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Abstract

Extracellular recordings of neuronal cells are frequently a part of in vitro and in vivo
experimental studies as a means of monitoring network-level dynamics. Their
connections to intracellular dynamics are not well understood. Single-unit recordings
are a more direct way to measure intracellular dynamics, but are typically difficult and
expensive. On the other hand, simple differential equations models exist for single
neurons. In this article, we apply a recent advance in data assimilation theory, designed
to correct bias in general observation functions, toward the reconstruction of
model-based intracellular dynamics from extracellular recordings.

Author summary

Model-based inference of experimental variables is predicated on a known relationship
between the model dynamics and the data collected from the experimental system. If
this relationship is not known, or known with error, the resulting inference of the
system variables is prone to inaccuracies. This problem is exemplified in neuroscience
studies where experimental recordings of extracellular, or outside the cell, activity may
be used to infer intracellular, or inside the cell, dynamics. In this article, we
demonstrate the use of a novel method for reconciling this error towards the goal of
tracking intracellular neuronal dynamics using extracellular measurements.

Introduction 1

In vitro and in vivo neuronal experiments in the laboratory are frequently centered 2

around measurements of cell potential. While intracellular (within cell) recordings give 3

precise, single-cell measurements of neuronal potential, they are difficult, often obtained 4

under nonphysiological conditions, and typically do not allow for multi-site recordings. 5

Extracellular recordings are easier to obtain, but the relation to intracellular dynamics 6

is complicated. In particular, the morphology of the spikes and other aspects of the 7

recordings are usually quite different. A common hypothesis is that the extracellular 8

potential of a neuronal cell is roughly approximated by the negative time derivative of 9

the intracellular potential. However, simultaneous intracellular and extracellular 10

measurements have shown that this relationship does not hold throughout the entire 11

evolution of a spike [1]. Fig. 1 shows an example time series [2] comparing intracellular 12

and extracellular recordings (see [1, 3] for more details on the experimental design and 13
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study). This representative example demonstrates some of the differences between the 14

two types of cell measurements. 15
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Fig 1. Example of simultaneous intracellular and extracellular recordings
from a neuronal experiment in the laboratory. Data from [1–3]. Intracellular
recordings (red trace) occur inside an individual cell, whereas extracellular recordings
(blue trace) occur outside the cell and often result in the recording of activity from
several different cells. While neuronal models describe the intracellular cell dynamics,
experimental recordings often consist of extracellular measurements, particularly when
examining network-level dynamics. There is a fundamental difference between the
recorded potentials, for example the biphasic waveform of the extracellular recording
compared to the monophasic waveform of the intracellular recording.

Modern methods of data assimilation are adept at reconstructing hidden variables, 16

as long as details of their relations to observations are known. If we consider the 17

intracellular dynamics as the hidden variable, it is the lack of an explicit “observation 18

function” that has limited the applicability of these methods. While ad hoc methods for 19

pre-processing the extracellular measurements have been used (see for example [4, 5]), 20

these approaches suffer from never learning the true mapping from the intracellular 21

state to the extracellular observation space. 22

In this article we assume as given an extracellular recording and a model of single-cell 23

neuronal dynamics. We will exploit a recent advance [6] in data assimilation to fit the 24

recording to the individual cell dynamics, in absence of a known relation between them. 25

The recent advance shows how to learn state-dependent observation function bias while 26

filtering a signal. The approach is general enough to be used with a wide range of data 27

assimilation methods, including nonlinear methods such as the ensemble Kalman filter. 28

The main point is that even though the exact observation function of the single-cell 29

dynamics that relates its activity to the extracellular recording is unknown, the 30

connection can be gradually learned from an iterative processing of the data. 31

We demonstrate this methodology on several neuro-inspired examples, specifically 32

extending application of the method developed in [6] to situations of severe model error. 33

We assume that we have a generic neuron model, namely the Fitzhugh-Nagumo system, 34

and use it to reconstruct the intracellular dynamics of observed extracellular time series. 35

