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The equations of nature and the nature of equations

Sana Jahedi∗, Timothy Sauer†and James A. Yorke‡

Abstract

Systems of N equations in N unknowns are ubiquitous in mathematical modeling.
These systems, often nonlinear, are used to identify equilibria of dynamical systems
in ecology, genomics, control, and many other areas. Structured systems, where the
variables that are allowed to appear in each equation are pre-specified, are especially
common. For modeling purposes, there is a great interest in determining circumstances
under which physical solutions exist, even if the coefficients in the model equations are
only approximately known.

The structure of a system of equations can be described by a directed graph G
that reflects the dependence of one variable on another, and we can consider the family
F(G) of systems that respect G. We define a solution X of F (X) = 0 to be robust if for
each continuous F ∗ sufficiently close to F , a solution X∗ exists. Robust solutions are
those that are expected to be found in real systems. There is a useful concept in graph
theory called “cycle-coverable”. We show that if G is cycle-coverable, then for “almost
every” F ∈ F(G) in the sense of prevalence, every solution is robust. Conversely, when
G fails to be cycle-coverable, each system F ∈ F(G) has no robust solutions.

Failure to be cycle-coverable happens precisely when there is a configuration of
nodes that we call a “bottleneck,” a criterion that can be verified from the graph. A
“bottleneck” is a direct extension of what ecologists call the Competitive Exclusion
Principle, but we apply it to all structured systems.

Keywords: structured systems; nonlinear systems; robust solutions; missing links; link prediction;
complex networks; generic rank; prevalence; dilation

Significance
There is a comprehensive literature available on linear networks. However, most interactions within
a network are nonlinear. In this work, we extend the linear theory to nonlinear networks. We borrow
a geometrical tool “Cycle Cover” from graph theory and the idea of the “Competitive Exclusion
Principle” from biological networks. We extend these ideas to all structured nonlinear systems.
This theory tells precisely which networks can have robust solutions or steady states. Our theory
helps one to recognize which nodes are playing a crucial role in the robustness of a structure without
knowing what the exact weights of the links are. Our approach will allow ecologists to ask what
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the essential interactions are in an ecosystem that allow the system to be robust. When a structure
is fragile, that suggests the modeler needs to add some links. Our methods tell how many links
must be added and where they should be added to make a structure robust.

1 Introduction

Mathematical modeling is a mainstay of scientific progress. The fluctuations of physical and bio-
logical systems, and their equilibria, are often expressed by equations. These equations come with
parameters that are not precisely specified. Our focus in this article is what a mathematical model
can tell us when the parameters are difficult to measure, or otherwise inaccessible to the researcher.

In the 1930’s, Georgii Gause carried out experiments on two competing strains of Paramecium,
P. aurelia and P. caudatum, that dined on a common banquet of nutrients. He found that under
certain environmental conditions, P. aurelia outcompeted P. caudatum and drove the latter to
extinction. Under certain other environmental conditions, the reverse occurred, and P. aurelia
was driven to extinction. But he found it impossible to find conditions under which both strains
coexisted, and was puzzled by the strangeness of this outcome. The notion that two or more species
that compete for the same finite resource cannot coexist in a single ecological niche is now known
as the Competitive Exclusion Principle (CEP). In fact, this idea was already present in Darwin’s
writings, that one of the competing species in an ecological niche eventually would either be wiped
out or driven genetically to a different niche.

Figure 1 shows a simple mathematical version of CEP, considered originally by Volterra [1].
Species x1 and x2 affect the population growth of the prey species x3, and vice versa. We could
pose a differential equation of the form

1

x1
ẋ1 = f1(x3)

1

x2
ẋ2 = f2(x3) (1)

1

x3
ẋ3 = f3(x1, x2)

that governs the equations of the three species. To search for an equilibrium, set the left sides of the
equations to zero, yielding the system in Figure 1(a). The first two equations share one unknown,
x3. In other words, x3 is overdetermined. That is, while there may be a solution of these equations
with positive x1, x2, x3, small changes in f1 and f2 will cause the solution to disappear, for most
choices of f1 and f2 that continue to depend only on x3. The solution would then be non-robust,
in the sense that it is unlikely to be observed in a real-world situation.

The example represented by Model 1 is a mathematical illustration of the Competitive Exclusion
Principle. If on the other hand we do find the two populations x1 and x2 coexisting in reality, then
we may reasonably conclude that our proposed network in Figure 1(c) is incorrect.
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f1(x3) = 0
f2(x3) = 0

f3(x1, x2) = 0

(a)

31 2

(b) (c)

Df =





0 0 f13
0 0 f23
f31 f32 0





Figure 1: A fragile family of systems motivated by Competitive Exclusion Principle.
(a) A system of equations describing the equilibrium. For example, f1 in the first equation is
allowed to depend on x3, but not x1 or x2. This fact is represented in the two other parts of this
figure. (b) The structure matrix of the Jacobian of the differential equation. (c) The directed
graph of the system. Systems of this form cannot have a robust solution so any solution that exists
is fragile. The graph is not cycle coverable, and the determinant of S is 0 for all choices of values for
the unspecified partial derivatives fij =

∂fi
∂xj

in Df . The coloring of (c) illustrates a “bottleneck”,

the obstruction that prevents the graph from being cycle coverable; see Sec. 3. The “bottle” nodes
1 and 2 are blue and the “neck” node 3 is red here and throughout the paper.

