54 0 0
a61 0 0 0 0 0

\right]        .

We can see that all nodes are upstream from node 1. However, it turns out that while the
time series at node 4 can be successfully reconstructed from the time series at node 1, it can
verified (somewhat laboriously with symbolic algebra) that nodes 2, 3, 5, and 6 are kernel
nodes, and by Proposition 1, it cannot be uniquely reconstructed from the time series at node
1. In fact, the concept of bottlenecks, introduced by Lin in [12] and further developed in [7],
can make it much easier to diagnose obstructions like this one directly from the topology of
the graph.

Let S be a subset of nodes of a directed graph with n nodes. We will denote by S\rightarrow the
forward set of S, the set of all nodes such that there is an arrow to the node from a node
in S. We call the sets \{ S,S\rightarrow \} a k-bottleneck if | S| = | S\rightarrow | + k for some k > 0. A minimax

(a) (b)

Figure 2. (a) Example of 6-node network with a 1-bottleneck consisting of the subset B = \{ 2,3,5,6\} . (b)
Adding one edge from node 5 to node 6 eliminates the bottleneck.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RECONSTRUCTION OF NETWORK DYNAMICS 639

k-bottleneck is a k-bottleneck of maximal k that is minimal with the property of being a
k-bottleneck, more precisely, such that no subset is a k-bottleneck.

It turns out that there is a connection between minimax bottlenecks and the nullspace of
A. The following fact is proved in [7]:

Fact 2. For generic entries respecting the structure of A, rank(A)<n if and only if there
is a k-bottleneck for some k > 0. Moreover, the minimax bottleneck consists of the generic
kernel nodes of A.

For example, consider the set S = \{ 2,3,5,6\} in Figure 2(a). Note that S\rightarrow = \{ 1,2,3\} .
This is a minimax 1-bottleneck, so the nodes 2, 3, 5, and 6 are generic kernel nodes of the
structured matrix A.

The following key observation shows that kernel nodes for the weight matrix A are also
kernel nodes for the observation matrix Mn,j .

Proposition 2. Let A be a structured matrix, and let S = set of generic kernel nodes of A.
If j /\in S, the set S consists of generic kernel nodes for Mn,j.

Proof. Let v \in null(A). Since j /\in S, the first row of Mn,j is orthogonal to v. Since
Av = 0,A2v = 0, . . ., each row of Mn,j after the first is also orthogonal to v. Thus v \in 
null(Mn,j).

By Proposition 2, the time series at 2, 3, 5, and 6 cannot be reconstructed from node 1
or from node 4. This is not surprising for node j = 4, since not all nodes are upstream from
4. However, it is interesting for j = 1, because all nodes are upstream from node 1. One can
further check using Proposition 1 that the time series at node 4 can be uniquely reconstructed
from observing at node 1, even though the rest of the nodes cannot.

Knowledge of the bottleneck, S = \{ 2,3,5,6\} \rightarrow S\rightarrow = \{ 1,2,3\} in this case, shows what
is necessary to remove it. By connecting nodes 5 and 6 as in Figure 2(b), S\rightarrow becomes
\{ 1,2,3,6\} , destroying the bottleneck. In the revised network, all nodes are reconstructible from
node 1.

Example 5. The graph in Figure 3(a) is a further illustration of a bottleneck. Note that
S = \{ 1,2,6,7\} \rightarrow S\rightarrow = \{ 3,4,5\} is a 1-bottleneck, so by Fact 2, nodes 1, 2, 6 and 7 are generic
kernel nodes for A, and according to Proposition 2, also for Mn,j for j = 3,4 and 5. Therefore
nodes 3, 4, and 5 cannot be used to reconstruct time series from the other nodes.

As in the previous example, if we could add another edge, say from node 1 to node
2, the bottleneck disappears. Therefore the network in Figure 3(b) is reconstructible from
observations at any node. However, while this is theoretically true, there may be a price to
pay in such a marginal case. We return to this network shortly in Example 8 to examine how
practical this would be.