We begin, as proof of concept, by showing the successful reconstruction of the 36

intracellular state given extracellular observations of a stochastic Fitzhugh-Nagumo cell. 37
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To further simulate the model error we will encounter when analyzing experimental 38

data, we consider the assimilation of extracellular data from a more sophisticated model, 39

the Hodgkin-Huxley system. Finally, we demonstrate the utility of our method in 40

recovering the intracellular dynamics in an experimental setting by assimilating in vivo 41

extracellular recordings. 42

Methods 43

The filtering problem 44

In the general filtering problem, we assume a system with n-dimensional state vector x 45

and m-dimensional observation vector y defined by 46

xk = f(xk−1) + wk−1 (1)

yk = h(xk) + vk (2)

where wk−1 and vk are white noise processes with covariance matrices Q and R, 47

respectively. f represents the system dynamics and h is an observation function that 48

maps the model state to the observation space. The goal is to sequentially estimate the 49

state of the system given some noisy observations. 50

In the case of linear system dynamics and linear observation function, the Kalman 51

filter [7] gives the optimal estimate of the system state. Extensions of the Kalman filter 52

to nonlinear situations include the extended Kalman filter and ensemble-based Kalman 53

filters [8–18], which approximate nonlinear systems and gives near-optimal estimates. In 54

either linear or nonlinear situation, the assumption is that both f and h are known, 55

allowing the filter to alternate between a forecast and analysis step. During the filter’s 56

forecast, a model-based prediction of the system state and covariance is made. The 57

predicted state is then mapped to observation space through known observation 58

function h, giving a model-predicted observation. These state and covariance 59

predictions are updated in the analysis step, which relies on the difference between the 60

actual observation and the model predicted observation. This procedure continues 61

iteratively for each observation. 62

Without loss of generality, here we consider use of the ensemble Kalman filter 63

(EnKF) for nonlinear state estimation. The EnKF approximates a nonlinear system by 64

forming an ensemble, such as through the unscented transformation (see for 65

example [8]). At the kth step of the filter there is an estimate of the state x+k−1 and the 66

covariance matrix P+
k−1. In the unscented version of the EnKF, the singular value 67

decomposition is used to find the symmetric positive definite square root S+
k−1 of the 68

matrix P+
k−1, allowing us to form an ensemble of E state vectors where the ith ensemble 69

member is denoted x+i,k−1. 70

The model f is applied to the ensemble, and then observed with function h 71

x−i,k = f
(
x+i,k−1

)
y−i,k = h

(
x−i,k

)
(3)

The mean of the resulting state and observed ensembles gives the prior state estimate 72

x−k and predicted observation y−k , respectively. Denoting the covariance matrices P−k 73

and P yk of the resulting state and observed ensemble, and the cross-covariance matrix 74
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P xyk , we define 75

P−k =
1

E

E∑
i=1

(
x−i,k − x−k

)(
x−i,k − x−k

)T
+Q

P yk =
1

E

E∑
i=1

(
y−i,k − y−k

)(
y−i,k − y−k

)T
+R

P xyk =
1

E

E∑
i=1

(
x−i,k − x−k

)(
y−i,k − y−k

)T
(4)

and use the equations 76

Kk = P xyk (P yk )−1

P+
k = P−k −KkP

yx
k

x+k = x−k +Kk

(
yk − y−k

)
. (5)

to update the state and covariance estimates with the observation yk. Q and R are 77

generally unknown quantities that have to be estimated. We use the method of [19] for 78

the adaptive estimation of these noise covariance matrices. 79

Filtering with an unknown observation function 80

The update of the state and covariance predictions in the analysis step is dependent on 81

the correct observation function h being known. Of course in many applications, such as 82

in the mapping of intracellular model state to extracellular observation space, this 83

function is known imperfectly and in its place an incorrect function g is used. We will 84

assume the true dynamics are represented by Eq. 1 and Eq. 2, but that the filter is 85

supplied with Eq. 1 and 86

yk = g(xk) + vk. (6)

Define b(xk) = h(xk) − g(xk) to be the state-dependent bias in the observation resulting 87

from use of the incorrect observation function. Recent work [20] addressed the issue of 88

error caused by an unknown observation function by using a training set consisting of 89

observations and the corresponding true state with which to build an estimate of the 90

bias. Here, we assume that no training data of the true state are available and 91

implement a recent advance [6] in data assimilation that attempts to empirically 92

estimate the bias. We present a summary of the technique here, further details of which 93

can be found in [6]. 94

The general idea is to iteratively update the incorrect observation function g by 95

obtaining improved estimates of the bias. We begin with an initial estimate of the bias 96

function b(0) = 0, and set g(0) = g + b(0) = g. The filter is given the known system 97

dynamics f , the initial incorrect observation function g(0), and the observations y, and 98

provides an estimate of the state at each observation time k, which we denote x
(0)
k . This 99

initial state estimate will be subject to large errors, due to the unaccounted-for bias. 100

