Tracking intracellular dynamics through extracellular measurements

Franz Hamilton^{1*}, Tyrus Berry², Timothy Sauer²

North Carolina State University, Department of Mathematics, Raleigh, 27695, USA
 George Mason University, Department of Mathematical Sciences, Fairfax, 22030, USA

* fwhamilt@ncsu.edu

Abstract

Extracellular recordings of neuronal cells are frequently a part of *in vitro* and *in vivo* experimental studies as a means of monitoring network-level dynamics. Their connections to intracellular dynamics are not well understood. Single-unit recordings are a more direct way to measure intracellular dynamics, but are typically difficult and expensive. On the other hand, simple differential equations models exist for single neurons. In this article, we apply a recent advance in data assimilation theory, designed to correct bias in general observation functions, toward the reconstruction of model-based intracellular dynamics from extracellular recordings.

Author summary

Model-based inference of experimental variables is predicated on a known relationship between the model dynamics and the data collected from the experimental system. If this relationship is not known, or known with error, the resulting inference of the system variables is prone to inaccuracies. This problem is exemplified in neuroscience studies where experimental recordings of extracellular, or outside the cell, activity may be used to infer intracellular, or inside the cell, dynamics. In this article, we demonstrate the use of a novel method for reconciling this error towards the goal of tracking intracellular neuronal dynamics using extracellular measurements.

Introduction

In vitro and in vivo neuronal experiments in the laboratory are frequently centered around measurements of cell potential. While intracellular (within cell) recordings give precise, single-cell measurements of neuronal potential, they are difficult, often obtained under nonphysiological conditions, and typically do not allow for multi-site recordings. Extracellular recordings are easier to obtain, but the relation to intracellular dynamics is complicated. In particular, the morphology of the spikes and other aspects of the recordings are usually quite different. A common hypothesis is that the extracellular potential of a neuronal cell is roughly approximated by the negative time derivative of the intracellular potential. However, simultaneous intracellular and extracellular measurements have shown that this relationship does not hold throughout the entire evolution of a spike [1]. Fig. 1 shows an example time series [2] comparing intracellular and extracellular recordings (see [1,3] for more details on the experimental design and

10

11

12

study). This representative example demonstrates some of the differences between the two types of cell measurements.

Fig 1. Example of simultaneous intracellular and extracellular recordings from a neuronal experiment in the laboratory. Data from [1–3]. Intracellular recordings (red trace) occur inside an individual cell, whereas extracellular recordings (blue trace) occur outside the cell and often result in the recording of activity from several different cells. While neuronal models describe the intracellular cell dynamics, experimental recordings often consist of extracellular measurements, particularly when examining network-level dynamics. There is a fundamental difference between the recorded potentials, for example the biphasic waveform of the extracellular recording compared to the monophasic waveform of the intracellular recording.

Modern methods of data assimilation are adept at reconstructing hidden variables, as long as details of their relations to observations are known. If we consider the intracellular dynamics as the hidden variable, it is the lack of an explicit "observation function" that has limited the applicability of these methods. While ad hoc methods for pre-processing the extracellular measurements have been used (see for example [4,5]), these approaches suffer from never learning the true mapping from the intracellular state to the extracellular observation space.

In this article we assume as given an extracellular recording and a model of single-cell neuronal dynamics. We will exploit a recent advance [6] in data assimilation to fit the recording to the individual cell dynamics, in absence of a known relation between them. The recent advance shows how to learn state-dependent observation function bias while filtering a signal. The approach is general enough to be used with a wide range of data assimilation methods, including nonlinear methods such as the ensemble Kalman filter. The main point is that even though the exact observation function of the single-cell dynamics that relates its activity to the extracellular recording is unknown, the connection can be gradually learned from an iterative processing of the data.

