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Limits on reconstruction of dynamics in networks
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An observability condition number is defined for physical systems modeled by network dynamics. Assuming
that the dynamical equations of the network are known and a noisy trajectory is observed at a subset of the nodes,
we calculate the expected distance to the nearest correct trajectory as a function of the observation noise level
and discuss how it varies over the unobserved nodes of the network. When the condition number is sufficiently
large, reconstructing the trajectory from observations from the subset will be infeasible. This knowledge can be
used to choose an optimal subset from which to observe a network.
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I. INTRODUCTION

The study of network dynamics is increasingly useful in
modeling physical processes. Networks present a fascinating
departure from generic dynamical systems due to the con-
straints imposed on direct communication between nodes,
resulting in complicated dynamics and nontrivial bifurcation
structures [1–4]. Modeling by networks has become an im-
portant topic in almost every area of physical and biological
science, including distributed mechanical processes, weather
and climate, and metabolic, genomic, and neural networks.

A crucial aspect of studying distributed systems is the
difficulty of finding generic observables that facilitate recon-
struction of the entire collective dynamics of the network. The
theory of observability was pioneered for linear dynamics by
Kalman [5]. For nonlinear dynamics, the theory of attractor
reconstruction [6,7] provides hope that for generic observ-
ables of sufficiently high dimension, the dynamics can be
reconstructed. Although observations at single or even multiple
nodes of a network may not be provably generic, the results
of Joly [8] show that some aspects of reconstructibility may
be present by observing even a single node in a strongly
connected network, i.e., a network for which every node is
downstream from every other node. Observability in both
linear and nonlinear networks is a topic of intense recent
interest [9–14] and has close connections to controllability
[15–17].

However, observability in theory does not guarantee a
satisfactory reconstruction from data collected from a sparsely
connected network or far from target nodes, even in the case
where the equations of motion are known. To date, even in
this more tractable scenario, surprisingly little in the way of
general practical requirements has been developed for inferring
information from measurements. A critical obstruction is the
presence of noise in the observations and how this is magnified
in efforts to reconstruct the dynamics. In this article, we offer a
definition of observability condition number for reconstruction
of network trajectories, demonstrate its asymptotic properties
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in limiting cases such as full observability, and exhibit its
behavior for some relevant examples. The main conclusion
is that for practical use of network reconstruction techniques,
theoretical observability may be only the first step and that a
condition number measuring error magnification may funda-
mentally govern the limits of reconstructibility. In short, if the
observational noise level is σ times the macroscopic level of
the dynamics, then the error magnification must be less than
1/σ to allow accuracy in the reconstructed dynamics. Our aim
is to quantify this magnification for each specific observation
subset and target node of the network.

II. OBSERVABILITY CONDITION NUMBER

In the following, we denote by S a subset of observed nodes
or variables of a dynamical network. Let X be a network node
whose trajectory needs to be reconstructed. We consider an
ergodic trajectory of a compact attractor which is observed
with noise and consider the trajectory reconstruction error at
one node X of the network.

In this scenario, we conjecture that there is a constant κ

depending onS,X, and the dynamics, such that in the low-noise
limit, the expected error of reconstructing a length-N trajectory
satisfies

reconstruction error per step at X

observation error per step at S
∼ κ√

N
(1)

asymptotically as N → ∞. To be more precise, consider
the observation noise to be mean 0 with variance σ 2, and
let e = {e1, . . . , eN } denote the trajectory error at X with
component ei = zi − xi in terms of the exact trajectory xi and
the reconstructed trajectory zi . Since the standard deviation
of the trajectory errors ei at each step is the expected value
E[||e||22/N ]

1/2
, the asymptotic relation, (1), translates to the

existence of the limit

κ = lim
N→∞
σ→0

√
N E

[∣∣∣∣e∣∣∣∣2
2/N

]1/2

σ
= lim

N→∞
σ→0

E
[∣∣∣∣e∣∣∣∣2

2

]1/2

σ
. (2)
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We call κ = κS,X the observability condition number of node
X observed by S. This is a single constant that encapsulates
the ability to reconstruct the dynamics at X from the subset S.

The study of condition number as a measure of controllabil-
ity and observability is classical, beginning with Friedland [18]
in the context of linear systems. Here we consider the nonlinear
case and append the asymptotics expressed in (2). In addition,
we describe a direct computational approach to approximating
the condition number: Small observational noise is added to a
length-N trajectory of the dynamical system and a variational
data assimilation technique is used to reconstruct the nearest
exact trajectory. The ratio of output (reconstruction) error to
input (observation) error is κS,X/

√
N .

The fundamental importance of the existence of a universal
quantity κS,X, independent of the trajectory length, is that it
allows us to compare the varying fidelity of various observation
sets S at node X. This has direct implications for sensor
placement in general systems, such as measurements in a
metabolic network or the location of electrodes in a neural
assembly.