Using this imperfect state estimate, we calculate a noisy estimate of the bias, b̂
(0)
k , 101

corresponding to observation yk where 102

b̂
(0)
k = yk − g

(
x
(0)
k

)
. (7)

Due to noise in the data as well as the imperfection of the state estimate, b̂
(0)
k will 103

not accurately reflect the true bias, b(xk). To build a better estimate of b(xk), we use 104

PLOS 4/13



Takens’ method of attractor reconstruction [21–24] to reconstruct the bias function. 105

Given observation yk, consider delay-coordinate vector zk = [yk, yk−1, . . . , yk−d] where d 106

is the number of delays. Delay vector zk represents the state of the system [21,23]. To 107

build the reconstruction, we locate the N nearest neighbors (with respect to Euclidean 108

distance) zi1 , ..., ziN , where 109

zij = [yij , yij−1, . . . , yij−d]

within the set of observations. Once the neighbors are found, the corresponding 110

b̂
(0)
i1
, b̂

(0)
i2
, . . . , b̂

(0)
iN

values are used in a locally constant model to estimate b(xk) 111

b(0)(xk) = wi1 b̂
(0)
i1

+ wi2 b̂
(0)
i2

+ . . .+ wiN b̂
(0)
iN
. (8)

where the weight for jth neighbor is defined as 112

wij =
e−(dij /σ)∑N
j=1 e

−(dij /σ)
.

Here, dij is the distance of zij to the current delay-coordinate vector and σ is the 113

bandwidth which controls the contribution of each neighbor in the local model. We set 114

σ to be half of the mean distance of the neighbors. 115

Note that Eq. 8 is still just an approximation of b(xk), although a more accurate 116

estimate compared to Eq. 7. The observation function can now be updated as 117

g(1) = g + b(0).

This improved observation function is given to the filter, and the data are re-processed. 118

An improved state estimate, x
(1)
k , at time k is obtained, a more accurate reconstruction, 119

b(1)(xk), of the bias is formed using Eqs. 7-8 and the observation function is updated, 120

g(2) = g + b(1). 121

Filter
f

g(l)

y
k

Takensx
k

(l) ,    b
k

(l) = y
k
-g(x

k
(l))

b(l)(x
k
)g(l+1) = g+b(l)

^

Fig 2. Schematic of algorithm for correcting observation error.

The method continues iteratively, each iteration an improved reconstruction of b(xk) 122

is obtained resulting in a better estimate of the state on the next iteration. To 123

summarize the method for ` = 0, 1, . . . ,M iterations 124

1. Initialize g(0) = g and b(0) = 0 125
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2. For each observation yk, use filter to estimate state x
(`)
k given known f and 126

observation function g(`) 127

3. Calculate noisy bias estimate b̂
(`)
k = yk − g(x

(`)
k ) 128

4. Use Takens’ method to reconstruct estimate of bias function, b(`)(xk) 129

5. Update observation function, g(`+1) = g + b(`) 130

6. Repeat steps 2-5 until convergence 131

We determine that our method has converged when the change between successive 132

reconstructions of the bias functions falls below some threshold. Figure 2 shows a 133

schematic view of the steps of the algorithm. 134

Results 135

In the results presented below, we assume noisy extracellular data are available from a
neuronal system and we implement an EnKF with a generic intracellular spiking model
to reconstruct the intracellular state of the system. Specifically, our EnKF is provided
the Fitzhugh-Nagumo model [25,26]

v̇ = −w + v − v3

3
+ I

ẇ =
v + 0.7 − 0.8w

τ
(9)

where I is a known stimulating current and τ is a time-scale parameter that is used to 136

adjust the spiking frequency of the model to that of the data. The variable v represents 137

the intracellular potential and w is a recovery variable that lumps together the effects of 138

different ionic currents. 139

Motivated by experimental scenarios, we will rely on the ansatz that measurements
of the neuron extracellular potential are given by the negative time derivative of the
intracellular potential. Thus give the EnKF is provided a “best guess”, though likely
incorrect, observation function g

g(v, w) = −
(
−w + v − v3

3
+ I

)
(10)

which is just the negative right-hand side of the v̇ differential equation in Eq. 9. 140

