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Abstract

Extracellular recordings of neuronal cells are frequently a part of in vitro and in vivo experi-

mental studies as a means of monitoring network-level dynamics. Their connections to intra-

cellular dynamics are not well understood. Single-unit recordings are a more direct way to

measure intracellular dynamics, but are typically difficult and expensive. On the other hand,

simple differential equations models exist for single neurons. In this article, we apply a

recent advance in data assimilation theory, designed to correct bias in general observation

functions, toward the reconstruction of model-based intracellular dynamics from extracellu-

lar recordings.

Introduction

In vitro and in vivo neuronal experiments in the laboratory are frequently centered around

measurements of cell potential. While intracellular (within cell) recordings give precise, single-

cell measurements of neuronal potential, they are difficult, often obtained under nonphysiolo-

gical conditions, and typically do not allow for multi-site recordings. Extracellular recordings

are easier to obtain, but the relation to intracellular dynamics is complicated. In particular, the

morphology of the spikes and other aspects of the recordings are usually quite different.

The recorded extracellular potential is in general a complicated sum of spatially distributed

currents [1] within a complex extracellular space [2]. There is a complicated relationship

between the spatial location of the extracellular measurement with respect to the cell, resulting

in different waveform properties based on the distance from the recording site to the neuron.

Fig 1 shows an example time series [3] comparing intracellular and extracellular recordings

(see [4, 5] for more details on the experimental design and study). This representative example

demonstrates some of the differences between the two types of cell measurements.

Modern methods of data assimilation are adept at reconstructing hidden variables, as long

as details of their relations to observations are known. If we consider the intracellular dynam-

ics as the hidden variable, it is the lack of an explicit “observation function” that has limited

the applicability of these methods. While ad hoc methods for pre-processing the extracellular

measurements have been used (see for example [6, 7]), these approaches suffer from never

learning the true mapping from the intracellular state to the extracellular observation space.
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In this article we assume as given an extracellular recording and a model of single-cell neu-

ronal dynamics. We will exploit a recent advance [8] in data assimilation to fit the recording

to the individual cell dynamics, in absence of a known relation between them. The recent

advance shows how to learn state-dependent observation function bias while filtering a signal.

The approach is general enough to be used with a wide range of data assimilation methods,

including nonlinear methods such as the ensemble Kalman filter. The main point is that even

though the exact observation function of the single-cell dynamics that relates its activity to the

extracellular recording is unknown, the connection can be gradually learned from an iterative

processing of the data.

Several works have examined the error caused by bias resulting from model mismatch,

when the true system dynamics are not known [9–11], and when the actual observation

function which maps the model state to observation space is unknown [8, 12]. Our work

here essentially addresses both of these problems simultaneously within the context of

neuronal intracellular state reconstruction. Not only do we lack an accurate observational

model, but we must also reconcile the model error resulting from our use of a simplified

dynamical model to assimilate complex extracellular measurements from a population of

neurons.

In the following, we will show that intracellular dynamics reconstruction can occur even

though a simple, generic neuron model is used as part of the data assimilation procedure. We

begin, as proof of concept, by showing the successful reconstruction of the intracellular state

given extracellular observations of a stochastic Fitzhugh-Nagumo cell. To further simulate the

model error we will encounter when analyzing experimental data, we consider the assimilation

of extracellular data from a more sophisticated model, the Hodgkin-Huxley system. Finally,

we demonstrate the utility of our method in recovering the intracellular dynamics in an experi-

mental setting by assimilating in vivo extracellular recordings.

Fig 1. Example of simultaneous intracellular and extracellular recordings from a neuronal experiment in the

laboratory. Data from [3–5]. Intracellular recordings (red trace) occur inside an individual cell, whereas extracellular

recordings (blue trace) occur outside the cell and often result in the recording of activity from several different cells.

While neuronal models describe the intracellular cell dynamics, experimental recordings often consist of extracellular

measurements, particularly when examining network-level dynamics. There is a fundamental difference between the

recorded potentials, for example the biphasic waveform of the extracellular recording compared to the monophasic

waveform of the intracellular recording.

https://doi.org/10.1371/journal.pone.0205031.g001
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Methods

The filtering problem

In the general filtering problem, we assume a system with n-dimensional state vector x andm-

dimensional observation vector y defined in discrete time by

xk ¼ f ðxk� 1Þ þ wk� 1 ð1Þ

yk ¼ hðxkÞ þ vk ð2Þ

where wk−1 and vk are white noise processes with covariance matrices Q and R, respectively. f
represents the system dynamics and h is an observation function that maps the model state to

the observation space. The goal is to sequentially estimate the state of the system given some

noisy observations.