We begin by establishing formula (2) for the case of
completely observed linear dynamics, where κ exists and
equals 1. By “completely observed,” we mean that the subset
S of observed variables includes all variables. Consider first
the scalar case and assume the dynamics f (x) = ax. Let
{x1, . . . , xN } be a trajectory under f , so that xt = f (t−1)(x1).
Let yt = xt + δt be the (completely observed) trajectory
observed with i.i.d. observation noise δt of mean 0 and
covariance �(δ) = σ 2IN×N for some σ > 0. We search for
a trajectory {z1, . . . , zN }, where zt = f (t−1)(z1), which mini-
mizes the sum squared error

N∑
t=1

(zt − yt )
2 =

N∑
t=1

(at−1z1 − at−1x1 − δi )
2. (3)

In the sense of least squares, the {zt } trajectory is the one closest
to the observations. Setting the derivative with respect to zt to
0 and solving yields

0 = z1

N∑
t=1

a2(t−1) − x1

N∑
t=1

a2(t−1) −
N∑

t=1

at−1δt ,

z1 = x1 +
∑N

t=1 at−1δt∑N
t=1 a2(t−1)

. (4)

The square of the numerator of (2) is the expected squared
error of the reconstructed trajectory {z1, . . . , zN } compared
with the original trajectory {x1, . . . , xN }, or using zt − xt =
at−1(z1 − x1) and (4),

E

[
N∑

t=1

(zt − xt )
2

]
= E(z1 − x1)2

N∑
t=1

a2(t−1)

= E

⎡
⎣

( ∑N
t=1 at−1δt∑N
t=1 a2(t−1)

)2
⎤
⎦ N∑

t=1

a2(t−1)

=
∑N

t=1 a2(t−1)E(δ2
t )∑N

t=1 a2(t−1)
= σ 2,
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FIG. 1. Undirected network of nine nodes with dynamics, (5),
and adjacency matrix A as shown. (a) Node X is shaded according to
κS,X , where S = {1, 2}. (b) Estimates of κS,X in (a) as a function of
the trajectory length. (c) Same as (a), but S = {2, 8}. (d) Estimates of
κS,X in (c).

where we have used the fact that the noises δt are un-
correlated. Dividing by the observation noise level σ ,
we conclude that κ = 1 for the completely observed
case.

The scalar case can be extended to linear dynamics f (x) =
Ax for a symmetric matrix by diagonalizing A and applying
the above argument componentwise. We expect the result
to extend to nonlinear dynamics as well under appropri-
ate technical conditions, whose details will be presented
elsewhere.

For partial observations, such as observing at a proper subset
S of nodes of a network, κS,X will be substantially greater than
1, which is the focus of this article. As an illustrative example,
consider the undirected network of nine nodes illustrated in
Fig. 1, where the update equations at node j follow the
nonlinear discrete dynamics

x
j

t+1 = a cos x
j
t + by

j
t + c

9∑
k=1

Ajkx
k
t , y

j

t+1 = x
j
t , (5)

where a = 2.2, b = 0.4 for j = 1, . . . , 9 and A = {Ajk} is the
(symmetric) adjacency matrix of the network. The discrete
dynamical map used here at each node is a variant of the
classical Hénon map [19] that is suitable for distributed
dynamics.

We describe an algorithm to compute κ as in (2) from a
general network. Generate an exact trajectory {x1, . . . , xN },
which is observed by a function h(x) plus Gaussian observa-
tional noise with variance σ 2 at each point in the trajectory
to get {y1, . . . , yN }, where yt = h(xt ) + εt . In the examples
that follow, h will be the projection from the current state
x, the set of all nodes, to the observation subset S. We
apply what amounts to a variational data assimilation method,
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FIG. 2. (a) A network of 10 nodes with dynamics from (5). (b) Plot
of κS,X for nodes 1–10 when observed at x coordinates of subset S =
{1, 2}. Means and standard deviations for the xj (left; red symbols)
and yj (right; blue symbols]) variables are shown. Colors correspond
to the color bar in Fig. 1.

described in the remainder of the paragraph, to the inexact
yt observations to find an exact trajectory {z1, . . . , zN } that
minimizes the least squares difference between the yt and the zt

trajectories, analogous to (3). To accomplish this, we applied a
Gauss-Newton iteration [20] that enforces zt being a trajectory
while minimizing the observation difference. More precisely,
we search for zt minimizing

R2 = 1

q2

N−1∑
t=1

(f (zt ) − zt+1)2 + 1

r2

N−1∑
t=1

(h(zt ) − yt )
2, (6)

where q and r are weights that specify the trajectory noise and
observation noise tolerances, respectively. We use q � r to
ensure that the zt trajectory is effectively exact, at least relative
to the observation errors. At the conclusion of the Gauss-
Newton iteration for zt , we compute the errors et = zt − xt

and approximation (2) to κS,X.