One way out of this dilemma is to postulate the existence of a second prey species, shown as
x4 in Figure 2. As we will discuss below, this provides robustness to an existing solution. In fact,
we will show that for any solution of the system in Figure 2(a), almost all small perturbations of
f1, f2, f3, f4 that respect the system structure also support a solution. Thus, such solutions are not
unlikely to be found in naturally-occurring circumstances.

Notably, the robustness in the network shown in Figure 2(c), and the non-robustness shown in
Figure 1(c), are determined not by the knowledge of precise parameters in the functions fi, but by
properties of the network. These properties can be expressed algebraically or geometrically. To be
precise, define a structured system to be a system of equations where, as in Figures 1(a) and 2(a),
only certain variables are allowed to appear in particular equations. These restrictions can be
visualized graphically by assigning a graph to the equation. In the graphs in Figures 1(c) and 2(c)
there is one node for each equation of the system. There is an edge “j → i” from node j to node
i if fi is allowed to depend on the xj . An algebraic way to visualize a structured system is by the
structure matrix of partial derivatives, as shown in Figures 1(b) and 2(b). Structured systems
are common in linear control theory and in other fields [2, 3].

f1(x3, x4) = 0
f2(x3, x4) = 0
f3(x1, x2) = 0
f4(x1, x2) = 0

(a)

4

31 2

(b) (c)

Df =









0 0 f13 f14

0 0 f23 f24
f31 f32 0 0
f41 f42 0 0









Figure 2: A robust family of systems. Almost every system of this form will have “robust”
solutions; see Sec. 2. The shaded fij in (b) and shaded edges (red in the online version) in (c)
constitute an example of a cycle cover (1) → (3) → (2) → (4) → (1) that passes through all nodes
in the graph. Hence the graph is cycle coverable.

In general, we will consider a system of equations

F (X) = 0 (2)
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where X = (x1, . . . , xN ), F (X) =
(

f1(X), . . . , fN (X)
)

, and where fi is allowed to depend on xj
only if there is a directed edge in the graph from node j to node i. If F (X0) = 0, then X0 is called
a solution. We will call a solution of (2) that persists for tiny changes in F (again, that respect the
graph structure) a robust solution. A solution will be called fragile if it is not robust. Throughout
this paper F is a continuously differentiable function (i.e., it is C1) on some open region in R

N .
We will show that the criterion for having a robust solution is that the structure graph is “cycle

coverable”. A cycle is a closed path of directed edges in a graph with no node occurring more
than once. Two cycles are disjoint if they have no nodes in common. We say a graph G is cycle
coverable if there is a collection of pairwise disjoint cycles that together cover all the nodes. The
cycle cover consists of the paths shown in red in Figure 2(c). In contrast, Figure 1(c) has no cycle
cover, and we do not expect to see a physical solution.

The cycle covering criterion for robustness of solutions can be viewed as a generalization of the
Competitive Exclusion Principle to more complex contexts. As an example of the more general
obstructions to robustness that flow from this characterization, consider the system of equations
represented by the graph in Figure 3(a). This graph is an illustration of a generalization of the
CEP that says a food web with two trophic levels, with no intraguild communication, cannot be
robust if the numbers of nodes in the two levels are not equal. We leave it to the reader to discover
the reason that a cycle cover is impossible in Figure 3(a), although this will follow easily from our
results in Section 3. In Figure 3(b), one intraguild interaction is added to the top level, allowing a
cycle cover, and therefore robust solutions.

1 2 3

4 5

1 2 3

4 5

Figure 3: Generalization of the Competitive Exclusion Principle for two trophic levels. (a) The
graph represents the structure allowed for a system of equations. Solutions are robust if and only
if there exists a cycle cover. No cycle cover exists in this graph, and all solutions are fragile. More
generally, if there are no intraguild interactions, the number of species in each level must be the
same to allow robust solutions. (b) Adding the interaction between species 2 and 3 allows a cycle
cover, and therefore robust solutions.

Although this graph-based criterion may be challenging to verify in complicated networks,
there are equivalent characterizations that may be simpler to apply in specific situations, including
Figure 3(a). For a set of graph nodes B, define the forward set B→ to be the set of graph nodes
that are pointed to by a node in B. We call (B, B→) a bottleneck if the number of nodes in B
is greater than the number in B→. We show that a graph has a cycle-covering if and only if the
graph has no bottlenecks. The bottleneck in Figure 1(c) is the pair of sets B = {1, 2}, shaded in
blue, and B→ = {3}, shaded in red. Figure 2(c) has no bottleneck. In Figure 3(a), B is the top
level of three nodes, and B→ is the lower level of two nodes.

A more complex ecological model is shown in Figure 4. A quick perusal of the network should
convince the reader that establishing whether or not a cycle cover exists in the graph might be
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daunting. However, a bottleneck exists with the two-node bottle B = {6, 7} and with B→ = {15}
as the neck. Thus we will find that one of these equivalent characterizations of robustness may be
easier than the other, depending on what is known about the network. We study this network in
more detail in Sec. 4.

1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19

20 21 22 23 24 25 26

Figure 4: A network model adapted from Solé and Montoya [4]. Each node represents the popula-
tion density of a different species. Solutions of the structure system of 26 equations in 26 unknowns
associated with this graph cannot be robust, since a bottleneck exists with nodes 6 and 7. Several
other obstructions to robustness exist. See Sec. 4 for a more complete discussion.

A third equivalent criterion for robustness, that is algebraic in nature, is that the structure
matrix be nonsingular for almost every realization of matrix entries. For example, the 4× 4 matrix
in Figure 2(b) has full rank for almost every choice of entries. In contrast, the 3 × 3 matrix in
Figure 1(b) is rank deficient for every choice of entries. We show the equivalence of these alternative
characterizations in this article, and develop strategies to find bottlenecks and show how connections
may be added to the system to alleviate them.

Our overarching goal is to provide tools to explain why some networks have robust steady states
and others have fragile steady states. Differential equations and graph theory have been used by
scientists in studying a vast group of networks [5, 6, 7, 8, 9, 10].

Mason [11] pioneered the discussion of disjoint cycle coverings or “nontouching feedback loops”
for linear systems. He says for example “The useful fact is that the determinant of a complete
flow graph is equal to the product of the determinants of each of the nontouching parts in its loop
subgraph,” but he does not relate the existence of a cycle covering to the existence of a solution.
Later, in the context of ecological networks Yorke and Anderson [12] introduced cycle coverability
as a criterion for the existence of solutions of systems of linear equations, but only for the case
where the matrix is anti-symmetric.

Bottlenecks, called “dilations” in a slightly different context, were studied for structural observ-
ability and controllability by Lin [13], and extended by Liu et al. [14, 15]. It is well known that a
graph of a linear system is cycle coverable if and only if the rank of its N ×N structure matrix is
N [16, 17]. However, this fact does not tell us which nodes are the key nodes or which edges are
essential connections in the robustness of the graph. If a graph is not cycle coverable, what is the
smallest number of edges that must be added and where must they be to make a fragile structure
robust? We answer these questions in Section 3.
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Even though there is an extensive literature available on studying linear system of equations
using graphs and matrices, the interactions between variables in many applications of interest are
nonlinear. In this article, we focus on what is true generically for structured systems of nonlinear
equations.

The concept of genericity that we rely on for this discussion is “almost every” in the sense
of prevalence [18, 19, 20], a mathematical version of almost every that is appropriate in infinite-
dimensional function spaces. It has been used previously to establish the properties of typical
representatives in various contexts, such as attractor reconstruction and bifurcation analysis.

In Section 2, we investigate robustness for solutions of structured systems of equations. Sec-
tion 3 discusses the concept of bottlenecks in the graphs of these systems, and the equivalent
characterizations of robustness. We discuss applications to ecological networks in Section 4.

2 Nonlinearity and robustness in structured systems

Ecological models such as Model 1 have long been studied for insight into food webs among species,
and more generally to represent the various interactions between members of a community. Mathe-
matical treatments began in the early 20th century with Lotka-Volterra interactions, meaning that
the effect of agent j acting on agent i has form Ẋi = aijXiXj for some parameter aij . These are
sometimes referred to as linear interactions, since the right-hand side of Ẋi/Xi = aijXj is linear,
which leads to a linear system of equations for the equilibrium state.

By the middle of the 20th century, such a linear response was considered reasonable when study-
ing small fluctuations about an equilibrium, but unrealistic for systems in general, where population
saturation, predator interference, and other effects play important roles. For example, Holling in
1959 suggested replacing aijXj above with the approximation aijXj/(1 + bijXj) [21], which was
further modified by Beddington in 1975 to the approximation aijXj/(1 + bijXj + cijXi) [22]. The
type of the functions to be included depends on the situation and should always be considered as
an approximation of the population biology. There are many possible forms of equations and we
want conclusions about robustness that do not depend on the form of the equations, conclusions
that depend only on the graph. In particular, we extend the study of cycle covers and robustness
of solutions to the context of “almost every nonlinear system compatible with the graph” in the
sense of prevalence.

A property P of members of a function space such as F(G) is called prevalent if there is an
m-dimensional subspace E, called a probe, such that for every f ∈ F(G), the function f + e has
property P for almost every e in the sense of Lebesgue measure on Rm. Prevalence is a strengthened
version of the topological concept of dense. That is, prevalent in a function space implies dense,
but also has a measure-theoretic flavor. We use it due to the lack of a convenient concept of full
measure in general function spaces. In a finite-dimensional measure space, a property is prevalent
if and only if it holds except for a set of measure zero.

As a first illustration of the usefulness of this definition, we show that non-robust solutions are
rare in the sense of prevalence. For the system of equations (2), the matrix DF (X) =

[

∂fi
∂xj

(X)
]

denotes the Jacobian of F at X. In the biological literature DF (X) is called community matrix
or the matrix of interactions. If DF (X0) is nonsingular, then the Implicit Function Theorem says
that a solution always exists for sufficiently small changes in F [23].

Proposition 1. (Fragile solutions are rare.) Let E be a space of C1 functions from R
N to R

N .
For almost every F in E, F (X) = 0 has no fragile solutions.
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Proof. Sard’s theorem [24] implies that for any C1 map F : RN → R
N , the image under F of the

points X where DF (X) is a singular matrix has measure zero in R
N . Thus for almost every C in

R
N , F (X) = C has no fragile solutions. The proof of prevalence uses the probe space of constant

functions. For every F , F − C = 0 has no fragile solutions for almost every C.

For any directed graph G of N nodes such as those in Figures 1(c) and 2(c), we define the
N ×N structure matrix S(G). This matrix has unspecified real number entries Sij when there
is a directed link from node j to node i; otherwise Sij = 0.

We say F respects the structure graph G if equation i depends on variable j only if there
is a directed edge from node j to node i. Let F(G) denote the set of functions that respect the
graph G. As an extreme example, the identically zero function respects every graph. Denote by
L(G) the subspace of all linear functions (or matrices) that respect G.

Example 1. As an application of Proposition 1, let E be the space of functions that respect a
graph G. All constant functions respect all graphs. As Lemma 3 will show, if the graph G is cycle
coverable, there may be many robust solutions, but Proposition 1 shows that fragile solutions are
rare. If G is not cycle coverable, then almost every function F has no solutions, so it has no fragile
solutions. In either case, almost every F has no fragile solutions.

We have seen that robustness can fail for two reasons: either there is a solution that is not
robust, or there is no solution at all. Next, we address how the properties of the structure matrix
can tell us when the robust solutions actually exist. For lack of a convenient reference, a proof is
provided in Section 6.

Lemma 1. Let r be the maximum of the rank(A) for all matrices in L(G). Then almost every A
in L(G) has rank r.

We call the rank r given by Lemma 1 the generic rank of the graphG, denoted by GenRank(G).
Equivalently write r = GenRank(S(G)) or GenRank(S) for the generic rank of the structure matrix
S(G). “Almost every” in the lemma means almost every with respect to Lebesgue measure on the
finite-dimensional vector space L(G). For lack of a convenient reference, a proof is provided in
Section 6.

Our goal in this section is to extend Lemma 1 to a version that is relevant for nonlinear systems
of equations (2). As a special case, if GenRank(G) = N , we will show that it is a prevalent property
of the system that the Jacobian of the system of equations is a nonsingular matrix at almost every
X in RN .

Theorem 1 (Structure Graph Theorem). Let G be a graph for which the structure matrix has
generic rank r.

(I) For almost every F ∈ F(G), DF (X) has rank r for all X except on a closed set of measure
zero.

(II) If r < N and F ∈ F(G), then F (RN ) has measure zero. Hence for each F ∈ F(G), Eq. (2)
has no robust solutions. For almost every F , there are no solutions.

The proof of the theorem (in Sec. 6) uses L(G) as the probe.

Corollary 1. Let G be a graph for which the structure matrix has generic rank r.

7



(CI) If r = N , for almost every F ∈ F(G) and almost every X0 ∈ R
N , each solution of the

equation F (X) − F (X0) = 0 is isolated and robust.

(CII) If r < N , for almost every F ∈ F(G) and almost every X0 ∈ R
N , there is an (N -r)-

dimensional surface M consisting of all the solutions X of the equation F (X)−F (X0) = 0;
more specifically, the surface M is a manifold without boundary.

Sketch of proof. Part (CI) follows from part (I) of the Theorem 1.
To prove part (CII), notice that part (I) of the Theorem 1 implies that for almost every F ∈

F(G) and almost every X0 ∈ R
N , rank(DF (X0)) = r, the generic rank. Choose such an F and

X0. Let M be the set of X such that F (X) = F (X0). Notice that M is a closed set.
Because the rank is constant near X0, we can apply the Constant Rank Theorem III.4.2 and

its corollary III.5.8 in [25]. Hence, there is a differentiable change of coordinates near X0 and
a differentiable change of coordinates for C near F (X0) such that in these coordinates, F (X) =
F (X0) +DF (X0)(X −X0) for X close to X0, i.e., F is linear plus a constant. Hence locally, the
linear theory tells us (i), the image of the neighborhood in R

N of X0 is r dimensional, and (ii), that
near X0, M is a surface of dimension N − r.

Following Sard [26], we define the set

Aρ = {C : there exists an X such that F (X) = C and rank
(

DF (X)
)

≤ ρ}.

Sard’s 1965 paper says Ar−1 has dimension at most r − 1, and that since Ar is r dimensional,
“almost every” C in Ar is not in Ar−1.

Hence for almost every X0, every X for which F (X) = F (X0) satisfies rank(DF (X)) = r. We
can furthermore assume X0 is such a point. At each of its points M is locally an N−r dimensional
surface, so it is a surface without boundary in the domain of F , i.e. a closed manifold without
boundary.

The N−r manifold M mentioned in the above proof can be unbounded like a plane or bounded
like a sphere, but it cannot be like a disc with boundary.

We can think of the above corollary as a generalization of the following linear result, whose
proof is in Sec. 6. Above we have discussed structured matrices that are square, but below we
discuss more general structured matrices and vectors.

Lemma 2. Consider the linear system AX = b, where the entries of A and b are structured
according to an M ×N structure matrix SA and M × 1 structure vector Sb, respectively. Then the
set of entries (aij , bk) for which the system has a solution is either measure zero or full measure.

An example of a structured system AX = b, where the set of (aij , bk) for which the system has
a solution is measure zero, is the system of two equations a1x = b1, a2x = b2; here M = 2 and
N = 1. An example of full measure is the system of one equation ax = b; here M = 1 and N = 1.
In both foregoing examples x ∈ R.

3 Bottlenecks and cycle coverability

In this section, we show that for a directed graph G representing a structured system, G is cycle
coverable if and only if it does not have a bottleneck, which is true if and only if the structure
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matrix S(G) does not have full rank. Together with Theorem 1, this comprises a characterization
of robust solutions of structured systems. We begin with a lemma that connects cycle coverage
with generic rank. See theorem 3.1 in [17, 16]. For the convenience of the reader, we provide a
proof in Sec. 6.

Lemma 3 (Cycle Lemma). A graph G with N nodes is cycle coverable if and only if the generic
rank of S(G) is N .

By Lemma 3 and Corollary 1 we conclude if a solution of 2 is robust, then the structure graph
corresponding to it is cycle coverable.

Next, we show the equivalence of the properties in Lemma 3 with the nonexistence of a bottle-
neck. In addition, the Bottleneck Theorem stated below provides more detail on bottlenecks that
exist in a graph, and show how that helps diagnose and repair a bottleneck.

Let B be a set of nodes in graph G. The forward set of B, denoted by B→, is the set of all
nodes g in G for which there is an edge starting at a node in B and ending at g. For m > 0, we say
a pair of sets of nodes B and B→ is a m-bottleneck if B has exactly m nodes more than B→.

We refer to B as the bottle (and usually color its nodes blue) and K = B→ as the neck
(usually colored red). We refer to the nodes in B as bottleneck nodes. The word “BottlenecK”
connects the B in bottle to the K in neck. Some nodes can be in both the bottle and the neck.
These nodes are colored half blue and half red as in Figure 7(b).

A system that has a bottleneck will sometimes have many. Let mmax be the largest value m

for which there is a m-bottleneck. Let (B,B→) be a mmax-bottleneck where B has as few nodes as
possible. We call such a bottleneck a minimax bottleneck. It turns out that there is only one
minimax bottleneck.

In the proof of the Bottleneck Theorem (stated below), the bottle B we construct is the minimax
bottle. The nodes that are colored blue in Figure 6(b) are a bottle of a 6-bottleneck for both
Figures 6(a) and 6(b). Adding node 1 to B creates a bigger bottle of a 6-bottleneck for Figure 6(a).
Then it is not a minimax bottle. The Bottleneck Theorem below is a key to why some systems
have no robust solutions.

The set of nodes comprising the minimax bottleneck is not always obvious from the graph. The
concept of null nodes, described next, allows us to exactly locate the bottleneck.

Definition 1 (Null node). For a matrix A, we say a vector X is a null vector if AX = 0. The
kernel of A, denoted kerA, is the set of all null vectors of A. For a graph G with structure matrix
S(G), the graph nodes (coordinates) can be divided into two groups: coordinates that take the
value zero for every vector in ker(A) for almost every matrix A ∈ L(G), and coordinates that are
nonzero in some kernel vector of A for almost all A. (Recall that L(G) is the set of matrices that
respects S(G).) Lemma 4 of Section 6 implies that each node belongs to one of the two groups.
We will call the latter set of nodes the set of null nodes, and denote the set by Bnull.

Intuitively, null nodes can be thought of as those corresponding to coordinates which are nonzero
in at least one kernel vector for a matrix A which is obtained by replacing nonzero entries of
the structure matrix S(G) by random numbers (and could be discovered this way in a practical
situation). Write b(G) for the number of null nodes of the graph G. The dimension of the null
space of A, for almost every A respecting S(G), is N − r, where r is the generic rank of S(G) from
Lemma 1. Clearly N −GenRank(S(G)) ≤ b(G).

The following result says that the minimax bottleneck has bottle Bnull and neck B→
null.
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Theorem 2 (Bottleneck Theorem). Let S(G) be the structure matrix of a graph G with N nodes.

(I) If GenRank(S(G)) = N , then G has no bottlenecks. Assumem∗ = N−GenRank(S(G)) > 0.
Then the minimax bottleneck is an m

∗-bottleneck. Also, there is an m-bottleneck if and
only if 0 < m ≤ m

∗.

(II) The bottle of the minimax bottleneck is the set of null nodes Bnull.

An algorithm for making a graph robust. Let m∗ = N −GenRank(S(G)). If m∗ > 0, then
find the minimax bottleneck. We can then reduce m

∗ by one by adding an edge from any bottle
node to any node that is not in the neck. When this process is repeated m

∗ times, the generic rank
becomes equal to N .

Remark 1. Computer algebra packages give us a computational means of determining the null
node set Bnull. See Example 2 below to see typical output from Matlab and Maple. The package
computes a basis for the null space. When symbolic entries are used in the input matrix, for each
null node, the software returns non-zero symbolic formulas for at least one of the basis vectors,
and it always returns zero for the nodes which are not null nodes. The software has considerable
freedom in choosing a basis and some of the basis vectors can have zero coordinates for some of
the null nodes.

Example 2. We show how to use Matlab or Maple together with Thm. 2 to find the minimax
bottleneck, and how to eliminate the bottleneck so that the system has robust solutions. Consider
the network represented in Figure 5c

In Matlab
syms 'f%d%d' [5 5] % write this to define a 5 by 5 symbolic matrix
S=[0, 0, 0, f14, f15; 0, 0, 0, f24, f25; 0, 0, 0, f34, f35; f41, f42, f43, f44, 0;f51, f52, f53, 0, f55];
null(S) % This command calculates a basis for null space of S

In Maple
with(LinearAlgebra):#call linear algebra package
S=Matrix(5,5, S=[0, 0, 0, f14, f15, 0, 0, 0, f24, f25, 0, 0, 0, f34, f35, f41, f42, f43, f44, 0, f51, f52,
f53, 0, f55]):
NullSpace(S) # this command calculates the basis for null space of S

output:



























































f42f53−f52f43
f52f41−f51f42

− f53f41−f51f43
f52f41−f51f42

1

0

0



























































(3)

The result declares that the null space is one dimensional. Therefore, there exists a one-bottleneck.
The nodes 1,2, and 3 are the bottle of the bottleneck, since components 1,2, and 3 of the nullvector
can be nonzero. By looking at the outgoing edges of these three nodes, we find that the bottleneck
is S = {1, 2, 3} → S→ = {4, 5}.

To repair this bottleneck, it suffices to connect one of the nodes of the set {1, 2, 3} to one
of the nodes from the same set. Any of the nine possible added directed edges will destroy the
bottleneck. As a result, the graph with the single added edge will have a cover, and by Theorem
2, the structure matrix S(G) has rank N = 5. The resulting network will have robust solutions,
according to Theorem 1.
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4 Ecological Networks

One of the key challenges confronted by ecologists is to understand how interactions between species
impact community structure, species coexistence, and biodiversity [27, 28, 29]. Ecologists attempt
to respond to such questions by visualizing a complex ecological community as a network [30, 31, 32],
mathematically represented as a directed graph, as in Figures 1 and 6.

Our initial motivation for this investigation was to determine which ecological networks have one
or more robust steady-states. In most ecological networks, each species may be directly influenced
by many other species [33], though some of those influences might be quite weak. There has been
no general criterion in the ecological literature for determining when a robust steady state exists.

The results in this article allow investigators to determine which edges of the graph are essential
for robustness. Ecologists have been unable to address such questions since there has been no
criterion in the ecological literature for whether a network is robust. They will now be able to
create artificially reduced, or “knock-out”, versions of networks in silico, with fewer edges, to test
whether a network is fragile or robust when various edges are removed.

When there are N species in an ecological network, their interactions can often be modeled as

1

xi

dxi
dt

= −ci + fi(x1, . . . , xN ), i = 1, 2, . . . , N (4)

where xi > 0 is the population density of the ith species, ci is a constant, and fi(x1, . . . , xN )
expresses how the growth rate of the ith species depends upon the network [5]. We say X is a
steady state if all species remain at a constant level, i.e., dxi

dt
= 0 for all i.

In a graph representing biological networks, each node represents a species. An arrow j → i
from species j to species i means species j “directly influences” the density of species i. Many edges
are bi-directional. For example an edge which represents interactions between predator-prey is bi-
directional. However, other edges may be better represented as uni-directional. The mere presence,
or even the scent, of a top predator may have a major effect on a second predator species while the
second predator has an almost negligible direct impact on the top predator. For that reason, our
results concern directed graphs, allowing both uni-directional and bi-directional influences.

The Competitive Exclusion Principle (CEP) is a statement that two predators that do not
interact directly with each other and depend on the same resource cannot coexist. More generally
it asserts that if there are more predator species than resource species, then there is no robust
steady state.

In other words, if they are coexisting in a natural environment, then some other factor is
involved and the ecologist may want to figure out what that factor is. If the steady-state of the
network has equations of the form in Figure (1a), then there is no robust steady state. Figure (1c)
is a graphical equivalent of (a). We now know that having no robust steady state is equivalent to
saying (b) is not coverable by Thm. 1.

11



1

✓

(a)

1 2

✓

(b)

1 2 3

4 5

✗

(c)

✗✗✗

(d)

1 2 3 4

65

7

✗ ✗ ✗

(e)

Figure 5: Examples of robust and fragile graphs. In each figure, a green checkmark
above a graph indicates it is robust, i.e., it has a robust steady state or solution for almost
all choices of F that respect the structure of the graph. A red X-mark indicates that every
F that respects the graph is fragile; such F have no robust steady states. The number of X-
marks is the minimum number of edges that must be added before the graph can be robust.
(a) One-node graph, robust. (b) Two-node graph, robust. (c) The blue nodes are a bottle,
and the red nodes are the neck. There is a 1-bottleneck. (d) The three X-marks mean there
is a 3-bottleneck. (e) Whenever possible, the reader should imagine these graphs as part of
a larger network. For a forward bottleneck, edges coming to the nodes of the bottle from
nodes in the rest of the graph are allowed without changing the bottleneck, provided they
do not come from bottleneck nodes. The bottle and the neck are unchanged. This figure
shows a minimax 3-bottleneck that contains smaller bottlenecks, such as the bottles {1, 2}
or {3, 4}, or {1, 2, 3, 4}, or {5, 6}. Each supports nullvectors. Together these six nodes are
the bottle of the forward minimax bottle.

The ecologist S. A. Levin [34] described a biological network that has the graph Figure (1c), but
where there is only one predator species (node 3), that is shared by two prey species (nodes 1 and
2). He found again that there can be no robust steady state. Note that the equations and graphs
are the same for Levin’s case and the CEP, even though the cases are somewhat different. If species
i is a predator and j is a prey, increasing the prey will increase the predator, i.e. fij =

∂fi
∂xj

(X) > 0,

but increasing predator will decrease the prey, that is fji =
∂fj
∂xi

(X) < 0. Hence for the CEP, f12
and f32 are positive while f21 and f23 are negative. For Levin’s case, the signs are reversed.

We can extend Levin’s insight to all other combinations that correspond to the same graph.

12



For the graph represented in Figure 1, there are additional possibilities. Two of the species 1 and
2 might be mutualistic, with both terms positive, or antagonistic with both negative. Every choice
of positive (+) and negative (-) is a case where there is no robust steady state. There are 25

different choices of these terms if we equate cases that are left-right symmetric, corresponding to
the structure matrix

S =





0 0 ±
0 0 ±
± ± ±



 (5)

Our formalism can further be applied to more general graphs, including those that are robust.
Every edge can be assigned a sign, positive or negative, and each choice for all the edges yields
different biology.

Here we note the distinction between stability and robustness for an equilibrium of a dynamical
system. McGehee and Armstrong [35] analyzed the CEP from the point of view of both stability
and robustness for some special cases. Robust solutions may or may not attract nearby trajectories;
an unstable equilibrium will not be observed as a rest state in a natural system. Some combinations
of the signs in (5) may cause stability and other instability, but they all share the same structure
matrix, which excludes robust equilibria for all combinations of signs.

A substantial research effort has aimed at discovering what stabilizes ecological networks. Some
have found ways to promote robustness [36, 37], but there is no gold standard for assessing robust-
ness. Gross et al. [36] suggested two universal rules: Food-web stability is enhanced when (i)
“species at a high trophic level feed on multiple prey species”, and (ii) “species at an intermediate
trophic level are fed upon by multiple predator species.” Robert T. Paine [38] showed that elimi-
nating one keystone species (in this case, starfish) can cause the ecosystem to collapse. These rules
suggest adding edges might enhance the robustness of the ecological network, but it is not the full
story.

Figure 5(d) represents an ecological network supporting interactions between species in four
different trophic levels. In this figure each blue node species on each level is connected only to the
species in the adjacent trophic level, though some edges connect red nodes with other red nodes.
Let N1, N2, N3, N4 denote the number of species in each of these “trophic” levels, listing from the
bottom to the top.

According to the theory in Section 3, this type of trophic graph cannot be coverable unless
the total number of species in the odd-numbered levels, Nodd = N1 + N3, equals the total of
species in the even-numbered levels, Neven. Otherwise, let B consist of all the species either in
the odd-numbered layers or in the even-numbered layers, whichever is numerically greater. Then
B is the bottle of a bottleneck, and B→ is the neck, consisting of the remaining species. Here
Nodd = 8 > Neven = 5, so by the Bottleneck Theorem, at least 3 edges must be added.

Figure 6(a) is a representation of an ecological graph from Figure 1 in Solé and Montoya [4],
though equilibria are not discussed there. Our results show that their graph is fragile. In fact,
there is a 6-species bottleneck. It should be noted that for this network, quantity alone is not
the answer. In order to repair the bottleneck, added edges must be carefully targeted. As an
example, Figure 6(b) is made by adding 22 bi-directional (green) edges to Figure 6(a), adding
edges throughout the network, but the resulting network, Figure 6(b) is not yet robust. Our theory
suggests where the edges must be added to make a system robust.

Write B for the set of blue nodes and B→ the red nodes. Since #(B) = 12 and #(B→) = 6, B
is a 6-bottleneck so the graph cannot be robust. At least six forward edges starting in B and not
ending in B→ must be added before the graph becomes robust.
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1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19

20 21 22 23 24 25 26

✗✗✗✗✗✗

(a)

1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19

20 21 22 23 24 25 26

✗✗✗✗✗✗

(b)

Figure 6: A bottleneck makes a network fragile. The six X ’s mean six species must
be eliminated before it becomes robust – unless carefully chosen edges are added. (a): This
graph is reproduced from Figure 1 of Solé and Montoya [4]. Let B denote the 12 nodes
shaded blue. Then the forward nodes B→ consists of 6 nodes shaded red. Hence B is a
6-species bottleneck. At least six edges that increase the set B→ must be added to make
the graph robust. (b): 22 bi-directional edges have been added, shown in green, adding at
least one edge to every node, and edges between every pair of layers, and edges within each
layer except the lowest. These make no difference to the robustness. B is still a 6-species
bottleneck.

It is a common occurrence in biological networks that the densities of some species are de-
pendent on an intermediate species, which can be incorporated implicitly. For example, consider
the structured equations given in Figure 7(a). These steady state equations demonstrate that the
densities of species x3 and species x4 both depend on total number of x1 + x2. The graph give in
Figure 7(a) is cycle coverable. That means for almost every F ∈ F(G), the structure system is
robust. But, the phrase “almost every F”, means there can be exceptions. The structure system
given in Figure 7(a) is such an exception. This type of implicit structure is not supported by our
theory. Hence, when we introduce an intermediate species, we first rewrite the explicit structure by
introducing a new variable and we are forced to add a new constant c5. For example, in Figure 7(b)
we add the variable x5 = x1 + x2 and the constant, c5. The structure graph in Figure 7(b) is not
cycle coverable and it agrees by our theory that reports the given structured equation in Figure 7(b)
does not have a robust solution.

The general rule is that anytime a function g(x1, . . . , xN ) occurs in two or more different equa-
tions, we can introduce a new variable xN+1 and a new equation xN+1 − g(x1, . . . , xN ) = 0. The
new expanded system and the graph can be analyzed using our results.
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f1(x3) = c1
f2(x4) = c2

f3(x1 + x2) = c3
f4(x1 + x2) = c4 1 2

3 4

(a)

f1(x3) = c1
f2(x4) = c2
f3(x5) = c3
f4(x5) = c4

f5(x1, x2, x5) = c5 1 2

3 4

5

✗

(b)

Figure 7: An example with a forbidden implicit structure. Suppose we want to
consider only equations of the form in (a). Its structure graph is cycle coverable, but there
are no robust solutions since we have two equations that involve the expression x1 + x2 that
occurs more than once. Such a restriction is not allowed in our formulation of structured
systems. Here x1 + x2 is over-determined since it must satisfy 2 equations. There cannot be
a robust solution for almost any choice of f3 and f4. If the c3 and c4 equations are satisfied, a
small change in either constant results in no solutions for almost any choice of f3 and f4. We
convert the system in (a) into an (explicit) structured system in (b) by adding the variable
x5 and an extra equation, x1 + x2 − x5 = c5. This requires the addition of the constant, c5.
In (b) there is a bottleneck so there are no robust solutions. Nodes 1,2,3, and 4 constitute a
(forward) bottle of a 1-bottleneck. The forward minimax bottle however consists of nodes 1
and 2. Nodes 3 and 4 are a backward minimax bottle. This example was motivated by the
systems represented by Akhavan and Yorke [9].

5 Discussion

We show in this article how the basic lesson of the Competitive Exclusion Principle of ecology can
be extended to a general concept that applies to all systems of N equations in N unknowns that
respect an underlying structure. Our interest was in proving what the structure itself implies about
robustness of solutions in the generic case, regardless of the specific values that coefficients of the
equations may take.

In particular, we proved the equivalence of three ostensibly different views of structured systems,
including cycle coverage, rank of the structure matrix, and the existence of topological obstructions
to robust solutions, called bottlenecks. Depending on what is known about the network model, or
class of models, one or another of the views may be most informative. These results have immediate
implications to possible graph structures, for example precluding robust solutions in strictly trophic
food webs without intraguild interaction, unless strict constraints on the number of species in each
guild are satisfied. These constraints are direct generalizations of the CEP. Interestingly, they may
have extensive implications for systems in general, outside ecology.

The Bottleneck Theorem is an extended version of the Competitive Exclusion Prin-
ciple. If the generic rank of a structure matrix is not maximal, then there must exist a (minimax)
bottleneck. Suppose there is a bottleneck. One could think of the bottle as being a set of predator
species and the neck as prey species. Hence, there are more predator species than prey species, and
these predators depend directly only on the preys and not on each other. The Bottleneck Theorem
says the correct generalization of the Competitive Exclusion Principle is not about predators and
preys. It says that if a collection of species depends purely on m

∗ fewer species, there can not be
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a robust steady state. That is a statement about the equations of nature. That generalizes to a
statement about the nature of (structured) equations: if a collection of equations depends upon
m

∗ fewer variables, then there is a m
∗-backward bottleneck, so for every F that respects the graph

G there are no robust solutions, and for almost every F that respects the graph G there are no
solutions, not even fragile solutions.

Our results depend on the notion of “almost every” structured system in the sense of prevalence.
That means that each equation that is allowed to depend on a given variable, according to the
structure matrix S(G) that is imposed, is allowed to do so independently of other equations. In
other words, there are no other hidden constraints among the dependencies allowed in S(G). One
could pose such constraints, and consider the effects on the robustness results, but we leave that
investigation in general to future work.

6 Proofs

This section collects proofs of the results stated above. We will make liberal use of Fubini’s Theorem.

First we mention some notations that we will use herein.
S = S(G) denotes the N ×N structure matrix of a graph G.
E(G) denotes the number of edges in G, correspondingly, number of nonzero entries in S = S(G).

Fubini’s Theorem (special case). