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We discuss the problem of determining the periodicity of the common driver of a
system of periodically forced difference equations. Methods from topological
reconstruction of attractors are applied to build a semiconjugacy to a topological
version of the driver. A computational algorithm built from the semiconjugacy uses
observations of the equation trajectories to isolate the driver period.
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1. Introduction

Extracting information from dynamical data tends to be difficult when the underlying
systems have nonlinearities. Although reconstruction of autonomous systems from data
has been discussed frequently in the literature [1,4–7,10], little attention has been paid to
the nonautonomous case. In this article, we discuss a method of drawing conclusions about
the dynamical content of a driver that simultaneously influences a system of difference
equations.

Consider the system of difference equations of form:

x1t ¼ f 1ðx1t21; . . . ; x
1
t2n; dtÞ;

..

.

xkt ¼ f kðxkt21; . . . ; x
k
t2n; dtÞ;

ð1Þ

where f 1; . . . ; f k are continuously differentiable functions and {dt} is a periodic
sequence, say dt ¼ dtþp for some positive integer p, the period of the sequence. For the
purposes of our discussion, we will assume that the equations f 1; . . . ; f k are unknown to
us, and that we can only observe the outputs x1t ; . . . ; x

k
t as functions of time. Our goal is to

find p, the period of the driving sequence {dt}.
Takens’ theorem[10]discusses conditionsunderwhichobservationsallowa topologically

accurate reconstruction of the complete system dynamics. However, such a reconstruction
does not in general distinguish the driver sequence from the rest of the system. Our present
goal goesbeyondwhat is promisedbyTakens’ theorem,and isolate the influenceof thedriving
sequence. Moreover, if the theory can be developed, it is reasonable to expect that the goal
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can be achieved with a far smaller data requirement than needed to reconstruct the entire
system dynamics.

Two recent extensions of Takens’ theorem are relevant to our development. Stark [9]
proved a reconstruction theorem for skew product systems that was used in [8] to develop
a driver reconstruction theorem. An algorithm based on this theorem is discussed below,
along with an illustrative example. In the example, a set of five second-order chaotic
Henon maps are driven by a period-seven sequence. The output of the five maps is used
(without knowledge of the maps generating the output) to infer the periodicity of the
driver.

The goal of this article is to further develop the computational techniques for system
identification applied to network models of difference equations. The joint periodicity
question presents itself rather generally, whenever simultaneous driving of multiple,
observable systems occurs.

2. Background and theoretical results

We recall a reconstruction theorem for skew products due to Stark [9] (see also Casdagli
[2]).

Theorem 2.1 (Stark [9]). Let D and X be compact manifolds, dim ðDÞ ¼ d,
dim ðXÞ ¼ n $ 1. Let m $ 2d þ 2nþ 1, and assume the periodic orbits of period , 2m
of g : D! D are isolated and have distinct eigenvalues. Then there exists an open, dense
set of C1 functions f : D £ X ! X and h : X ! R for which the m-dimensional delay map

ðdt; xtÞ! ½hðf ðdt; xtÞÞ; . . . ; hðf ðdtþm21; xtþm21ÞÞ&

is an embedding of D £ X into Rm.

Theorem 2.1 states conditions under which the state space of a system consisting of the
combined driver and response can be reconstructed. Our goal in this article is to use the
output of several response units to separate out the dynamics of the driver from the rest of
the dynamics, as a first step to breaking the system down into its component parts.

The state spaces of the k difference equations in (1) will be referred to as X1; . . . ; Xk.
Apply Stark’s theorem to each D £ Xi individually, where D represents the periodic
dynamical system of the driving system and Xi is the state space of the ith nonautonomous
system. Consider the ‘observation function’ hi : Xi ! R which projects onto the first
coordinate. According to Theorem 2.1, for generic dynamics and sufficiently large m,
there is a one-to-one correspondence between m-tuples ðxit; . . . ; xitþm21Þ and states of
the dynamical invariant set Ai in D £ Xi. The set of m-tuples of form ðxt; . . . ; xtþm21Þ
is usually called the delay-coordinate representation, a common tool in attractor
reconstruction research.

Our use of delay-coordinates in the current context is the following important fact: as a
consequence of the one-to-one correspondence guaranteed by Theorem 2.1, the equality

ðxit; . . . ; xit2mþ1Þ ¼ ðxit0 ; . . . ; xit02mþ1Þ ð2Þ

implies that dt ¼ dt0 . This fact is exploited below to identify individual states of the driver.
Due to continuity, exact equality in (2) is not essential for information to be extracted. If

the difference is small, say in the Euclidean norm, then dt and dt0 must also be near.
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Therefore, it is important to choosem large enough so that Stark’s theorem applies toD £ Xi

for i ¼ 1; . . . ; k. We choose some e . 0 and for a given ðxit; . . . ; xit2mþ1Þ, group the set of
times t0 for which (2) holds within e. In this way, we form a set of equivalence classes.

The identification of the equivalence classes is simplified by choosing an arbitrary Xi,
and working in its delay coordinate space. This space contains a one-to-one representation
of the attractor Ai in D £ Xi, according to Stark’s theorem. We will denote by D* the set of
equivalence classes, representations of a quotient space of Ai. We will see next that D* is a
semiconjugacy with the dynamics of D.

