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An algorithm is proposed for determining the periodicity of the common driver of a system of
nonautonomous difference equations, from observations of the equation trajectories only. Attractor
reconstruction methodology is used to build a semiconjugacy to a topological version of the driver
system. The algorithm is described in detail and implemented on examples.

1 Introduction

System identification for nonlinear differential and difference equations has
lagged far behind the linear case, due to the greater complexity of the task.
Takens’ Theorem [1,10] of 25 years ago opened a new avenue of investigation,
introducing geometric methods that were essential for nonlinear problems. The
ramifications of this result have unfolded in an area that has become known
as attractor reconstruction.

A particular case we will consider in this article is a system of driven differ-
ence equations of general form

x1
t = f1(x1

t−1, . . . , x
1
t−n, dt−1)

...

xk
t = fk(xk

t−1, . . . , x
k
t−n, dt−1)

dt = g(dt−1, . . . , dt−p) (1)

We often refer informally to the g difference equation as the “driver” dynamics.
The main assumption is that the equations f1, . . . , fk, g are unknown to us,
and that we can only observe the outputs x1

i , . . . , x
k
i as functions of time. We

consider the problem of determining the dynamics of g, and in particular focus
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on periodic driving, i.e. the case where the solutions of g are periodic.
Takens’ Theorem discusses conditions under which such observations allow a

topologically accurate reconstruction of the complete system dynamics. How-
ever, such a reconstruction may not distinguish the g dynamics from the rest
of the system. Our present goal goes beyond what is promised by Takens’ The-
orem, since our goal is to untangle the dynamics of g from the entire system.
Moreover, if the theoretical obstructions can be overcome, it is reasonable to
expect that the goal can be achieved with a far smaller data requirement than
needed to reconstruct the entire system dynamics.

We will use make use of two recent extensions of Takens’ Theorem. Stark
[9] proved a reconstruction theorem for so-called skew product systems, in
which an autonomous subsystem drives the rest of the system. This result was
used in [8] to develop a driver reconstruction theorem. An algorithm based
on this theorem is discussed below, along with two examples. In the first
example, a set of five one-dimensional chaotic logistic maps are driven by
a logistic map in a period-six window. The output of the five maps is used
(without knowledge of the maps generating the output) to infer the periodicity
of the driver. The second example demonstrates a similar reconstruction, using
period-four forcing in a system of three two-dimensional difference equations.

It is hoped that this inquiry can further the development of computational
techniques for system identification applied to network models of difference
equations. The original motivation for this research was the identification of
the dynamics of deep brain structures from simultaneous time series collected
by surface electrodes. However, the question presents itself rather generally,
whenever simultaneous driving of multiple, observable systems occurs.

2 Background and theoretical results

To begin, we recall a reconstruction theorem for skew products due to Stark [9]
(see also Casdagli [2]).

Theorem 2.1 (Stark, 1999) Let D and X be compact manifolds, dim(D) = d,
dim(X) = k ≥ 1. Let m ≥ 2d+2k+1, and assume the periodic orbits of period
< 2m of g : D → D are isolated and have distinct eigenvalues. Then there
exists an open, dense set of C1 functions f : D ×X → X and h : X → R for
which the m-dimensional delay map is an embedding.

The theorem states conditions under which the state space of a system
consisting of the combined driver and response can be reconstructed. In the
present article, the goal is to use the output of several response units to sep-
arate out the dynamics of the driver from the rest of the dynamics, as a way
of breaking the system down into its component parts.
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We will refer to the systems in (1) as X1, . . . , Xk and D, respectively. Apply
Stark’s theorem to each D×Xi individually, where D is the ergodic attractor of
the driving system and Xi is the state space of the ith nonautonomous system.
According to the theorem, for generic dynamics and sufficiently large m, there
is a one-to-one correspondence between m-tuples (xi

t, . . . , x
i
t−m+1) and states

of the dynamical attractor Ai in D × Xi. In particular, as a consequence of
the one-to-one correspondence guaranteed by Theorem 2.1, the equality

(xi
t, . . . , x

i
t−m+1) = (xi

t′ , . . . , x
i
t′−m+1) (2)

implies that dt = dt′ . This is the key to identifying individual states of the
driver.

Due to continuity, (2) need not hold exactly to provide information. If the
difference is small, say in the Euclidean norm, then dt and dt′ must also be
close. This motivates choosing m sufficiently large so that Stark’s theorem
applies to D × Xi for i = 1, . . . , k. We choose some ε > 0 and for a given
(xi

t, . . . , x
i
t−m+1), group the set of times t′ for which (2) holds within ε. In this

way we form a set of equivalence classes.
To simplify the collection of the equivalence classes, one may choose one of

the Xi and work in its delay coordinate space. This space contains a one-to-one
representation of the attractor Ai in D × Xi, according to Stark’s theorem.
Grouping the equivalence classes gives a quotient space of Ai, called D∗. Below,
we see that D∗ is a semiconjugacy with the dynamics of D.

There are three functions that can be defined for the set D∗. First, every
equivalence class d∗ in D∗ has associated with it a unique d in D, so define
the function s from D∗ to D by s(d∗) = d. The function s is onto, meaning
that the image of s is all of D. (This follows from the fact that the dynamics
f is ergodic on D.) Second, there is a natural dynamical rule g∗ from the set
D∗ to itself that is inherited from the dynamics on the delay coordinates. The
equivalence class g∗(d∗) is defined to be the one the elements of d∗ are mapped
to under the system dynamics f1. In addition to the functions s and g∗, for
each 1 ≤ i ≤ k, the function pi from Ai to D∗ can be defined by sending
each ai ∈ Ai to the equivalence class of ai. The following diagram shows the
relation between the functions pi, s and the new dynamical system g∗ on D∗.
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Because g∗ is onto, the right half of the diagram shows that g∗ satisfies the
definition of semiconjugacy. The map g∗ : D∗ → D∗ is said to be semiconjugate
to the map f : D → D if there exists an onto map s : D∗ → D satisfying g◦s =
s◦g∗, that is, the left side of the diagram commutes. The analogous statement
about the right side of the diagram is also true. The following theorem was
introduced in [8]:

Theorem 2.2 (Shared Dynamics Reconstruction Theorem.) Assume g : D →
D is ergodic, and in addition drives Xi, 1 ≤ i ≤ k as in (1). Choose m large
enough and g, f i generic such that all skew products D×Xi are reconstructed
in Rm. Define g∗ : D∗ → D∗ as the map induced as above. Then, generically,
(1) the map g∗ is semiconjugate to g, and (2) for each i, the induced map is
semiconjugate to g∗.

Roughly speaking, if g1 is semiconjugate to g2, then g1 “contains” the dy-
namics of g2. The content of the theorem is that according to the left hand
square of the above diagram, D∗ captures at least the dynamics of the driver
D, and may contain more. However, according to the right side of the diagram
for each i, any extra dynamics in D∗ must be common to all of the Xi, due to
part (2) of the theorem. This is the meaning of “shared dynamics”.

3 Shared dynamics algorithm

Next we show how this theorem leads to a computational method that extracts
shared dynamics of the D using time series data observed from the Xi.

Shared Dynamics Algorithm. Choose m large enough to unfold the dy-
namics on each D×Xi, and use delay coordinates to create the reconstructed
attractor Ai, which is in one-to-one correspondence with D ×Xi. Choose one
of the Xi arbitrarily, say X1. The basis of the algorithm is to group together
points in X1 that lie over the same point in D, the so-called fibers over D.
According to the theorem, at each time t when the dynamics returns to the
same point in Xj , the state of d in D is the same. With this information, one
can search for delay vectors in Xj that are close in the delay reconstruction,
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and return information to X1 about points over the same driver state d. A
neighborhood size ε must be chosen to decide the meaning of nearly identi-
cal, for this purpose. The degree of discretization of the resulting dynamical
attractor D∗ will depend on this choice.

Using this method of associating points to the fibers over D, one proceeds
through all points of the reconstructed attractor X1 to fit them in an appro-
priate equivalence class. Choosing representatives for the equivalence classes
from a chain of overlapping ε-neighborhoods retains the topological form im-
posed by the original dynamics. Note that no re-embedding is necessary, since
the points of D∗ constitute a subset of the reconstructed X1, which has no
self-intersections by assumption.

4 Examples

In this section we illustrate the use of the Shared Dynamics Algorithm on two
examples. In each case, a system of difference equations of the form given in
(1) is constructed and the output data xi are provided to the algorithm for
analysis.

Example 1. Consider the system of forced logistic equations

x1
t = λ1x

1
t−1(1− x1

t−1) + 0.5dt−1 mod 1

...

x5
t = λ5x

5
t−1(1− x5

t−1) + 0.5dt−1 mod 1

dt = λ0dt−1(1− dt−1). (3)

Five versions of the one-dimensional logistic equation are driven by another
logistic equation. The driving equation operates in a periodic regime; in par-
ticular, λ0 = 3.6266 is chosen from the period 6 window in the logistic bifur-
cation sequence., The remaining five parameters λ1 = 3.77, λ2 = 3.775, λ3 =
3.78, λ4 = 3.785, λ5 = 3.79 are chosen from a chaotic regime. The modulo
function was used to keep trajectories from moving outside of the basin of the
chaotic attractor.

We now apply the Shared Dynamics Algorithm to data recorded from the
first five equations only. Thus 5-tuples (x1

t , . . . , x
5
t ) form a chaotic multivariate

time series that is observed and used as input to the algorithm as explained
in the previous section.