In the case of linear system dynamics and linear observation function, the Kalman filter

[13] gives the optimal estimate of the system state. Extensions of the Kalman filter to nonlinear

situations include the extended Kalman filter and ensemble-based Kalman filters [14–24],

which approximate nonlinear systems and gives near-optimal estimates. In either linear or

nonlinear situation, the assumption is that both f and h are known, allowing the filter to alter-

nate between a forecast and analysis step. During the filter’s forecast, a model-based prediction

of the system state and covariance is made. The predicted state is then mapped to observation

space through known observation function h, giving a model-predicted observation. These

state and covariance predictions are updated in the analysis step, which relies on the difference

between the actual observation and the model predicted observation. This procedure contin-

ues iteratively for each observation.

Without loss of generality, here we consider use of the ensemble Kalman filter (EnKF) for

nonlinear state estimation. The EnKF approximates a nonlinear system by forming an ensem-

ble, such as through the unscented transformation (see for example [14]). At the kth step of the

filter there is an estimate of the state xþk� 1
and the covariance matrix Pþk� 1

. In the unscented ver-

sion of the EnKF, the singular value decomposition is used to find the symmetric positive defi-

nite square root Sþk� 1
of the matrix Pþk� 1

, allowing us to form an ensemble of E state vectors

where the ith ensemble member is denoted xþi;k� 1
.

The model f is applied to the ensemble, and then observed with function h

x�i;k ¼ f ðxþi;k� 1
Þ

y�i;k ¼ hðx�i;kÞ
ð3Þ

The mean of the resulting state and observed ensembles gives the prior state estimate x�k and

predicted observation y�k , respectively. Denoting the covariance matrices P�k and Pyk of the

resulting state and observed ensemble, and the cross-covariance matrix Pxyk , we define

P�k ¼
1

E

XE

i¼1

x�i;k � x
�

k

� ��
x�i;k � x

�

k

�T
þ Q

Pyk ¼
1

E

XE

i¼1

y�i;k � y
�

k

� ��
y�i;k � y

�

k

�T
þ R

Pxyk ¼
1

E

XE

i¼1

x�i;k � x
�

k

� ��
y�i;k � y

�

k

�T

ð4Þ
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and use the equations

Kk ¼ Pxyk ðP
y
kÞ
� 1

Pþk ¼ P�k � KkP
yx
k

xþk ¼ x�k þ Kkðyk � y
�
k Þ:

ð5Þ

to update the state and covariance estimates with the observation yk. Q and R are generally

unknown quantities that have to be estimated. We use the method of [25] for the adaptive esti-

mation of these noise covariance matrices.

Filtering with an unknown observation function

The update of the state and covariance predictions in the analysis step is dependent on the cor-

rect observation function h being known. Of course in many applications, such as in the map-

ping of intracellular model state to extracellular observation space, this function is known

imperfectly and in its place an incorrect function g is used. We will assume the true dynamics

are represented by Eqs 1 and 2, but that the filter is supplied with Eq 1 and

yk ¼ gðxkÞ þ vk: ð6Þ

Define b(xk) = h(xk) − g(xk) to be the state-dependent bias in the observation resulting from

use of the incorrect observation function. Recent work [12] addressed the issue of error caused

by an unknown observation function by using a training set consisting of observations and the

corresponding true state with which to build an estimate of the bias. Here, we assume that no

training data of the true state are available and implement a recent advance [8] in data assimi-

lation that attempts to empirically estimate the bias. We present a summary of the technique

here, further details of which can be found in [8].