III. EXAMPLES

The results of this algorithm applied to the network in
Fig. 1(a), observed with the x coordinates at the set S = {1, 2},
are shown in Fig. 1(b). The nine traces correspond to each of
the nine network nodes X. The two observed nodes are at the
bottom, and the remaining traces show various levels of κS,X.
In this example, the asymptotic N → ∞ limit in (2) is reached
for relatively short trajectory lengths. The nodes in Fig. 1(a)
are colored according to the respective observability condition
numbers.

The fact that κS,X can be arbitrarily large is illustrated by
undirected networks such as Fig. 2. Equations (5) are used,
and the observing set is S = {1, 2}. As expected, the resulting
condition numbers grow with the distance from the observing
set. However, calculating large κS,X is delicate, as we discuss
below.

As an example of a discretely sampled continuous dynam-
ical system we built a directed network of FitzHugh-Nagumo
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FIG. 3. (a) κS,X for the FitzHugh-Nagumo network. (b) Estimates
of κS,X versus trajectory length. Although not obvious from the
adjacency matrix, node 7 is more difficult to observe from the set
S = {1, 2, 3, 4} than the remaining nodes.

neurons [21,22] as shown in Fig. 3(a),

v′
j = −wj + djvj − v3

j /3 + I + g

9∑
k=1

Ajkvk,

w′
j = aj − bjwj + cjvj , (7)

where the parameters were varied by about 5% from a =
0.42, b = 0.8, c = 0.08, d = 0.01, and I = −0.025 among
the nodes. The system was observed at nodes 1–4 at a step
size �t = 0.1, and small observation noise was added at each
step. Figure 3(b) shows the observability condition number
calculated at the remaining four nodes.

A. Erdős-Rényi and scale-free networks

We tested the computation of κS,X in two network con-
structions to compare the effects of the degree distribution on
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FIG. 4. (a) Mean observability condition number of the scale-
free network, as a function of the four-member observation subsets
S. Circles (dashed lines) denote nodes sorted by descending degree;
diamonds (solid lines) denote nodes sorted by descending closeness
centrality. (b) Same as (a), for the Erdős-Renyi network.

the observability condition number. For each construction, we
used measures of degree and centrality in our exploration. The
example in Fig. 4(a) is a scale-free network of 20 nodes. After
sorting the nodes in descending order by degree, κS,X was
computed for S equal to the first (largest) four, second four,
etc., and is represented by circles. The same analysis carried
out using closeness centrality instead of degree is plotted by
diamonds. Note that the more sparsely connected observer sets
lead to much increased mean κS,X.

The same analysis, but for an Erdős-Rényi network of the
same size, is shown in Fig. 4(b). Note that values of κS,X vary
much less with the choice of the subset S. This comparison
appears to show that according to the observability condition
number, there is an advantage to concentrating observers at
hublike nodes, which is quite intuitive.

B. Regulatory network

Application of the observability condition number to the
regulatory network in [23] shows how alternative choices of
observation subsets can be usefully compared as a component
of experimental design. A representation of the model of 21
differential equations, representing a network that regulates
circadian rhythm, is shown in Fig. 5(a), where a directed edge
from one variable to another denotes that the former is on the

FIG. 5. (a) Network diagram representing the 21-variable dif-
ferential equation of circadian rhythm model described in [23]. (b)
The 21 traces show a periodic trajectory of the 21 variables of the
regulatory network in (a).

right-hand side of the latter’s equation. The Supplementary
Material [24] includes a Matlab implementation of the equa-
tions.

This system was also studied in [25,26], and we adopt a set
of parameter values used there, resulting in periodic dynamics.
Figure 5(b) shows a sample trajectory of all 21 variables
undergoing periodic behavior.

Figure 6(a) displays the observability condition number
for 100 random choices of three-node subsets S, computed
along the periodic trajectory in Fig. 5(b). For each three-node
subset, a simulation was used to compute κS,X for each network
node X, and the mean was calculated over all nodes X. This
calculation was averaged over 10 realizations and the mean
and standard error are plotted in the figure. On the horizontal
axis, the subsets S are shown, sorted by the value of κS,X.