Although we have focused on obstructions to reconstruction up to this point, it is still
likely that wide swaths of examples are fully reconstructible, even in the discrete linear case, if
problems such as bottlenecks are avoided. In particular, we suggest two sets of hypotheses that
preclude bottlenecks and can provide lots of successful examples of reconstructing time series
from partial observations. For a fixed directed graph with n nodes, denote by A the structured
matrix of edge weights aij . A subset of nodes in a directed graph is strongly connected if there
is a directed path from node i to node j for any pair of nodes i, j in the subset.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

02
/2

0/
25

 to
 7

6.
17

6.
20

2.
11

7 
by

 T
im

ot
hy

 S
au

er
 (

ts
au

er
@

gm
u.

ed
u)

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



640 TYRUS BERRY AND TIMOTHY SAUER

(a) (b)

Figure 3. Example of 7-node network. (a) The graph has a 1-bottleneck with S = \{ 1,2,6,7\} , which obstructs
reconstructibility. (b) Adding one extra directed edge to the graph allows the time series at every node to be
reconstructed from every other node.

Conjecture 1. Assume that all nodes have self-connections; i.e., assume aii \not = 0 for
1\leq i\leq n. Then for almost every choice of entries of the edge weight A, each node upstream
of node j can be observed from node j. More precisely, if there is a directed path from node
i to node j, then the time series of node i can be reconstructed from the time series observed
at j.

Conjecture 2. For almost every choice of entries aij in a structured edge weight matrix
A, any strongly connected subset of nodes can be observed from any node in the subset.

3. Observational error magnification factor. In the previous section we discussed nec-
essary conditions that imply that a given trajectory at some network node can be uniquely
reconstructed from observations at another node. Given that such a reconstruction exists, we
next turn to whether it is feasible in an experimental context to carry out the reconstruction.
To this end, we investigate the role of noise in the reconstruction. In particular, we will define
the Observational Error Magnification Factor (OEMF), which quantifies the conditioning of
the problem of reconstructing one time series from another. As in the previous section, we
begin by looking at the linear case.

In particular, assume we want to reconstruct the time series at node i from the observations
at node j. We will achieve this by first using Mt,j to estimate the initial state of the network
from the observations at node j, and then applying Mt,i to the estimated initial condition in
order to reconstruct the observations at node i. The goal is then to determine how the size
of a random perturbation to the observation at node j will effect the error in the resulting
estimate of the time series at node i.

Consider initial condition x0 = [x01, . . . , x
0
n] of the network, and let s = [s1, . . . , st] denote

the time series of length t observed (exactly) at some node from which all nodes can be
reconstructed. Let node j be the observing node, and let Mt,j be the matrix of (2.1), which
by our assumption and Propostion 1 has full rank n. According to this equation, Mt,jx

0 = s.
Now assume we observe node j with noise level \sigma and attempt to reconstruct the initial
condition x0. Thus we observe s + e for some observational error e. The deviation of the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RECONSTRUCTION OF NETWORK DYNAMICS 641

initial condition of the true trajectory due to this observational error can be denoted h0,
defined by Mt,j(x

0 + h0) = s + e, where the error e = [e0, . . . , et] satisfies \BbbE (ek) = 0 and
\BbbE (e2k) = \sigma 2. Since in general t > n, it is unlikely that this problem has an exact solution, so
we must consider the corresponding least squares problem:

min
h0

| | Mt,j(x
0 + h0) - (s+ e)| | 2 =min

h0
| | Mt,jh

0  - e| | 2.(3.1)

The minimum-norm least squares solution of (3.1) is

h0 =M \dagger 
t,je,

where M \dagger 
t,j denotes the pseudoinverse of Mt,j . This expression makes sense even if Mt,j is not

full rank. To compute M \dagger , let Mt,j =USV T be the singular value decomposition of Mt,j , and

set M \dagger 
t,j = V S\mathrm{i}\mathrm{n}\mathrm{v}U

T , where S\mathrm{i}\mathrm{n}\mathrm{v} is the diagonal matrix of the same shape as Mt,j for which
each diagonal entry is the reciprocal of the corresponding entry of S if it is nonzero, and zero
otherwise.

Now that we have an optimal estimate of the initial state (using observations at node j),
we are ready to reconstruct the time series at node i. We need to apply Mt,i from (2.1) to the
least squares initial condition x0 + h0. Since Mt,ix

0 gives the true time series at node i, the
length-t time series of perturbations at node i generated by h0 is

h=Mt,ih
0 =Mt,iM

\dagger 
t,je.(3.2)

The error magnification factor will be defined in terms of root-mean-squared (RMS) error.