The general idea is to iteratively update the incorrect observation function g by obtaining

improved estimates of the bias. We begin with an initial estimate of the bias function b(0) = 0,

and set g(0) = g + b(0) = g. The filter is given the known system dynamics f, the initial incorrect

observation function g(0), and the observations y, and provides an estimate of the state at each

observation time k, which we denote xð0Þk . This initial state estimate will be subject to large

errors, due to the unaccounted-for bias. Using this imperfect state estimate, we calculate a

noisy estimate of the bias, b̂ð0Þk , corresponding to observation yk where

b̂ð0Þk ¼ yk � g
�
xð0Þk
�
: ð7Þ

Due to noise in the data as well as the imperfection of the state estimate, b̂ð0Þk will not accu-

rately reflect the true bias, b(xk). To build a better estimate of b(xk), we use Takens’ method of

attractor reconstruction [26–29] to reconstruct the bias function. Given observation yk, con-

sider delay-coordinate vector zk = [yk, yk−1, . . ., yk−d] where d is the number of delays. Delay

vector zk represents the state of the system [26, 28]. To build the reconstruction, we locate the

N nearest neighbors (with respect to Euclidean distance) zi1 ; . . . ; ziN , where

zij ¼ ½yij ; yij � 1; . . . ; yij � d�

within the set of observations. Once the neighbors are found, the corresponding

b̂ð0Þi1 ; b̂
ð0Þ

i2 ; . . . ; b̂ð0ÞiN values are used in a locally constant model to estimate b(xk)

bð0ÞðxkÞ ¼ wi1 b̂
ð0Þ

i1 þ wi2 b̂
ð0Þ

i2 þ . . .þ wiN b̂
ð0Þ

iN : ð8Þ
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where the weight for jth neighbor is defined as

wij ¼
e� ðdij =sÞ

PN
j¼1
e� ðdij =sÞ

:

Here, dij is the distance of zij to the current delay-coordinate vector and σ is the bandwidth

which controls the contribution of each neighbor in the local model. We set σ to be half of the

mean distance of the neighbors.

Note that Eq 8 is still just an approximation of b(xk), although a more accurate estimate

compared to Eq 7. The observation function can now be updated as

gð1Þ ¼ g þ bð0Þ:

This improved observation function is given to the filter, and the data are re-processed. An

improved state estimate, xð1Þk , at time k is obtained, a more accurate reconstruction, b(1)(xk), of

the bias is formed using Eqs 7 and 8 and the observation function is updated, g(2) = g + b(1).

The method continues iteratively, each iteration an improved reconstruction of b(xk) is

obtained resulting in a better estimate of the state on the next iteration. To summarize the

method for ‘ ¼ 0; 1; . . . ;M iterations

1. Initialize g(0) = g and b(0) = 0

2. For each observation yk, use filter to estimate state xð‘Þk given known f and observation func-

tion g(ℓ)

3. Calculate noisy bias estimate b̂ð‘Þk ¼ yk � gðx
ð‘Þ

k Þ

4. Use Takens’ method to reconstruct estimate of bias function, b(ℓ)(xk)

5. Update observation function, g(ℓ+1) = g + b(ℓ)

6. Repeat steps 2-5 until convergence

We determine that our method has converged when the change between successive recon-

structions of the bias functions falls below some threshold. Fig 2 shows a schematic view of the

steps of the algorithm.

Results

In the results presented below, we assume noisy extracellular data are available from a neuro-

nal system and we implement an EnKF with a generic intracellular spiking model to recon-

struct the intracellular state of the system. Specifically, our EnKF is provided the Fitzhugh-

Nagumo model [30, 31]

_v ¼ � wþ v �
v3

3
þ I

_w ¼
v þ 0:7 � 0:8w

t

ð9Þ

where I is a known stimulating current and τ is a time-scale parameter that is used to adjust

the spiking frequency of the model to that of the data. The variable v represents the intracellu-

lar potential and w is a recovery variable that lumps together the effects of different ionic

currents.

Motivated by experimental scenarios, we will rely on the ansatz that measurements of the

neuron extracellular potential are given by the negative time derivative of the intracellular

Tracking intracellular dynamics through extracellular measurements
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potential. Thus give the EnKF is provided a “best guess”, though likely incorrect, observation

function g

gðv;wÞ ¼ � � wþ v �
v3

3
þ I

� �

ð10Þ

which is just the negative right-hand side of the _v differential equation in Eq 9.

Throughout, we will compare our bias corrected filter with the standard filter (essentially,

the ℓ = 0 iteration of our method) which assumes no bias correction. Due to the extreme error

caused by the biased observations, we limit the diagonal of the estimated noise covariances

matrices to prevent overfitting or underfitting of the data.