To simplify discussion of the semiconjugacy, we draw a commutative diagram.
Three functions can be defined for the set D* that form links in the diagram. First,
every equivalence class d* in D* has associated with it a unique d in D, so define the
function s from D* to D by sðd *Þ ¼ d. The function s is onto, meaning that the image
of s is all of D. (This follows from the fact that the dynamics g, being a finite periodic
orbit, takes on all states of D.) Second, there is a natural dynamical rule g* from the set
D* to itself that is inherited from the dynamics on the delay coordinates. The
equivalence class g*ðd *Þ is defined to be the one the elements of d* are mapped to
under the system dynamics f1. In addition to the functions s and g*, for each 1 # i # k,
the function pi from Ai to D* can be defined by sending each ai [ Ai to the equivalence
class of ai. The following diagram shows the relation between the functions pi; s and the
new dynamical system g* on D*.

Because g* is onto, the right half of the diagram shows that g* satisfies the definition of
semiconjugacy. The map g* : D* ! D * is said to be semiconjugate to the map f : D! D
if there exists an onto map s : D* ! D satisfying g+s ¼ s+g*, that is, the left side of the
diagram commutes. The analogous statement about the right side of the diagram is also
true. The following theorem was introduced in [8]:

Theorem 2.2 (Shared dynamics reconstruction theorem). Assume g : D! D is
ergodic, and in addition drives Xi, 1 # i # k as in (1). Choose m large enough and g; f i

generic such that all skew products D £ Xi are reconstructed in Rm. Define g* : D* ! D*

as the map induced as above. Then, generically, (1) the map g* is semiconjugate to g, and
(2) for each i, the induced map is semiconjugate to g*.

Roughly speaking, if g1 is semiconjugate to g2, then g1 ‘contains’ the dynamics of g2.
The content of the theorem is that according to the left hand square of the above diagram,D*
captures at least the dynamics of the driverD, andmay containmore. However, according to
the right side of the diagram for each i, any extra dynamics inD* must be common to all of
the Xi, due to part (2) of the theorem. This is the meaning of ‘shared dynamics’.

3. Shared dynamics algorithm

Next, we show how this theorem leads to a computational method that extracts shared
dynamics of the D using time series data observed from the Xi.
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Shared dynamics algorithm. Choose m large enough to unfold the dynamics on each
D £ Xi, and use delay coordinates to create the reconstructed attractor Ai, which is in one-
to-one correspondence with D £ Xi. Choose one of the Xi arbitrarily, say X1. The basis of
the algorithm is to group together points in X1 that lie over the same point in D, the
so-called fibres over D. According to the theorem, at each time t when the dynamics
returns to the same point in Xj, the state of d in D is the same. With this information, one
can search for delay vectors in Xj that are close in the delay reconstruction, and return
information to X1 about points over the same driver state d. A neighbourhood size 1 must
be chosen to decide the meaning of nearly identical, for this purpose. The degree of
discretization of the resulting dynamical attractor D* will depend on this choice.

Using this method of associating points to the fibres over D, one proceeds through all
points of the reconstructed attractor X1 to fit them in an appropriate equivalence class.
Choosing representatives for the equivalence classes from a chain of overlapping
1-neighbourhoods retains the topological form imposed by the original dynamics. Note
that no re-embedding is necessary, since the points of D* constitute a subset of the
reconstructed X1, which has no self-intersections by assumption.

4. Implementation of algorithm

In this section, we illustrate the use of the shared dynamics algorithm on an illustrative
example. A system of difference equations of the form given in (1) is constructed and the
output data xi are provided to the algorithm for analysis.

Example. Consider the system of forced nonlinear second-order difference equations
suggested by Henon [3]:

x j
tþ1 ¼ aj 2 ðx j

t Þ2 þ bjx j
t21 þ c jdt; ð3Þ

where j ¼ 1; . . . ; 5. The parameters a j and b j are chosen randomly from the interval
½1:26; 1:28& and ½0:2995; 0:3005&, respectively, and all coupling parameters are set to
c j ¼ 0:07. Thus five versions of the difference equation are driven by the periodic sequence
{dt}. The sequence is defined as dt ¼ sin 2pt=p, where p ¼ 7 in this numerical experiment.

Figure 1. (a) Delay coordinate reconstruction of one of the five skew products from (3). (b) A
representative section of the reconstructed driver dynamics that is output from the algorithm. The
periodicity of length seven is apparent.
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We now apply the shared dynamics algorithm to data recorded from the first five
equations only. Thus five-tuples ðx1t ; . . . ; x5t Þ form a chaotic multivariate time series that is
observed and used as input to the algorithm as explained in the previous section.

Figure 1(a) shows the delay coordinate embedding of the reconstructed attractor A1 of
D £ X1, using the embedding dimension m ¼ 3. A trajectory of length 2000 time units is
shown. The result of the shared dynamics algorithm with e ¼ 0:007, the reconstructed
driver D*, is shown in Figure 1(b). Each point in the time series of Figure 1(b) represents
an equivalence class of delay coordinate vectors. The period-seven sequence {dt} is
recovered, as desired.

5. Conclusions

This article demonstrates a type of signal processing for difference equations, the idea
being to identify system characteristics from output data. The specific goal in this case is to
identify the dynamics of the common driver in a system of nonautonomous difference
equations.

The example provided deals with a periodic sequence driving five logistic maps. The
algorithm is not limited to periodic drivers, although the job of identifying the result will
be more difficult the more complicated the driver dynamics. If the driver is chaotic, for
example, sophisticated system identification methods may be needed to analyze and
classify the result.

In the case of a chaotic system driving other chaotic systems, for example, although the
algorithm introduced here will work in principle, the data requirements may be
challenging. For periodic driving, we have shown in the example that a few thousand data
points suffice to determine the driver.
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