Throughout, we will compare our bias corrected filter with the standard filter 141

(essentially, the ` = 0 iteration of our method) which assumes no bias correction. Due to 142

the extreme error caused by the biased observations, we limit the diagonal of the 143

estimated noise covariances matrices to prevent overfitting or underfitting of the data. 144

State estimation with an incorrect observation function 145

We consider the noise-driven Fitzhugh-Nagumo system

v̇ = −w + v − v3

3
+ I + Inoise

ẇ =
v + 0.7 − 0.8w

12.5
(11)
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Fig 3. Results from reconstructing the state of a noise driven
Fitzhugh-Nagumo system with small observation function error. True
observation function h(v, w) = 0.1f21 (v, w) − 0.9f1(v, w) + 0.01 is unknown. Given the
observations (blue circles), we attempt to reconstruct the intracellular potential, v, and
lump ionic recovery variable, w (solid black lines). In this example, the error between
the filter observation function and true observation function is small enough that the
standard filter (solid gray line) is able to provide accurate estimates of the variable
trajectories (RMSE = 0.10, 0.07 for v and w respectively). The bias-corrected filter
provides small, but not substantial improvements (RMSE = 0.10, 0.03 for v and w
respectively)

where I = 0.3 sin
(
2π
30 t
)

+ 0.1 is a periodic forcing current and Inoise is a mean 0 146

Gaussian noise current with variance σ2 = 0.005. We assume that 2400 seconds of data 147

are available, sampled at rate dt = 0.4. The true observation function 148

h(v, w) = α1f
2
1 (v, w) + α2f1(v, w) + α3,

where f1(v, w) = −w + v − v3

3 + I + Inoise, is unknown and in its place we give the 149

EnKF the observation function in Eq. 10. Note that there is a degree of model error in 150

this example since Eq. 11 is stochastically driven whereas our assimilation model 151

described by Eq. 9 does not account for this additional noise term. 152

In our first example, consider a situation where there is a small discrepancy between
the true observation function h and our filter observation function g. Namely, our
observations of Eq. 11 are given by

h(v, w) = 0.1f21 (v, w) − 0.9f1(v, w) + 0.01. (12)

Fig. 3 shows the results of reconstructing v and w (black solid lines) given the 153

observations (blue circles) resulting from the function in Eq. 12. The solid gray line 154

denotes the EnKF estimate without bias correction and the solid red line red line the 155

estimate with bias correction. Note that the bias in this example is small, and as such 156

the standard EnKF is able to handle the error and give good estimates of the system 157

state by adjusting the Q and R covariance matrices (RMSE = 0.10, 0.07 for v and w 158

respectively). The bias corrected filter, which uses d = 5 delays and N = 20 nearest 159

neighbors to reconstruct the bias function, gives a slight improvement on the 160

reconstruction of w, but in general performs comparably to the standard filter (RMSE 161

= 0.10, 0.03 for v and w respectively). This result is not surprising, as we would not 162

expect our bias-corrected filter to have much of an affect when the observational bias is 163

low. 164

When the error in the observation function increases, the standard filter fails to
accurately reconstruct the system dynamics. As an example, consider a large
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Fig 4. Results from reconstructing the state of a noise driven
Fitzhugh-Nagumo system with large observation function error. Blue circles
denote system observation. The large error between the filter observation function and
the unknown true observation function, h(v, w) = 0.25f21 (v, w) − 0.85f1(v, w) + 0.02,
causes the standard filter (solid gray line) to fail in tracking the system dynamics
(RMSE = 0.95, 0.53 for v and w respectively). The bias-corrected filter significantly
improves on the state reconstruction (RMSE = 0.26, 0.12 for v and w respectively)

observation error scenario where the true observation function is given by

h(v, w) = 0.25f21 (v, w) − 0.85f1(v, w) + 0.02. (13)

Fig. 4 shows the results of reconstructing the system state in this large bias situation. 165

The filter with no bias correction (solid gray line) fails to track the dynamics of the 166

variables (RMSE = 0.95, 0.53 for v and w respectively) while the bias-corrected filter 167

(solid red line) is able to accurately reconstruct the system dynamics (RMSE = 0.26, 168

0.12 for v and w respectively). This significant improvement in state reconstruction 169

highlights the capability of our method for reconciling large errors caused by 170

observational mismatch. 171

Reconstructing intracellular potential from extracellular 172

measurements 173

The next example explores the assimilation of data from a Hodgkin-Huxley cell to a 174

Fitzhugh-Nagumo model. The Hodgkin-Huxley system [27] is a detailed neuron model 175

defined by 176

CV̇ = −g1m3h(V − E1) − g2n
4(V − E2) − g3(V − E3) + 7 + Inoise

ṁ = (1 −m)αm(V − E0) −mβm(V − E0)

ṅ = (1 − n)αn(V − E0) − nβn(V − E0)

ḣ = (1 − h)αh(V − E0) − hβh(V − E0) (14)

where 177

αm(V ) =
2.5 − 0.1V

exp(2.5 − 0.1V ) − 1
, βm(V ) = 4 exp

(
− V

18

)
αn(V ) =

0.1 − 0.01V

exp(1 − 0.1V ) − 1
, βn(V ) =

1

8
exp

(
− V

80

)
αh(V ) = 0.07 exp

(
− V

20

)
, βh(V ) =

1

exp(3 − 0.1V ) + 1
.
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Fig 5. Results from assimilating extracellular Hodgkin-Huxley data (blue
circles) to a Fitzhugh-Nagumo model. The scaled Hodgkin-Huxley intracellular
potential (solid black line) is shown as a reference trajectory. Without bias correction
(solid gray line), the filter is unable to reconcile the observational bias and as a result
fails in estimating the system state. However, the bias-corrected filter (solid red line) is
able to reconstruct the system dynamics.

The parameters of the Hodgkin-Huxley model are set to typical values:
C = 1, E0 = −65, E1 = 50, E2 = −77, E3 = −54.4, and Inoise is a noisy current. Our
observations of the Hodgkin-Huxley system consist of the extracellular potential
approximated as

h(V,m, n, h) = −dV
dt

= −
(
−g1m3h(V − E1) − g2n

4(V − E2) − g3(V − E3) + 7 + Inoise
C

)
,

(15)

where 3000 ms of extracellular data sampled at rate dt = 0.1 are available. These 178

observations are scaled to fit the bounds of the Fitzhugh-Nagumo model in order to 179

prevent filter instability. 180

This example highlights several issues that are analogous to problems encountered in 181

a experimental applications. For starters, the model used by the data assimilation 182

scheme (in our case the Fitzhugh-Nagumo equations) is often a simplified representation 183

of the experimental system producing the spike data. This results in a degree of model 184

error, or dynamical mismatch, which in effect leads to observational bias. Additionally, 185

the frequency of the data spikes often do not match those of the assimilation model. To 186

help account for this discrepancy prior to assimilation, we rescale the observation time 187

of the data to help match the spiking frequency of the model to that of the data. 188

Fig. 5 shows the results from assimilating the extracellular Hodgkin-Huxley data 189

(blue circles) using Eq. 9 with parameters I = 0.5 and τ = 14. The scaled 190

Hodgkin-Huxley voltage variable (solid black line) is shown in Fig. 5a as a reference 191

trajectory. Without bias correction (solid gray line), the filter is unable to estimate an 192

accurate representation of the intracellular dynamics. Using d = 9 delays and N = 20 193

neighbors to reconstruct the bias, the bias-corrected filter (solid red line) is able to 194

converge to a reasonable estimate of the intracellular variables. Note that we are not 195

able to perfectly reconstruct the Hodgkin-Huxley voltage; this is impossible due to the 196

discrepancy between the dynamics of the Hodgkin-Huxley data and those of the 197

Fitzhugh-Nagumo assimilation model. 198
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Tracking in vivo intracelluar potential 199

We now consider the reconstruction of experimental intracellular dynamics from 200

recorded extracellular potential. The data analyzed were collected from an 201

experiment [2] that performed simultaneous intracellular and extracellular recordings in 202

the CA1 region of the hippocampus of anesthetized rats [1, 3]. Fig. 6 shows example 203

waveforms, scaled to match the bounds of the assimilation model, from typical 204

intracellular (Fig. 6a) and extracellular (Fig. 6b) spikes in the dataset. Light blue traces 205

represent individual waveforms and thick solid blue line represent the average waveform. 206