State estimation with an incorrect observation function

We consider the noise-driven Fitzhugh-Nagumo system

_v ¼ � wþ v �
v3

3
þ I þ Inoise

_w ¼
v þ 0:7 � 0:8w

12:5

ð11Þ

where I ¼ 0:3 sin 2p

30
t

� �
þ 0:1 is a periodic forcing current and Inoise is a mean 0 Gaussian noise

current with variance σ2 = 0.005. We assume that 2400 seconds of data are available, sampled

at rate dt = 0.4. The true observation function

hðv;wÞ ¼ a1f
2

1
ðv;wÞ þ a2f1ðv;wÞ þ a3; ð12Þ

where f1ðv;wÞ ¼ � wþ v � v3
3
þ I þ Inoise, is unknown to us and in its place we give the EnKF

the observation function described by Eq 10. The parameters α1, α2, α3 are used to control the

amount of mismatch between the true observation function h and our filter observation func-

tion g, allowing us to test our algorithm at different error levels. Note that there is a degree of

model error in this example since Eq 11 is stochastically driven whereas our assimilation

model described by Eq 9 does not account for this additional noise term.

In our first example, we consider a situation where there is a small discrepancy between h
and g. Specifically, we define parameters α1 = 0.1, α2 = −0.9, α3 = 0.01 in Eq 12 resulting in the

Fig 2. Schematic of algorithm for correcting observation error.

https://doi.org/10.1371/journal.pone.0205031.g002
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observation function

hðv;wÞ ¼ 0:1f 2

1
ðv;wÞ � 0:9f1ðv;wÞ þ 0:01: ð13Þ

Fig 3 shows the results of reconstructing v and w (black solid lines) given the observations

(blue circles) resulting from the function in Eq 13. The solid gray line denotes the EnKF esti-

mate without bias correction and the solid red line red line the estimate with bias correction.

Note that the bias in this example is small, and as such the standard EnKF is able to handle

the error and give good estimates of the system state by adjusting the Q and R covariance

matrices (RMSE = 0.10, 0.07 for v and w respectively). The bias corrected filter, which uses

d = 5 delays and N = 20 nearest neighbors to reconstruct the bias function, gives a slight

improvement on the reconstruction of w, but in general performs comparably to the standard

filter (RMSE = 0.10, 0.03 for v and w respectively). This result is not surprising, as we would

not expect our bias-corrected filter to have much of an affect when the observational bias is

low.

When the error in the observation function increases, the standard filter fails to accurately

reconstruct the system dynamics. As an example, consider a large observation error scenario

where α1 = 0.25, α2 = −0.85, α3 = 0.02 resulting in the observation function

hðv;wÞ ¼ 0:25f 2

1
ðv;wÞ � 0:85f1ðv;wÞ þ 0:02: ð14Þ

Fig 4 shows the results of reconstructing the system state in this large bias situation. The filter

with no bias correction (solid gray line) fails to track the dynamics of the variables

(RMSE = 0.95, 0.53 for v and w respectively) while the bias-corrected filter (solid red line) is

able to accurately reconstruct the system dynamics (RMSE = 0.26, 0.12 for v and w respec-

tively). This significant improvement in state reconstruction highlights the capability of our

method for reconciling large errors caused by observational mismatch.

Fig 3. Results from reconstructing the state of a noise driven Fitzhugh-Nagumo system with small observation

function error. Reconstruction results for the (a) intracellular potential v and (b) lump ionic recovery variable w are

shown. The true observation function hðv;wÞ ¼ 0:1f 2
1
ðv;wÞ � 0:9f1ðv;wÞ þ 0:01 is unknown to us, and in its place we

use the observation model in Eq 10. Given the observations (blue circles), we attempt to reconstruct the true

trajectories of v and w (solid black lines). In this example, the error between the filter observation function and true

observation function is small enough that the standard filter (solid gray line) is able to provide accurate estimates of the

variable trajectories (RMSE = 0.10, 0.07 for v and w respectively). The bias-corrected filter (solid red line) provides

small, but not substantial improvements (RMSE = 0.10, 0.03 for v and w respectively).

https://doi.org/10.1371/journal.pone.0205031.g003
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Reconstructing intracellular potential from extracellular measurements

The next example explores the assimilation of data from a Hodgkin-Huxley cell to a Fitzhugh-

Nagumo model. The Hodgkin-Huxley system [32] is a detailed neuron model defined by

C _V ¼ � g1m3hðV � E1Þ � g2n4ðV � E2Þ � g3ðV � E3Þ þ Istim þ Inoise
_m ¼ ð1 � mÞamðV � E0Þ � mbmðV � E0Þ