Upon carrying out this numerical exploration, it became
obvious that there were two distinct classes of subsets. In
particular, Fig. 6(a) shows a clear discontinuity; there is a
noticeable gap between the values of κS,X for the leftmost
35 subsets compared to the remainder. Closer analysis (see
Supplementary Material, Fig. S1, for details [24]) shows that
each group in the leftmost set contains node 8 or 16, which
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FIG. 6. Mean observability condition number κS,X for the 21-
node regulatory network of [23], for the trajectory in Fig. 5(b). (a) A
total of 100 subsets S of three nodes, chosen randomly, are compared.
The subsets are sorted from left to right by increasing κS,X . There is
a noticeable gap after the first 35 subsets. All subsets to the left of
the gap contain either node 8 or node 16, corresponding to reactant
RORc or Rorc, respectively. None of the subsets to the right of the
gap contain either RORc or Rorc. (b) Average observability condition
number κS,X for six-node subsets S along the horizontal axis. See the
Supplementary Material [24] for identification of the three-node and
six-node subsets, respectively.

correspond to reactant Rorc or RORc, respectively. From this
striking plot, we can conclude at least that Rorc and RORc are
key observables in the system.

Figure 6(b) shows the sorted observability condition num-
bers for 100 subsets of six nodes. The same separation is
apparent as in the three-node subset case; the subsets to the
left of the gap turn out to contain either node 8 or node 16 (see
Supplementary Material, Fig. S2 [24]), similarly to Fig. 6(a).

Interestingly, a group of six nodes was isolated in [25] to
satisfy the hypotheses of a theorem guaranteeing good control
and observability properties. The theorem refers to a “reduced
feedback vertex set,” which is a set of nodes such that deleting
any one causes the network to lack the strong connectedness
property. The subset chosen in [25] contains the reactants
PER1, PER2, CRY1, CRY2, RORc, and CLK-BMAL1, which
correspond to nodes numbered 9, 10, 11, 12, 16, and 21. This
special subset has node 16 in common with our results and is
included (nonrandomly) in Fig. 6(b). However, it is 37th from
the left in the plot (see Supplementary Material [24]), meaning
that it is not particularly distinguished as an observing subset
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FIG. 7. Symbols are colored per estimates of κS,X and plotted
versus the input noise and the condition number C of the Gauss-
Newton iteration, for a completely observed network of random 2 × 2
matrices. Trajectory lengths vary from 20 (lower symbols) to 240
(upper symbols). Calculations below the dashed line C = 1016σ are
reliable.

from the point of view of the observability condition number.
This underlines another advantage of our approach compared
to the otherwise very interesting theorem in [25], in that κS,X

can be computed for an arbitrary subset of interest, without
satisfying the very specific hypotheses in that result.

The emergence of the importance of nodes 8 and 16 is not
obvious from any other technique known to us. This striking
result shows how the concept can be directly useful in the
choice of observers in a relevant regulatory network.

IV. DISCUSSION

To conclude, we note that special care must be taken to carry
out the Gauss-Newton iteration

zk+1 = zk − (DRT DR)†(DR)T R(zk ),

which minimizes the sum, (6), where R = [R1, . . . , Rn] and
R1(z)2 + · · · + Rn(z)2. It is a central tenet of uncertainty
quantification that the accuracy of the solution of the iteration
will be dependent on the condition number (see [20], for
example) of the Gauss-Newton problem, in this case the
(conventional) condition number C of the matrix (DR)T DR,
where DR denotes the Jacobian. Since the errors added are
of size σ � 1, the residuals Ri can be expected to be of the
same order. Thus one may run out of correct significant digits
if C/σ > ε−1

mach ≈ 1016 for double-precision computations.
In Fig. 7 we explore this issue. For simplicity, we consider

a discrete stochastic map that multiplies by a random 2 × 2
matrix at each step. We observe at both phase variables,
so that the system is completely observable and κS,X = 1.
Each symbol represents a calculation of κS,X, where S is
both variables, i.e., completely observed, and X is one of the
variables. As shown above, in this case κS,X = 1. The symbols
correspond to trajectories of length between 20 and 240, going
from bottom to top, with input noise σ . The vertical axis
denotes the condition number C of (DR)T DR. The color of
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the symbol corresponds to the observability condition number
κS,X. The dashed line is drawn at C/σ = 1016. Note that as the
trajectories become longer, C becomes larger, and when the
dashed line is passed, κS,X is incorrectly determined (in some
cases by a factor of more than 1000), due to lack of significant
digits caused by ill conditioning. To avoid this difficulty, the
length of trajectories must be limited to the safe area below
the dashed line. Alternatively, computations beyond double
precision could be used.

In this article, we have introduced the concept of an
observability condition number κX,S that has a consistent
asymptotic definition in the limit of long ergodic trajectories
and the limit of small noise. We have shown that the definition
is relatively straightforward to compute in multidimensional

systems. This settles a fundamental, long-standing problem
in network dynamics, namely, where to locate a minimal set
of sensors to measure remote dynamics. Computation of κS,X

allows a direct comparison of all options. In particular, an
exhaustive enumeration among subsets S to find the minimum
mean or maximum over the network is feasible for moderate-
sized networks and establishes a guiding principle for large
networks where an exhaustive search may not be feasible.
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