These simultaneous recordings are difficult to make and are not typical of most 207

experimental studies, where usually only the extracellular potential is measured. As 208

such, we treat the intracellular data strictly as a mechanism for evaluation of our 209

assimilation results. 210
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Fig 6. Representative waveforms (light blue traces) from recorded (a)
intracellular and (b) extracellular spikes in the analyzed dataset. Dark blue
lines denote the average detected waveform. Data are sampled at rate dt = 0.01 ms.
While the authors in [1, 3] collected simultaneous intracellular and extracellular
measurements, experiments usually are centered around the extracellular recordings.
We therefore treat the intracellular data as a mechanism for comparison purposes, and
focus on the assimilation of the readily available extracellular measurements.

Our goal is to assimilate the readily available extracellular data, sampled at rate 211

dt = 0.01, to the intracellular Fitzhugh-Nagumo model and reconstruct the appropriate 212

intracellular dynamics. Note that the nature of extracellular recordings leads to 213

measurements from several different cells, and thus in our assimilation of these 214

observations we are in fact reconstructing the intracellular dynamics from several 215

different neurons. Similarly to the Hodgkin-Huxley results, we don’t expect a perfect 216

reconstruction of the intracellular potential given the amount of discrepancy between 217

the Fitzhugh-Nagumo system and the experimental data. 218

Fig. 7 shows the results of estimating the intracellular dynamics given the 219

extracellular observations. The thin light lines represent the estimated dynamics 220

corresponding to the individual extracellular spikes shown in Fig. 6b. The thick dark 221

lines represent the average reconstructed dynamic. Without bias correction (Fig. 7a-b), 222

the estimate of intracellular potential and recovery variable suffers. Using d = 9 delays 223

and N = 10 neighbors for bias reconstruction, our bias corrected filter (Fig. 7c-d) is able 224

to obtain an improved reconstruction of the intracellular dynamics. While the estimate 225

is not perfect, which is to be expected since we are using an overly simplified 226

assimilation model, we are still able to obtain a faithful representation of the 227

intracellular potential and recovery variable. 228
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Fig 7. Results from assimilating the extracellular data to the
Fitzhugh-Nagumo model. Thin light traces indicate individual events and thick
dark line denotes the average waveform over the individual events. Estimated (a)
intracellular potential and (b) recovery variable without bias correction results in an
inaccurate reconstruction of the cell dynamics. With bias correction, we are able to
learn the mapping from intracellular to extracellular state, and thus get an improved
estimate of the intracellular potential and recovery dynamics, (c) and (d) respectively.

Conclusion 229

The successful implementation of data assimilation methods for estimation is dependent 230

on an accurate mapping of the model state to the experimental measurements. This is 231

done through application of an observation function. When this function is unknown or 232

known with error, the observations are biased and the resulting state estimate suffers. 233

The problem is exemplified in experimental neuroscience studies, where the relationship 234

between extracellular potential observations and the corresponding intracellular state is 235

complex. By leveraging a recent advance in data assimilation, we demonstrated the 236

capability to learn this neuronal bias from available data, improving our ability to 237

estimate intracellular neuronal state while reconciling severe model error resulting from 238

dynamical mismatch. 239

As with most techniques that attempt to empirically learn a function, the resulting 240

accuracy of the observation bias reconstruction is dependent on sufficient available data. 241

In the neuroscience application examined here, enough spiking events must be available 242

within the analyzed time series so that the extracellular-to-intracellular relationship can 243

be approximated using the nearest-neighbors algorithm. Additionally, the use of any 244

Kalman filter relies on Gaussian noise assumptions. For non-Gaussian noise processes, 245
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more sophisticated data assimilation schemes may have to be considered. 246

The ability to accurately estimate the intracellular state from extracellular 247

measurements is a significant advantage in neuronal data analysis. While our focus here 248

is strictly on reconciling bias for state estimation, the problem can be further expanded 249

to include the estimation of physiological intracellular parameters. Future work will 250

examine this bias reconstruction problem in network-level neuroscience studies, where 251

the goal is an accurate estimation of network connectivity given extracelluar 252

measurements. Finally, we believe that this technique will have wide-ranging 253

applicability to biological problems where the observation function may be known with 254

error. 255
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