_n ¼ ð1 � nÞanðV � E0Þ � nbnðV � E0Þ

_h ¼ ð1 � hÞahðV � E0Þ � hbhðV � E0Þ

ð15Þ

where

amðVÞ ¼
2:5 � 0:1V

expð2:5 � 0:1VÞ � 1
; bmðVÞ ¼ 4 exp �

V
18

� �

anðVÞ ¼
0:1 � 0:01V

expð1 � 0:1VÞ � 1
; bnðVÞ ¼

1

8
exp �

V
80

� �

ahðVÞ ¼ 0:07 exp �
V
20

� �

; bhðVÞ ¼
1

expð3 � 0:1VÞ þ 1
:

The parameters of the Hodgkin-Huxley model are set to typical values: C = 1, E0 = −65, E1 =

50, E2 = −77, E3 = −54.4, Istim = 7, and Inoise is a noisy current. Our observations of the Hodg-

kin-Huxley system consist of the extracellular potential approximated as

hðV;m; n; hÞ ¼ �
dV
dt
¼ �

� g1m3hðV � E1Þ � g2n4ðV � E2Þ � g3ðV � E3Þ þ Istim þ Inoise
C

� �

; ð16Þ

where 3000 ms of extracellular data sampled at rate dt = 0.1 are available. These observations

are scaled to fit the bounds of the Fitzhugh-Nagumo model in order to prevent filter

instability.

This example highlights several issues that are analogous to problems encountered in a

experimental applications. For starters, the model used by the data assimilation scheme (in our

case the Fitzhugh-Nagumo equations) is often a simplified representation of the experimental

Fig 4. Results from reconstructing the state of a noise driven Fitzhugh-Nagumo system with large observation

function error. Reconstruction results for the (a) v and (b) w system variables (solid black lines denote true

trajectories) given the noisy observations (solid blue circles). The large error between the filter observation function in

Eq 10 and the unknown true observation function, hðv;wÞ ¼ 0:25f 2
1
ðv;wÞ � 0:85f1ðv;wÞ þ 0:02, causes the standard

filter (solid gray line) to fail in tracking the system dynamics (RMSE = 0.95, 0.53 for v and w respectively). The bias-

corrected filter (solid red line) significantly improves on the state reconstruction (RMSE = 0.26, 0.12 for v and w
respectively).

https://doi.org/10.1371/journal.pone.0205031.g004
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system producing the spike data. This results in a degree of model error, or dynamical mis-

match, which in effect leads to observational bias. Additionally, the frequency of the data

spikes often do not match those of the assimilation model. To help account for this discrep-

ancy prior to assimilation, we rescale the observation time of the data to help match the spiking

frequency of the model to that of the data.

Fig 5 shows the results from assimilating the extracellular Hodgkin-Huxley data (blue cir-

cles) using Eq 9 with parameters I = 0.5 and τ = 14. The scaled Hodgkin-Huxley voltage vari-

able (solid black line) is shown in Fig 5a as a reference trajectory. Without bias correction

(solid gray line), the filter is unable to estimate an accurate representation of the intracellular

dynamics. Using d = 9 delays and N = 20 neighbors to reconstruct the bias, the bias-corrected

filter (solid red line) is able to converge to a reasonable estimate of the intracellular variables.

Note that we are not able to perfectly reconstruct the Hodgkin-Huxley voltage; this is impossi-

ble due to the discrepancy between the dynamics of the Hodgkin-Huxley data and those of the

Fitzhugh-Nagumo assimilation model.

Tracking in vivo intracelluar potential

We now consider the reconstruction of experimental intracellular dynamics from recorded

extracellular potential. The data analyzed were collected from an experiment [3] that per-

formed simultaneous intracellular and extracellular recordings in the CA1 region of the hippo-

campus of anesthetized rats [4, 5]. Fig 6 shows example waveforms, scaled to match the

bounds of the assimilation model, from typical intracellular (Fig 6a) and extracellular (Fig 6b)

spikes in the dataset. Light blue traces represent individual waveforms and thick solid blue line

represent the average waveform. These simultaneous recordings are difficult to make and are

not typical of most experimental studies, where usually only the extracellular potential is mea-

sured. As such, we treat the intracellular data strictly as a mechanism for evaluation of our

assimilation results.

Our goal is to assimilate the readily available extracellular data, sampled at rate dt = 0.01, to

the intracellular Fitzhugh-Nagumo model and reconstruct the appropriate intracellular

dynamics. Note that the nature of extracellular recordings leads to measurements from several

different cells, and thus in our assimilation of these observations we are in fact reconstructing

the intracellular dynamics from several different neurons. Similarly to the Hodgkin-Huxley

Fig 5. Results from assimilating extracellular Hodgkin-Huxley data (solid blue circles) to a Fitzhugh-Nagumo

model. Reconstruction results for the (a) v and (b) w variables shown. The scaled Hodgkin-Huxley intracellular

potential (solid black line) is shown as a reference trajectory in (a). Without bias correction (solid gray line), the filter is

unable to reconcile the observational bias and as a result fails in providing a reasonable estimate of the system state.

However, the bias-corrected filter (solid red line) is able to substantially improve on the state reconstruction, providing

an improved estimate of the system dynamics.

https://doi.org/10.1371/journal.pone.0205031.g005
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results, we don’t expect a perfect reconstruction of the intracellular potential given the amount

of discrepancy between the Fitzhugh-Nagumo system and the experimental data.

Fig 7 shows the results of estimating the intracellular dynamics given the extracellular

observations. The thin light lines represent the estimated dynamics corresponding to the indi-

vidual extracellular spikes shown in Fig 6b. The thick dark lines represent the average recon-

structed dynamic. Without bias correction (Fig 7a and 7b), the estimate of intracellular

potential and recovery variable suffers. Using d = 9 delays andN = 10 neighbors for bias recon-

struction, our bias corrected filter (Fig 7c and 7d) is able to obtain an improved reconstruction

of the intracellular dynamics. While the estimate is not perfect, which is to be expected since

we are using an overly simplified assimilation model, we are still able to obtain a faithful repre-

sentation of the intracellular potential and recovery variable.

Conclusion

The successful implementation of data assimilation methods for estimation is dependent on

an accurate mapping of the model state to the experimental measurements. This is done

through application of an observation function. When this function is unknown or known

with error, the observations are biased and the resulting state estimate suffers. The problem is

exemplified in experimental neuroscience studies, where the relationship between extracellular

potential observations and the corresponding intracellular state is complex. By leveraging a

recent advance in data assimilation, we demonstrated the capability to learn this neuronal bias

from available data, improving our ability to estimate intracellular neuronal state while recon-

ciling severe model error resulting from dynamical mismatch.

As with most techniques that attempt to empirically learn a function, the resulting accuracy

of the observation bias reconstruction is dependent on sufficient available data. In the neuro-

science application examined here, enough spiking events must be available within the ana-

lyzed time series so that the extracellular-to-intracellular relationship can be approximated

using the nearest-neighbors algorithm. Additionally, the use of any Kalman filter relies on

Gaussian noise assumptions. For non-Gaussian noise processes, more sophisticated data

assimilation schemes may have to be considered.

The ability to reconcile observation model error and improve on intracellular state estima-

tion opens up several avenues for improved neuronal data analysis. As discussed in [6], the

Fig 6. Representative waveforms (light blue traces) from recorded (a) intracellular and (b) extracellular spikes in

the analyzed dataset. Dark blue lines denote the average detected waveform. Data are sampled at rate dt = 0.01 ms.

While the authors in [4, 5] collected simultaneous intracellular and extracellular measurements, experiments usually

are centered around the extracellular recordings. We therefore treat the intracellular data as a mechanism for

comparison purposes, and focus on the assimilation of the readily available extracellular measurements.

https://doi.org/10.1371/journal.pone.0205031.g006
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assimilation of extracellular data to intracellular models results in the filter using some of the

model’s free parameters to compensate for the error. This can result in parameter estimates

that have little to no interpretability. We hypothesize that our method for correcting observa-

tional bias will help improve the parameter estimation process, resulting in estimates that have

greater biological meaning. Future work will examine this bias reconstruction problem in net-

work neuroscience studies, where the goal is an accurate estimation of network connectivity

given extracelluar measurements. While more sophisticated neuron models are available in

the literature, one of our motivations behind choosing the Fitzhugh-Nagumo equations as our

assimilation model is their scalability to network-level analysis due to the simplicity of their

governing dynamics. Finally, we believe that this technique will have wide-ranging applicabil-

ity to biological problems where the observation function may be known with error.
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