We demonstrate this methodology on several neuro-inspired examples, specifically extending application of the method developed in [6] to situations of severe model error. We assume that we have a generic neuron model, namely the Fitzhugh-Nagumo system, and use it to reconstruct the intracellular dynamics of observed extracellular time series. We begin, as proof of concept, by showing the successful reconstruction of the intracellular state given extracellular observations of a stochastic Fitzhugh-Nagumo cell.

16

17

18

19

20

21

22

23

24

25

27

29

31

32

33

34

35

36

To further simulate the model error we will encounter when analyzing experimental data, we consider the assimilation of extracellular data from a more sophisticated model, the Hodgkin-Huxley system. Finally, we demonstrate the utility of our method in recovering the intracellular dynamics in an experimental setting by assimilating *in vivo* extracellular recordings.

Methods

The filtering problem

In the general filtering problem, we assume a system with n-dimensional state vector x and m-dimensional observation vector y defined by

$$x_k = f(x_{k-1}) + w_{k-1} \tag{1}$$

$$y_k = h(x_k) + v_k \tag{2}$$

where w_{k-1} and v_k are white noise processes with covariance matrices Q and R, respectively. f represents the system dynamics and h is an observation function that maps the model state to the observation space. The goal is to sequentially estimate the state of the system given some noisy observations.

In the case of linear system dynamics and linear observation function, the Kalman filter [7] gives the optimal estimate of the system state. Extensions of the Kalman filter to nonlinear situations include the extended Kalman filter and ensemble-based Kalman filters [8–18], which approximate nonlinear systems and gives near-optimal estimates. In either linear or nonlinear situation, the assumption is that both f and h are known, allowing the filter to alternate between a forecast and analysis step. During the filter's forecast, a model-based prediction of the system state and covariance is made. The predicted state is then mapped to observation. These state and covariance predictions are updated in the analysis step, which relies on the difference between the actual observation and the model predicted observation. This procedure continues iteratively for each observation.

Without loss of generality, here we consider use of the ensemble Kalman filter (EnKF) for nonlinear state estimation. The EnKF approximates a nonlinear system by forming an ensemble, such as through the unscented transformation (see for example [8]). At the kth step of the filter there is an estimate of the state x_{k-1}^+ and the covariance matrix P_{k-1}^+ . In the unscented version of the EnKF, the singular value decomposition is used to find the symmetric positive definite square root S_{k-1}^+ of the matrix P_{k-1}^+ , allowing us to form an ensemble of E state vectors where the i^{th} ensemble member is denoted $x_{i,k-1}^+$.

The model f is applied to the ensemble, and then observed with function h

$$\begin{aligned} x_{i,k}^{-} &= f\left(x_{i,k-1}^{+}\right) \\ y_{i,k}^{-} &= h\left(x_{i,k}^{-}\right) \end{aligned} \tag{3}$$

The mean of the resulting state and observed ensembles gives the prior state estimate x_k^- and predicted observation y_k^- , respectively. Denoting the covariance matrices P_k^- and P_k^y of the resulting state and observed ensemble, and the cross-covariance matrix 74

 P_k^{xy} , we define

$$P_{k}^{-} = \frac{1}{E} \sum_{i=1}^{E} \left(x_{i,k}^{-} - x_{k}^{-} \right) \left(x_{i,k}^{-} - x_{k}^{-} \right)^{T} + Q$$

$$P_{k}^{y} = \frac{1}{E} \sum_{i=1}^{E} \left(y_{i,k}^{-} - y_{k}^{-} \right) \left(y_{i,k}^{-} - y_{k}^{-} \right)^{T} + R$$

$$P_{k}^{xy} = \frac{1}{E} \sum_{i=1}^{E} \left(x_{i,k}^{-} - x_{k}^{-} \right) \left(y_{i,k}^{-} - y_{k}^{-} \right)^{T}$$
(4)

and use the equations

$$\begin{aligned}
K_k &= P_k^{xy} (P_k^y)^{-1} \\
P_k^+ &= P_k^- - K_k P_k^{yx} \\
x_k^+ &= x_k^- + K_k (y_k - y_k^-).
\end{aligned}$$
(5)

to update the state and covariance estimates with the observation y_k . Q and R are generally unknown quantities that have to be estimated. We use the method of [19] for the adaptive estimation of these noise covariance matrices.

Filtering with an unknown observation function

The update of the state and covariance predictions in the analysis step is dependent on the correct observation function h being known. Of course in many applications, such as in the mapping of intracellular model state to extracellular observation space, this function is known imperfectly and in its place an incorrect function g is used. We will assume the true dynamics are represented by Eq. 1 and Eq. 2, but that the filter is supplied with Eq. 1 and

$$y_k = g(x_k) + v_k. (6)$$

Define $b(x_k) = h(x_k) - g(x_k)$ to be the state-dependent bias in the observation resulting from use of the incorrect observation function. Recent work [20] addressed the issue of error caused by an unknown observation function by using a training set consisting of observations and the corresponding true state with which to build an estimate of the bias. Here, we assume that no training data of the true state are available and implement a recent advance [6] in data assimilation that attempts to empirically estimate the bias. We present a summary of the technique here, further details of which can be found in [6].

The general idea is to iteratively update the incorrect observation function g by obtaining improved estimates of the bias. We begin with an initial estimate of the bias function $b^{(0)} = 0$, and set $g^{(0)} = g + b^{(0)} = g$. The filter is given the known system dynamics f, the initial incorrect observation function $g^{(0)}$, and the observations y, and provides an estimate of the state at each observation time k, which we denote $x_k^{(0)}$. This initial state estimate will be subject to large errors, due to the unaccounted-for bias. Using this imperfect state estimate, we calculate a noisy estimate of the bias, $\hat{b}_k^{(0)}$, corresponding to observation y_k where

$$\hat{b}_{k}^{(0)} = y_{k} - g\left(x_{k}^{(0)}\right).$$
⁽⁷⁾

Due to noise in the data as well as the imperfection of the state estimate, $\hat{b}_k^{(0)}$ will not accurately reflect the true bias, $b(x_k)$. To build a better estimate of $b(x_k)$, we use

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

95

96

97

99

100

101

Takens' method of attractor reconstruction [21–24] to reconstruct the bias function. ¹⁰⁵ Given observation y_k , consider delay-coordinate vector $z_k = [y_k, y_{k-1}, \ldots, y_{k-d}]$ where d is the number of delays. Delay vector z_k represents the state of the system [21, 23]. To build the reconstruction, we locate the N nearest neighbors (with respect to Euclidean distance) z_{i_1}, \ldots, z_{i_N} , where ¹⁰⁹

$$z_{i_j} = [y_{i_j}, y_{i_j-1}, \dots, y_{i_j-d}]$$

within the set of observations. Once the neighbors are found, the corresponding $\hat{b}_{i_1}^{(0)}, \hat{b}_{i_2}^{(0)}, \dots, \hat{b}_{i_N}^{(0)}$ values are used in a locally constant model to estimate $b(x_k)$ 111

$$b^{(0)}(x_k) = w_{i_1}\hat{b}^{(0)}_{i_1} + w_{i_2}\hat{b}^{(0)}_{i_2} + \ldots + w_{i_N}\hat{b}^{(0)}_{i_N}.$$
(8)

where the weight for j^{th} neighbor is defined as

$$w_{i_j} = \frac{e^{-(d_{i_j}/\sigma)}}{\sum_{j=1}^N e^{-(d_{i_j}/\sigma)}}.$$

Here, d_{i_j} is the distance of z_{i_j} to the current delay-coordinate vector and σ is the bandwidth which controls the contribution of each neighbor in the local model. We set σ to be half of the mean distance of the neighbors.

Note that Eq. 8 is still just an approximation of $b(x_k)$, although a more accurate estimate compared to Eq. 7. The observation function can now be updated as

$$g^{(1)} = g + b^{(0)}.$$

This improved observation function is given to the filter, and the data are re-processed. ¹¹⁸ An improved state estimate, $x_k^{(1)}$, at time k is obtained, a more accurate reconstruction, ¹¹⁹ $b^{(1)}(x_k)$, of the bias is formed using Eqs. 7-8 and the observation function is updated, ¹²⁰ $g^{(2)} = g + b^{(1)}$. ¹²¹

Fig 2. Schematic of algorithm for correcting observation error.

The method continues iteratively, each iteration an improved reconstruction of $b(x_k)$ 122 is obtained resulting in a better estimate of the state on the next iteration. To 123 summarize the method for $\ell = 0, 1, \ldots, M$ iterations 124

1. Initialize
$$g^{(0)} = g$$
 and $b^{(0)} = 0$ 125

PLOS

- 2. For each observation y_k , use filter to estimate state $x_k^{(\ell)}$ given known f and observation function $g^{(\ell)}$
- 3. Calculate noisy bias estimate $\hat{b}_k^{(\ell)} = y_k g(x_k^{(\ell)})$
- 4. Use Takens' method to reconstruct estimate of bias function, $b^{(\ell)}(x_k)$
- 5. Update observation function, $g^{(\ell+1)} = g + b^{(\ell)}$
- 6. Repeat steps 2-5 until convergence

We determine that our method has converged when the change between successive reconstructions of the bias functions falls below some threshold. Figure 2 shows a schematic view of the steps of the algorithm.

Results

In the results presented below, we assume noisy extracellular data are available from a neuronal system and we implement an EnKF with a generic intracellular spiking model to reconstruct the intracellular state of the system. Specifically, our EnKF is provided the Fitzhugh-Nagumo model [25, 26]

$$\dot{v} = -w + v - \frac{v^3}{3} + I$$

$$\dot{w} = \frac{v + 0.7 - 0.8w}{\tau}$$
(9)

where I is a known stimulating current and τ is a time-scale parameter that is used to adjust the spiking frequency of the model to that of the data. The variable v represents the intracellular potential and w is a recovery variable that lumps together the effects of different ionic currents.

Motivated by experimental scenarios, we will rely on the ansatz that measurements of the neuron extracellular potential are given by the negative time derivative of the intracellular potential. Thus give the EnKF is provided a "best guess", though likely incorrect, observation function g

$$g(v,w) = -\left(-w + v - \frac{v^3}{3} + I\right)$$
(10)

which is just the negative right-hand side of the \dot{v} differential equation in Eq. 9.

Throughout, we will compare our bias corrected filter with the standard filter (essentially, the $\ell = 0$ iteration of our method) which assumes no bias correction. Due to the extreme error caused by the biased observations, we limit the diagonal of the estimated noise covariances matrices to prevent overfitting or underfitting of the data.

State estimation with an incorrect observation function

We consider the noise-driven Fitzhugh-Nagumo system

$$\dot{v} = -w + v - \frac{v^3}{3} + I + I_{\text{noise}}$$
$$\dot{w} = \frac{v + 0.7 - 0.8w}{12.5} \tag{11}$$

126

127

128

129

131

132

133

134

135

140

Fig 3. Results from reconstructing the state of a noise driven Fitzhugh-Nagumo system with small observation function error. True observation function $h(v, w) = 0.1f_1^2(v, w) - 0.9f_1(v, w) + 0.01$ is unknown. Given the observations (blue circles), we attempt to reconstruct the intracellular potential, v, and lump ionic recovery variable, w (solid black lines). In this example, the error between the filter observation function and true observation function is small enough that the standard filter (solid gray line) is able to provide accurate estimates of the variable trajectories (RMSE = 0.10, 0.07 for v and w respectively). The bias-corrected filter provides small, but not substantial improvements (RMSE = 0.10, 0.03 for v and wrespectively)

where $I = 0.3 \sin\left(\frac{2\pi}{30}t\right) + 0.1$ is a periodic forcing current and I_{noise} is a mean 0 Gaussian noise current with variance $\sigma^2 = 0.005$. We assume that 2400 seconds of data are available, sampled at rate dt = 0.4. The true observation function

$$h(v, w) = \alpha_1 f_1^2(v, w) + \alpha_2 f_1(v, w) + \alpha_3,$$

where $f_1(v, w) = -w + v - \frac{v^3}{3} + I + I_{noise}$, is unknown and in its place we give the EnKF the observation function in Eq. 10. Note that there is a degree of model error in this example since Eq. 11 is stochastically driven whereas our assimilation model described by Eq. 9 does not account for this additional noise term.

In our first example, consider a situation where there is a small discrepancy between the true observation function h and our filter observation function g. Namely, our observations of Eq. 11 are given by

$$h(v,w) = 0.1f_1^2(v,w) - 0.9f_1(v,w) + 0.01.$$
(12)

Fig. 3 shows the results of reconstructing v and w (black solid lines) given the 153 observations (blue circles) resulting from the function in Eq. 12. The solid grav line 154 denotes the EnKF estimate without bias correction and the solid red line red line the 155 estimate with bias correction. Note that the bias in this example is small, and as such 156 the standard EnKF is able to handle the error and give good estimates of the system 157 state by adjusting the Q and R covariance matrices (RMSE = 0.10, 0.07 for v and w 158 respectively). The bias corrected filter, which uses d = 5 delays and N = 20 nearest 159 neighbors to reconstruct the bias function, gives a slight improvement on the 160 reconstruction of w, but in general performs comparably to the standard filter (RMSE 161 = 0.10, 0.03 for v and w respectively). This result is not surprising, as we would not 162 expect our bias-corrected filter to have much of an affect when the observational bias is 163 low. 164

When the error in the observation function increases, the standard filter fails to accurately reconstruct the system dynamics. As an example, consider a large

146

147

148

149

150

151

Fig 4. Results from reconstructing the state of a noise driven Fitzhugh-Nagumo system with large observation function error. Blue circles denote system observation. The large error between the filter observation function and the unknown true observation function, $h(v, w) = 0.25f_1^2(v, w) - 0.85f_1(v, w) + 0.02$, causes the standard filter (solid gray line) to fail in tracking the system dynamics (RMSE = 0.95, 0.53 for v and w respectively). The bias-corrected filter significantly improves on the state reconstruction (RMSE = 0.26, 0.12 for v and w respectively)

observation error scenario where the true observation function is given by

$$h(v,w) = 0.25f_1^2(v,w) - 0.85f_1(v,w) + 0.02.$$
(13)

Fig. 4 shows the results of reconstructing the system state in this large bias situation. The filter with no bias correction (solid gray line) fails to track the dynamics of the variables (RMSE = 0.95, 0.53 for v and w respectively) while the bias-corrected filter (solid red line) is able to accurately reconstruct the system dynamics (RMSE = 0.26, 0.12 for v and w respectively). This significant improvement in state reconstruction highlights the capability of our method for reconciling large errors caused by observational mismatch.

Reconstructing intracellular potential from extracellular measurements

The next example explores the assimilation of data from a Hodgkin-Huxley cell to a Fitzhugh-Nagumo model. The Hodgkin-Huxley system [27] is a detailed neuron model defined by

$$C\dot{V} = -g_1 m^3 h(V - E_1) - g_2 n^4 (V - E_2) - g_3 (V - E_3) + 7 + I_{\text{noise}}$$

$$\dot{m} = (1 - m) \alpha_m (V - E_0) - m \beta_m (V - E_0)$$

$$\dot{n} = (1 - n) \alpha_n (V - E_0) - n \beta_n (V - E_0)$$

$$\dot{h} = (1 - h) \alpha_h (V - E_0) - h \beta_h (V - E_0)$$
(14)

where

$$\begin{aligned} \alpha_m(V) &= \frac{2.5 - 0.1V}{\exp(2.5 - 0.1V) - 1}, \quad \beta_m(V) &= 4\exp\left(-\frac{V}{18}\right) \\ \alpha_n(V) &= \frac{0.1 - 0.01V}{\exp(1 - 0.1V) - 1}, \quad \beta_n(V) &= \frac{1}{8}\exp\left(-\frac{V}{80}\right) \\ \alpha_h(V) &= 0.07\exp\left(-\frac{V}{20}\right), \quad \beta_h(V) &= \frac{1}{\exp(3 - 0.1V) + 1}. \end{aligned}$$

177

165

166

167

168

169

170

171

172

173

174

175

Fig 5. Results from assimilating extracellular Hodgkin-Huxley data (blue circles) to a Fitzhugh-Nagumo model. The scaled Hodgkin-Huxley intracellular potential (solid black line) is shown as a reference trajectory. Without bias correction (solid gray line), the filter is unable to reconcile the observational bias and as a result fails in estimating the system state. However, the bias-corrected filter (solid red line) is able to reconstruct the system dynamics.

The parameters of the Hodgkin-Huxley model are set to typical values: $C = 1, E_0 = -65, E_1 = 50, E_2 = -77, E_3 = -54.4$, and I_{noise} is a noisy current. Our observations of the Hodgkin-Huxley system consist of the extracellular potential approximated as

$$h(V,m,n,h) = -\frac{dV}{dt} = -\left(\frac{-g_1m^3h(V-E_1) - g_2n^4(V-E_2) - g_3(V-E_3) + 7 + I_{\text{noise}}}{C}\right),$$
(15)

where 3000 ms of extracellular data sampled at rate dt = 0.1 are available. These observations are scaled to fit the bounds of the Fitzhugh-Nagumo model in order to prevent filter instability.

This example highlights several issues that are analogous to problems encountered in 181 a experimental applications. For starters, the model used by the data assimilation 182 scheme (in our case the Fitzhugh-Nagumo equations) is often a simplified representation 183 of the experimental system producing the spike data. This results in a degree of model 184 error, or dynamical mismatch, which in effect leads to observational bias. Additionally, 185 the frequency of the data spikes often do not match those of the assimilation model. To 186 help account for this discrepancy prior to assimilation, we rescale the observation time 187 of the data to help match the spiking frequency of the model to that of the data. 188

Fig. 5 shows the results from assimilating the extracellular Hodgkin-Huxley data (blue circles) using Eq. 9 with parameters I = 0.5 and $\tau = 14$. The scaled Hodgkin-Huxley voltage variable (solid black line) is shown in Fig. 5a as a reference trajectory. Without bias correction (solid gray line), the filter is unable to estimate an accurate representation of the intracellular dynamics. Using d = 9 delays and N = 20 neighbors to reconstruct the bias, the bias-corrected filter (solid red line) is able to converge to a reasonable estimate of the intracellular variables. Note that we are not able to perfectly reconstruct the Hodgkin-Huxley voltage; this is impossible due to the discrepancy between the dynamics of the Hodgkin-Huxley data and those of the Fitzhugh-Nagumo assimilation model.

178

179

180

189

190

191

192

193

194

195

196

197

Tracking in vivo intracelluar potential

We now consider the reconstruction of experimental intracellular dynamics from recorded extracellular potential. The data analyzed were collected from an experiment [2] that performed simultaneous intracellular and extracellular recordings in the CA1 region of the hippocampus of anesthetized rats [1,3]. Fig. 6 shows example waveforms, scaled to match the bounds of the assimilation model, from typical intracellular (Fig. 6a) and extracellular (Fig. 6b) spikes in the dataset. Light blue traces represent individual waveforms and thick solid blue line represent the average waveform. These simultaneous recordings are difficult to make and are not typical of most experimental studies, where usually only the extracellular potential is measured. As such, we treat the intracellular data strictly as a mechanism for evaluation of our assimilation results.

Fig 6. Representative waveforms (light blue traces) from recorded (a) intracellular and (b) extracellular spikes in the analyzed dataset. Dark blue lines denote the average detected waveform. Data are sampled at rate dt = 0.01 ms. While the authors in [1,3] collected simultaneous intracellular and extracellular measurements, experiments usually are centered around the extracellular recordings. We therefore treat the intracellular data as a mechanism for comparison purposes, and focus on the assimilation of the readily available extracellular measurements.

Our goal is to assimilate the readily available extracellular data, sampled at rate 211 dt = 0.01, to the intracellular Fitzhugh-Nagumo model and reconstruct the appropriate 212 intracellular dynamics. Note that the nature of extracellular recordings leads to 213 measurements from several different cells, and thus in our assimilation of these 214 observations we are in fact reconstructing the intracellular dynamics from several 215 different neurons. Similarly to the Hodgkin-Huxley results, we don't expect a perfect 216 reconstruction of the intracellular potential given the amount of discrepancy between 217 the Fitzhugh-Nagumo system and the experimental data. 218

Fig. 7 shows the results of estimating the intracellular dynamics given the 219 extracellular observations. The thin light lines represent the estimated dynamics 220 corresponding to the individual extracellular spikes shown in Fig. 6b. The thick dark 221 lines represent the average reconstructed dynamic. Without bias correction (Fig. 7a-b), 222 the estimate of intracellular potential and recovery variable suffers. Using d = 9 delays 223 and N = 10 neighbors for bias reconstruction, our bias corrected filter (Fig. 7c-d) is able 224 to obtain an improved reconstruction of the intracellular dynamics. While the estimate 225 is not perfect, which is to be expected since we are using an overly simplified 226 assimilation model, we are still able to obtain a faithful representation of the 227 intracellular potential and recovery variable. 228

199

200

201

202

203

204

205

206

207

208

209

Fig 7. Results from assimilating the extracellular data to the Fitzhugh-Nagumo model. Thin light traces indicate individual events and thick dark line denotes the average waveform over the individual events. Estimated (a) intracellular potential and (b) recovery variable without bias correction results in an inaccurate reconstruction of the cell dynamics. With bias correction, we are able to learn the mapping from intracellular to extracellular state, and thus get an improved estimate of the intracellular potential and recovery dynamics, (c) and (d) respectively.

Conclusion

The successful implementation of data assimilation methods for estimation is dependent on an accurate mapping of the model state to the experimental measurements. This is done through application of an observation function. When this function is unknown or known with error, the observations are biased and the resulting state estimate suffers. The problem is exemplified in experimental neuroscience studies, where the relationship between extracellular potential observations and the corresponding intracellular state is complex. By leveraging a recent advance in data assimilation, we demonstrated the capability to learn this neuronal bias from available data, improving our ability to estimate intracellular neuronal state while reconciling severe model error resulting from dynamical mismatch.

As with most techniques that attempt to empirically learn a function, the resulting accuracy of the observation bias reconstruction is dependent on sufficient available data. In the neuroscience application examined here, enough spiking events must be available within the analyzed time series so that the extracellular-to-intracellular relationship can be approximated using the nearest-neighbors algorithm. Additionally, the use of any Kalman filter relies on Gaussian noise assumptions. For non-Gaussian noise processes, 245

229

230

231

232

233

234

235

236

237

238

more sophisticated data assimilation schemes may have to be considered.

The ability to accurately estimate the intracellular state from extracellular 247 measurements is a significant advantage in neuronal data analysis. While our focus here 248 is strictly on reconciling bias for state estimation, the problem can be further expanded 249 to include the estimation of physiological intracellular parameters. Future work will 250 examine this bias reconstruction problem in network-level neuroscience studies, where 251 the goal is an accurate estimation of network connectivity given extracelluar 252 measurements. Finally, we believe that this technique will have wide-ranging 253 applicability to biological problems where the observation function may be known with 254 error. 255

References

- Henze D, Borhegyi Z, Csicsvari J, Mamiya A, Harris K, Buzsáki G. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. Journal of Neurophysiology. 2000;84:390–400.
- Henze D, Harris K, Borhegyi Z, Csicsvari J, Mamiya A, Hirase H, et al.. Simultaneous intracellular and extracellular recordings from hippocampus region CA1 of anesthetized rats; 2009. CRCNS.org. http://dx.doi.org/10.6080/K02Z13FP.
- Harris K, Henze D, Csicsvari J, Hirase H, Buzsáki G. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. Journal of Neurophysiology. 2000;84:401–414.
- 4. Hamilton F, Berry T, Peixoto N, Sauer T. Real-time tracking of neuronal network structure using data assimilation. Physical Review E. 2013;88:052715.
- Hamilton F, Cressman J, Peixoto N, Sauer T. Reconstructing neural dynamics using data assimilation with multiple models. Europhysics Letters. 2014;107:68005.
- Hamilton F, Berry T, Sauer T. Correcting observation model error in data assimilation; 2018. Preprint, https://arxiv.org/abs/1803.06918.
- Kalman R. A new approach to linear filtering and prediction problems. J Basic Eng. 1960;82:35–45.
- 8. Simon D. Optimal State Estimation: Kalman, H_{∞} , and Nonlinear Approaches. John Wiley and Sons; 2006.
- 9. Kalnay E. Atmospheric modeling, data assimilation, and predictability. Cambridge Univ. Press; 2003.
- Evensen G. Data assimilation: The Ensemble Kalman Filter. Springer: Heidelberg; 2009.
- Julier S, Uhlmann J, Durrant-Whyte H. A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans Automat Control. 2000;45:477–482.
- 12. Julier S, Uhlmann J, Durrant-Whyte H. Unscented filtering and nonlinear estimation. Proc IEEE. 2004;92:401–422.

- Rabier F. Overview of global data assimilation developments in numerical weather-prediction centres. Quarterly Journal of the Royal Meteorological Society. 2005;131(613):3215–3233.
- Hunt BR, Kalnay E, Kostelich E, Ott E, Patil DJ, Sauer T, et al. Four-dimensional ensemble Kalman filtering. Tellus A. 2004;56(4):273–277.
- Cummings JA. Operational multivariate ocean data assimilation. Quarterly Journal of the Royal Meteorological Society. 2005;131(613):3583–3604. doi:10.1256/qj.05.105.
- 16. Yoshida K, Yamaguchi J, Kaneda Y. Regeneration of Small Eddies by Data Assimilation in Turbulence. Phys Rev Lett. 2005;94:014501.
- 17. Law K, Stuart A. Evaluating data stimulation algorithms. Mon Wea Rev. 2012;140:3757–3782.
- 18. Schiff SJ. Neural control engineering. MIT Press; 2012.
- Berry T, Sauer T. Adaptive ensemble Kalman filtering of nonlinear systems. Tellus A. 2013;65:20331.
- Berry T, Harlim J. Correcting biased observation model error in data assimilation. Monthly Weather Review. 2017;145:2833–2853.
- Takens F. Detecting strange attractors in turbulence. Lecture Notes in Math Springer-Verlag: Berlin. 1981;898.
- Packard N, Crutchfield J, Farmer D, Shaw R. Geometry from a time series. Phys Rev Lett. 1980;45:712–715.
- 23. Sauer T, Yorke JA, Casdagli M. Embedology. J Stat Phys. 1991;65:579-616.
- Sauer T. Reconstruction of shared nonlinear dynamics in a network. Phys Rev Lett. 2004;93:198701–4.
- Fitzhugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal. 1961;1:445–466.
- Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line simulating nerve axon. Proceedings of the IRE. 1962;50:2061–2070.
- Hodgkin A, Huxley A. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiology. 1952;117:500–544.