Figure 1(a) shows the delay coordinate embedding of the reconstructed at-
tractor A1 of D×X1, using the embedding dimension m = 3. A trajectory of
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length 3000 time units is shown. The result of the Shared Dynamics Algorithm
with ε = 0.005, the reconstructed driver D∗, is shown in Figure 1(b). Each
point represents an equivalence class of delay coordinate vectors. The topology
and dynamics of the period-six attractor from D are recovered.
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Figure 1. (a) Delay coordinate reconstruction of one skew product from (3). (b) Reconstructed
driver dynamics from the algorithm.
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Example 2. The second example is the system

x1
t = a1 − 1

4 [(x1
t−1)2 + (y1

t−1)2]− 1
2x

1
t−1y

1
t−1 + 1+b

2 x1
t−1 + 1−b

2 y1
t−1 + αdt−1

y1
t = a1 − 1

4 [(x1
t−1)2 + (y1

t−1)2]− 1
2x

1
t−1y

1
t−1 + −1+b

2 x1
t−1 + −1−b

2 y1
t−1

x2
t = a2 − 1

4 [(x2
t−1)2 + (y2

t−1)2]− 1
2x

2
t−1y

2
t−1 + 1+b

2 x2
t−1 + 1−b

2 y2
t−1 + αdt−1

y2
t = a2 − 1

4 [(x2
t−1)2 + (y2

t−1)2]− 1
2x

2
t−1y

2
t−1 + −1+b

2 x2
t−1 + −1−b

2 y2
t−1

x3
t = a3 − 1

4 [(x3
t−1)2 + (y3

t−1)2]− 1
2x

3
t−1y

3
t−1 + 1+b

2 x3
t−1 + 1−b

2 y3
t−1 + αdt−1

y3
t = a3 − 1

4 [(x3
t−1)2 + (y3

t−1)2]− 1
2x

3
t−1y

3
t−1 + −1+b

2 x3
t−1 + −1−b

2 y3
t−1

dt = a0 − d2
t−1 − b0dt−2 (4)

where a0 = 0.95, b0 = 0.4 generates a period 4 attractor for the Hénon map [3],
and a1 = 1.26, a2 = 1.27, a3 = 1.28, b = 0.3 represent chaotic trajectories. The
drive parameter is α = 0.05.

Figure 2(a) shows the delay coordinate embedding of the reconstructed at-
tractor A1 of D × X1, using the embedding dimension m = 3 and delay co-
ordinate vectors of form (x1

t , x
1
t−1, x

1
t−2). These vectors together with vectors

of form (xi
t, x

i
t−1, x

i
t−2) for i = 2, 3 were used in the algorithm. A trajectory of

length 2000 time units is shown. The result of the Shared Dynamics Algorithm
with ε = 0.04, the reconstructed driver D∗, is shown in Figure 2(b). Each point
represents an equivalence class of delay coordinate vectors. The topology and
dynamics of the period-four attractor from D are effectively recovered.

5 Conclusions

This article demonstrates a type of signal processing for difference equations,
the idea being to identify system characteristics from output data. The specific
goal in this case is to identify the dynamics of the common driver in a system
of nonautonomous difference equations.

The examples provided deal with periodic drivers, such as the periodic six
orbit driving five logistic maps in Example 1. The algorithm is not limited
to periodic drivers, although the job of identifying the result will be more
difficult the more complicated the driver dynamics. If the driver is chaotic,
for example, sophisticated system identification methods may be needed to
analyze and classify the result.

In the case of a chaotic system driving other chaotic systems, for example,
although the algorithm introduced here will work in principle, the data re-
quirements may be challenging. For periodic driving, we have shown in the
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Figure 2. (a) Reconstruction of one skew product from (4). (b) Reconstructed driver dynamics.

examples that a few thousand data points suffice to determine the driver.
This research was supported by the National Science Foundation.



9

References
[1] D. Aeyels, 1981. Generic observability of differentiable systems. SIAM J. Control Optim. 19,

595-603
[2] M. Casdagli, 1992. A dynamical systems approach to modelling input-output systems, In Non-

linear Modeling and Forecasting, eds. M. Casdagli, S. Eubank, Addison Wesley, Reading,
MA

[3] M. Henon, 1976. A two-dimensional mapping with a strange attractor. Commun. Math.Phys.
50, 69-77

[4] H. Kantz, T. Schreiber, 1997 Nonlinear Time Series Analysis. Cambridge University Press,
Cambridge

[5] E. Ott, T. Sauer, J. Yorke, 1994. Coping with Chaos: Analysis of Chaotic Data and the
Exploitation of Chaotic Systems. Wiley Interscience, New York

[6] N. Packard, J. Crutchfield, J. D. Farmer, and R. Shaw, 1980. Geometry from a time series. Phys.
Rev. Lett., 45, 712-715

[7] T. Sauer, J.A. Yorke, and M. Casdagli, 1991. Embedology, J. Stat. Phys. 65 579-616
[8] T. Sauer, 2004. Reconstruction of shared dynamics in a network. Phys. Rev. Lett. 93, 198701-4
[9] J. Stark, 1999. Delay embeddings of forced systems I: Deterministic forcing. J. Nonlinear Sci. 9,

255-332
[10] F. Takens, 1981. Detecting strange attractors in turbulence. In Dynamical Systems and

Turbulence, Lecture Notes in Math. 898, Springer-Verlag