Definition. For a random vector v \in \BbbR n, define RMS(v) =
\bigl( 
1
n\BbbE [

\sum n
i=1 v

2
i ]
\bigr) 1/2

.

Lemma 2. Let A be an m \times n matrix, and let e = [e1, . . . , en] be a random vector with
\BbbE [ei] = 0,\BbbE [e2i ] = \sigma 2, and \BbbE [eiej ] = 0 for i \not = j. Then

RMS(Ae) =
1\surd 
m
| | A| | F RMS(e) =

\sigma \surd 
m
| | A| | F ,(3.3)

where | | | | F denotes the Frobenius norm.

Proof. Note that for v \in \BbbR n we have RMS(v)2 =\BbbE [vT v/n] =\BbbE [trace(vvT )/n], so

RMS(Ae)2 =\BbbE [trace(AeeTAT )/m] =\BbbE [trace(ATAeeT )/m]

= trace(\BbbE [ATAeeT ])/m= trace(ATA\BbbE [eeT ])/m

= trace(ATA\sigma 2I)/m=
\sigma 2

m
| | A| | 2F =

1

m
| | A| | 2FRMS(e)2,

where we applied invariance of trace to cyclic permutations, linearity of expectation, and
| | A| | 2F = trace(ATA).

It follows from Lemma 2 that the RMS of the perturbations in the reconstruction at node
i is given by

RMS(h) =
1\surd 
t
| | Mt,iM

\dagger 
t,j | | F RMS(e).(3.4)
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642 TYRUS BERRY AND TIMOTHY SAUER

Thus stepwise noise of size \sigma inserted to the length t time series at the observation node j
will result in magnification of the reconstructed time series by

RMS(h)

RMS(e)
=

1\surd 
t
\kappa tji,(3.5)

where we have defined \kappa tji \equiv | | Mt,i M
\dagger 
t,j | | F .

As a consistency check, in the special case when we reconstruct the jth node from obser-
vations of itself, and Mt,j is full rank n, then

Mt,jM
\dagger 
t,j =USV TV S\mathrm{i}\mathrm{n}\mathrm{v}U

T =USS\mathrm{i}\mathrm{n}\mathrm{v}U
T =U(1 : n)U(1 : n)T ,

where U(1 : n) denotes the first n columns of U . In this case,

\kappa tjj = | | Mt,jM
\dagger 
t,j | | F =

\sqrt{} 
tr (U(1 : n)U(1 : n)T )TU(1 : n)U(1 : n)T

=
\sqrt{} 

tr U(1 : n)U(1 : n)T =
\sqrt{} 

tr U(1 : n)TU(1 : n) =
\surd 
n,

and (3.5) shows that

RMS(h) =
1\surd 
t
\kappa tjj RMS(e) =

\surd 
n\surd 
t
RMS(e).

For t = n, RMS(h) = RMS(e) as expected. For t > n, RMS(h) < RMS(e) because the longer
time series provides more information, in a similar way to the general fact that taking more
samples improves the estimate of a mean.

An alternative way of calculating \kappa tji is through the QR-factorizations of Mt,i = Qt,iRt,i

and Mt,j =Qt,jRt,j . Then

\kappa tji = | | Rt,i(1 : n)Rt,j(1 : n)
\dagger | | F ,

where Rt,i(1 : n) denotes the first n rows of Rt,i. The advantage of this formulation is that
the Frobenius norm is taken over an n\times n matrix for all t.

What happens to \kappa tji as the length t of the trajectory increases? On the one hand, we
expect the error magnification to decrease since there is more information in longer time series.
On the other hand, the Frobenius norm in (3.5) is taken over a matrix of increasing size t\times n.
We conjecture that in the case of distinct i and j, the limit of \kappa tji reaches a limit, which we
denote \kappa ji as t\rightarrow \infty . We examine this question in the following three examples.

Example 6. Consider the 4-node network sketched in Figure 1(a). We define a weight
matrix respecting the graph, with nonzero weights chosen as aij = 1 + 0.5\nu ij , where \nu ij \in 
N(0,1), and consider the discrete linear dynamical system produced. Figure 4 shows the
mean \kappa tij taken over 104 realizations of the weight matrices for (a) j = 1 (time series measured
at node 1) and (b) j = 2 (time series measured at node 2).

We note two interesting observations from the result. First, the value of each \kappa tji is not
constant with t and appears to monotonically decrease with t to a limiting value as proposed
in the above definition. Second, one may not have guessed the relative sizes of the \kappa tji from
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RECONSTRUCTION OF NETWORK DYNAMICS 643

(a) (b)

Figure 4. Observation error magnification factor (OEMF) for 4-node network in Figure 1. (a) The OEMF
\kappa t
1i for i= 1, . . . ,4 in Figure 1(a). The vertical axis displays the noise magnification when reconstructing nodes

from the time series at node 1. The OEMF appear to tend to a limit as the trajectory length t increases. (b)
The OEMF \kappa t

1i for each i in Figure 1(b). In this case, the lowest OEMF occurs for the diagonally opposed
node, not the ones directly connected to the observer.

the directed graph in Figure 1 that defines the dynamics. For the observations at node 1 in
Figure 4(a), the ``farthest upstream"" node 2 from node 1 has the least error magnification, and
the nodes more closely connected to node 1 have the largest error magnification. Likewise in
Figure 4(b), it is node 3, which is not directly connected to node 1, which has by far the lowest
error magnification. This apparently shows the utility of the \kappa tji to identify the practicality
of reconstruction, which may not be obvious by other means.

Example 7. In the 6-node network of Figure 2(b), we added an edge from node 5 to node
6, to destroy the bottleneck and guarantee reconstruction from observations at nodes 1 or 2.
As in the previous example, we establish weights as aij = 1 + 0.5\nu ij corresponding to each
directed edge in the graph, where \nu ij \in N(0,1), and average \kappa tij over 104 realizations of the
weights. Figure 5 shows the results.

Example 8. The average \kappa ti1 and \kappa ti4 for the system of Figure 3(b) are shown in Figure 6.
Recall that there was an obstruction to reconstructibility in Figure 3(a), which was relieved
by adding one extra directed edge. As in the above examples, we generate weights as aij =
1+ 0.5\nu ij corresponding to each directed edge in the graph, where \nu ij \in N(0,1), and average
\kappa tji over 104 realizations of the weights. The system has relatively high error magnification,
perhaps due to being near the border of reconstructibility.

In Examples 6, 7, and 8, it is apparent that the \kappa tji are monotonically decreasing in the
trajectory length t and that they appear to approach a limit. These examples motivate the
following definition, which considers the limit of (3.5) as t\rightarrow \infty , if it exists.
Definition. [4] Let [x0, . . . , xt] be a trajectory at node X, and let [x0 + h0, . . . , xt + ht] be a
trajectory reconstructed from observations on the set S. The observational error magnification
factor (OEMF) of the trajectory is defined to be

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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644 TYRUS BERRY AND TIMOTHY SAUER

(a) (b)

Figure 5. OEMF for 6-node network in Figure 2(b). (a) The OEMF \kappa t
1i for i= 1, . . . ,6. The OEMF with

respect to the observing node 1 tend to a limit as the trajectory length t increases. The reason that the OEMFs
are higher for reconstructing nodes 2 and 3 is not obvious from the network topology. (b) The OEMF \kappa t

2i for
each i, with respect to the observing node 2. Nodes 5 and 6 are the most difficult to reconstruct from node
2. While the curves are not as flat as in Figure 4, they appear to asymptote to a constant value as t \rightarrow \infty ,
consistent with definition (3.6).

(a) (b)

Figure 6. OEMF for the 7-node network in Figure 3(b). (a) \kappa t
1i from observations at node 1. Nodes 2, 6,

and 7 are significantly more difficult to reconstruct from node 1. (b) \kappa t
4i from observations at node 4. The same

three most difficult nodes persist.

\kappa S,X \equiv lim
\sigma \rightarrow 0

lim
t\rightarrow \infty 

\bigl\{ 
\BbbE 
\bigl[ 
| | h| | 22

\bigr] \bigr\} 1/2

\sigma 

= lim
\sigma \rightarrow 0

lim
t\rightarrow \infty 

\surd 
t \BbbE 

\bigl[ 
| | h| | 22/t

\bigr] 1/2
\sigma 

\approx 
\surd 
t
RMS reconstruction error per step at X

RMS observation error per step at S
.(3.6)
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RECONSTRUCTION OF NETWORK DYNAMICS 645

As we showed above, in the discrete linear case with S = \{ j\} and X = \{ i\} , \kappa S,X = \kappa ji.
ln the general nonlinear case, we can also expect a constant \kappa S,X that is independent of

the length of the trajectory and the size of the observational noise, at least in the limiting
case. The significance of this definition is that it is useful to have a single number which
characterizes the ability to reconstruct a time series at a node X from observations at a
subset S of the network. We will pursue this larger context in the next two sections.

4. Numerical method. In this section we describe a numerical algorithm for reconstruct-
ing time series at a network node from observations at a downstream node. In the previous
section, we accomplished this in the discrete linear case, when such a reconstruction was
possible. In this section we pursue the same question for nonlinear dynamics.

Since we know the dynamical equations, the problem is closely related to reproducing an
initial condition of the entire system that generates the trajectory. We will assume that we can
observe the entire time series at a subset S of network nodes, including the initial condition
at those nodes, but have no such knowledge at the desired node X.

Our computational approach will consist of minimizing a loss function on potential full
trajectories, which simultaneously monitors both the distance from the observations and the
discrepancy of the trajectory's iterations from exactness. We note that whether the observa-
tions are made with or without noise, this minimization is highly nonconvex, and we will find
that calculating a minimum is often nontrivial.

4.1. Loss function. Let f :Rn \rightarrow Rn be a discrete map, and let \{ xki \} be an exact trajectory
of f for 1\leq i\leq n and 0\leq k \leq t. Assume that m\geq 1 nodes are observed, and renumber them
as nodes 1, . . . ,m for simplicity. Up to this point, we have shown examples with m = 1, but
we allow m > 1 in general for the case where more than one node can be observed. In the
absence of noise, the following m(t+ 1) + nt equations in n(t+ 1) unknowns xki hold for the
trajectory:

xki = ski for i= 1, . . . ,m and k= 0, . . . , t,(4.1)

xk+1
i = f(xki ) for i= 1, . . . , n and k= 0, . . . , t - 1.

In a realistic application, the nodes are observed with noise, i.e.,

ski = xki + eki

for i = 1, . . . ,m. Our goal is to reconstruct xki for i = 1, . . . , n and k = 0, . . . , t only from
knowledge of the observations ski for i= 1, . . . ,m and the dynamical equations denoted by f .
Let \{ yki \} be the target time series, and denote by hki = yki  - xki the errors in reconstructing
the exact trajectory.

Comparing the number of equations above that the yki must satisfy shows that the equa-
tions in (4.1) are overdetermined as long as the trajectory length t > (n - m)/m. For moder-
ately long times series, this requirement will be easy to achieve. Due to the noise, the xki will
not satisfy (4.1), but we will search for the best least squares alternative yki .

The overdetermined least squares problem that arises is to minimize the loss function

Lw(y)\equiv w

t\sum 
k=0

m\sum 
i=1

[yki  - ski ]
2 +

t - 1\sum 
k=0

n\sum 
i=1

[yk+1
i  - f(yki )]

2(4.2)
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646 TYRUS BERRY AND TIMOTHY SAUER

for a weight w. The first double sum represents the observational discrepancy, the difference
between the y trajectory and the noisy observations of the x trajectory. The second double
sum represents the consistency discrepancy of the y trajectory, a measurement of how far the
y time series is from being an exact trajectory of the dynamical map f .

4.2. Gauss--Newton with QR. Let r1(x), . . . , rm(x) be functions ri :R
n \rightarrow R. To minimize\sum m

i=1 ri(x)
2, start with initial guess x0. Set r = [r1(x), . . . , rm(x)] and denote by Dr(x) the

m \times n matrix of partial derivatives. The Gauss--Newton method [19] produces the iterates
xk+1 = xk + vk, where vk is the linear least squares solution of

Dr(xk)vk = - r(xk).

If x0 is close enough to the optimum, the iterates will converge to it.
In cases where the minimization problem is poorly conditioned, it is helpful to use the QR

factorization to compute vk. That is, set QkRk =Dr(xk), where Qk is an orthogonal m\times m
matrix and Rk is m\times n upper triangular. Then

vk = (R\mathrm{t}\mathrm{o}\mathrm{p}
k ) - 1QL

k Dr(xk),(4.3)

similar to the calculation in section 3.
As a local optimization algorithm, the Gauss--Newton method is not guaranteed to con-

verge to the minimum of a nonconvex optimization problem, especially if the initial guess is
far from the optimum. In our case, we assume little information about the optimum, the exact
full trajectory, is available.

4.3. Networks of nonlinear systems. Most of the computer simulations in this section
use network topologies studied above in the discrete linear case, but where each network node
has been replaced by a nonlinear map. The examples typically use a modification of the H\'enon
map [6] due to its relative simplicity.

Define the modified H\'enon map F :\BbbR 2 \rightarrow \BbbR 2 by

F (x, y) = (b cosx+ cy,x).

In the following examples, the parameters b= 2.2, c= 0.4 are used, and if used in a network,
parameter values generated near those values with small changes chosen from a normal dis-
tribution are used, to avoid unwanted symmetries. These parameter values result in chaotic
dynamics for each node separately and, depending on the influences from other nodes from
the network weights, tend to result in chaotic network dynamics.

We will use dynamics on a n-node network to illustrate the properties of the error mag-
nification discussed above. Consider the modified H\'enon network map f :\BbbR 2n \rightarrow \BbbR 2n defined
by

xk+1
i = bi cosx

k
i + cix

k
i+1 +

n\sum 
j=1

aijx
k
2j - 1,(4.4)

xk+1
i+1 = xki

for i = 1,3,5, . . . ,2n  - 1, where the aij form an n \times n weight matrix A. Thus the network
communicates through the odd-numbered variables, one per node, while the even numbered
variables are considered ``internal"" or recovery variables. In the following examples, certain

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RECONSTRUCTION OF NETWORK DYNAMICS 647

(a) (b)

Figure 7. Reconstruction of time series in a 4-node network with topology as in Figure 1(b) with local H\'enon
dynamics (4.4) at each node. (a) An exact trajectory (in blue) of length 120, plotted at each of the four nodes;
nodes arranged vertically by number. (b) Reconstruction (in red) produced by Gauss--Newton from observations
at node 1, observed with noise level \sigma = 0.03. The exact trajectories are in plotted in blue. The largest errors
are seen in the reconstruction of node 3, consistent with the OEMF displayed in Figure 8(b).

of the aij are fixed at zero to respect a particular directed graph, and the nonzero bi, ci are
chosen to be normal random perturbations of 2.2 and 0.4, respectively.

Example 9. Figure 7 shows the results of reconstruction of times series in the 4-node
network of Figure 1(b) with observations from the x-variable at node 1 (variable x1 in terms
of (4.4)), the top trace in each of the panels. A small amount of observational noise is added.
Panel (a) shows the exact traces, and panel (b) shows the reconstructed traces from the Gauss--
Newton iteration plotted in red. Some deviations from the true trajectory are noticeable at
node 3. The fact that observational error is magnified more for the reconstruction of node 3
reflects the predictions of the OEMF as displayed in Figure 8(b).

Example 10. In Figure 9, the reconstruction of a network of H\'enon maps connected as
the 6-node network in Figure 2(b) is carried out. The exact trajectories are shown in panel
(a). As in the previous example, only the x-variable at the first node is observed, and the
remaining 11 traces are reconstructed by the Gauss--Newton method described above. The
six odd-numbered variables are displayed in panel (b).

4.4. Reconstruction algorithm. In this subsection we collect some details on the ap-
plication of Gauss--Newton to minimize the loss function (4.2). As an initial guess for the
minimization, we use a short trajectory consisting of the m observed coordinates, observed
with noise, and the other n - m coordinates seeded with normal random numbers.

Starting with random coordinates in this way is a challenge for a local method like Gauss--
Newton, which tends to diverge to infinity if it is too far from the minimum. This problem is
more prevalent with increasing observation noise level \sigma . We address this problem in two ways:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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648 TYRUS BERRY AND TIMOTHY SAUER

(a) (b)

Figure 8. (a) Estimated OEMF of modified H\'enon dynamics connected in a directed circular network as in
Figure 1(a) with observations at node 1 and noise level 10 - 4. (b) Estimated OEMF for the undirected circular
network as in Figure 1(b).

(1) The application of Gauss--Newton algorithm is done with a reduced step size, using
the idea which is often called damped Gauss--Newton. In other words, we routinely multiply
the proposed Gauss--Newton innovation (4.3) by a small number (such as 10 - p for p= 1,2, or
3) which can allow the method, once it acquires the basin of convergence, to avoid jumping
out of the basin.

(2) Multiple restarts of the damped Gauss--Newton method are needed in most circum-
stances. For larger noises, hundreds or thousands of restarts (reseeding the initial guess of
the trajectory with random numbers) were required to converge to a trajectory close to the
original exact trajectory. The growth of the number of restarts needed for convergence, as a
function of observation noise level, is analyzed in Figure 10.

Figure 10 summarizes important facts about our ability to reconstruct from partial obser-
vations. The basins of convergence of damped Gauss--Newton for this problem are extremely
complex. It is common to see trajectories that track closely to the desired trajectory for a
finite number of steps and then suddenly diverge from that trajectory. In such a case, the
Gauss--Newton has to be reinitialized with a new random start trajectory. The difficulty of
finding the correct basin of convergence appears to increase exponentially with the obser-
vational noise level, according to the fit shown in the figure. We do not have a theoretical
explanation for this scaling.

5. OEMF for nonlinear networks. In this section, we use the definition (3.6) of OEMF
derived in section 3 and the numerical method developed in section 4 to estimate the error
magnification inherent in some example networks. We rely primarily on the networks of
modified H\'enon maps defined above and use some of the same network topologies from the
discrete linear examples in section 2. We will see that the same network topologies exhibit
quite different OEMFs in the nonlinear case.
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RECONSTRUCTION OF NETWORK DYNAMICS 649

(a) (b)

Figure 9. Reconstruction of times series in a 6-node network with topology as in Figure 2(b) with local
H\'enon dynamics (4.4) at each node. (a) An exact trajectory (in blue) of length 100, plotted at each of the six
nodes. (b) Reconstruction (in red) from observations at node 1, observed with noise level \sigma = 0.001.

Example 11. Figure 8(a) displays an estimate of OEMF from a directed network with
topology as in Figure 1(a), with four nodes arranged in a circle. Noisy observations are made
from the first coordinate at node 1, and the remaining seven time series are reconstructed
according to the algorithm in section 4. Then the formula (3.6) reveals the estimated OEMF
as a function of step number t. Several trajectories of the same system are averaged and
plotted versus time.

One notes that the relative sizes of the OEMF are arranged in the same order as the
relationship to the observing node 1. In fact, node 4, which directly feeds node 1, has the lowest
error magnification, followed by node 3 and node 2, which has the longest path to node 1.
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650 TYRUS BERRY AND TIMOTHY SAUER

(a) (b)

Figure 10. Success curve for damped Gauss--Newton algorithm. For larger noise levels, most initial starts
end by diverging to infinity, and only a small fraction converge to a trajectory near the true one. The probability
of a convergence is plotted as a function of observation noise level for (a) the 4-node H\'enon network with the
topology of Figure 1(a), and (b) 6-node H\'enon network with the topology of Figure 2(b).

Figure 8(b) shows the results from an undirected network with circular topology, as de-
picted in Figure 1(b). As before, noisy observations are made from node 1. In this case, the
OEMF at nodes 2 and 4 are essentially the same, as can be expected. The highest OEMF
occurs for node 3, which is farthest in path distance from node 1. However, all error magni-
fication factors are lower than in the corresponding directed network case in panel (a) of the
figure.

Example 12. Figure 11(a) shows the OEMF for the 6-node network of Figure 2(b). The
size of the OEMF are increasing consecutively from node 1 to node 6. It is not very clear
from the network topology why this is the correct order, which is one reason why our ability
to easily estimate the OEMF from simulation is useful.

Example 13. Figure 11(b) shows the OEMF for the 7-node network of Figure 3(b). The
relative sizes of OEMF are informative: The middle tier (nodes 3, 4, and 5) are the easiest
to reconstruct from node 1, followed by the upper tier (nodes 6 and 7), leaving node 2 to be
the most difficult. We have no explanation for this type of effect, and in fact it would be
extremely useful to find a way to predict such phenomena from the topology, for example,
from the characteristics of the allowable paths, etc.

Example 14. The method that we propose can also be applied to differential equations.
The FitzHugh--Nagumo neural model [2, 16] is given by

\.v= bv+ cw+ d - v3/3,

\.w= ev+ fw+ g.

The parameters are set to be small perturbations of the set b= 1, c= - 1, d= 0.36, e= 0.08, f =
 - 0.06, g = 0.06. Communication between neurons is established in analogy with (4.4), by
adding to each vi voltage variable the contributions of all other vi variables according to the
network topology. That is, at each node we solve
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(a) (b)

Figure 11. (a) Estimated OEMF for 6-node network of modified Henon maps arranged according to Fig-
ure 2(b). (b) Estimated OEMF for 7-node network arranged according to Figure 3(b). Comparing to Figures 5
and 6, the nonlinear versions show the same difference in reconstruction difficulty between panels (a) and (b)
as the discrete linear case.

\.vi = bivi + ciwi + di  - v3i /3 + h

n\sum 
j=1

aijvj ,

\.wi = eivi + fiwi + gi,

where h= 0.4.
In order to apply the numerical method described above, we denote by f the time-\tau map

of the differential equation, with \tau = 1. The derivative of the time \tau -map is extracted in
the standard way, i.e., by solving the variational equations of the system on each observation
step for \tau times units, starting with initial vectors equal to the elementary coordinate vectors.
This derivative is updated on each step and used in the application of the Gauss--Newton
minimization.

Figure 12 shows the reconstruction of a network of FitzHugh--Nagumo models. The dy-
namics are weakly chaotic. The rightmost panel shows the w, or recovery, variables. In this
example, 10 unobserved traces are successfully reconstructed from the voltage traces (the vi
variable) observed at nodes 1 and 2. Node 4 turns out to be relatively difficult at first, but
after about time 150, the reconstruction is quite accurate. It is somewhat interesting that the
most periodic trace is the most problematic to extract for this network.

6. Discussion. The primary goal of this article is to establish that for a trajectory of
a dynamical network, there is a single number, the OEMF, that quantifies the ability to
reconstruct the trajectory at a given node by observing at a different node, or subset of nodes,
of the network. The OEMF can be used in two obvious ways: (1) to decide how to choose
where to extract observations of the network, in order to best monitor the dynamics at another
node, or (2) once an observation node is chosen, to quantify how faithful the reconstruction
will be at unobserved nodes. The OEMF can be calculated by simulation, in advance of the
collection of data, as long as a faithful model of the dynamical network is known.

Our second goal is to propose a plausible numerical algorithm for obtaining the trajec-
tory at unobserved nodes of the network from partial observations elsewhere in the network.
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652 TYRUS BERRY AND TIMOTHY SAUER

Figure 12. Reconstruction of times series in a 6-node network with topology as in Figure 2(b) with local
FitzHugh--Nagumo dynamics (5.1) at each node. Two signals were observed (the first two on top left) and
the remaining ten traces were reconstructed from the dynamical equations. Left: An exact trajectory (in blue)
of length 300, plotted at each of the six nodes, along with reconstruction (in red) of the v variables using
observations only at nodes 1 and w, observed with noise level \sigma = 0.01. Right: The 6 ``recovery variable"" w time
series are plotted on the right.

We showed results from applying a modified Gauss--Newton iteration to minimize a loss func-
tion, which eventually converges to a nearby trajectory, despite potentially requiring a large
number of restarts. We were able to quantify the exponential scaling of the number of restarts
required.

The exponential scaling of restarts is a reflection of the complicated convergence basin
structure of pseudotrajectories, near the true trajectories of a complex network. Loosely
speaking, there are a plethora of trajectories that follow a desired trajectory for a relatively
short time and then diverge from it. This is in fact a well-known characteristic of high-
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dimensional chaotic systems. Shedding light on this fascinating basin structure would be a
way to increase the capabilities of this approach.

The application of damped Gauss--Newton should be regarded as only an initial attempt
to reconstructing time series from chaotic networks. It is an open question whether a more
sophisticated optimization approach could improve the exponential success curves in Figure 9
or perhaps achieve subexponential convergence rates.

In this article, we have studied the effect of observational noise as a first step. Systems with
dynamical noise or model error will present another important source of error magnification
and an additional challenge for time series reconstruction, as well as for analysis of how noise
affects reconstruction more generally.

A future application of the ability to quantify error magnification is to predict the potential
success of reconstruction at specific nodes based on the topology of the network and properties
of the node dynamics. This is important both for analysis of existing networks and for optimal
design of proposed networks. Examples shown here indicate that especially in the nonlinear
dynamics case, such predictions may not be straightforward. Our hope is that the availability
of easily computable invariants like the OEMF can be leveraged to investigate these questions.
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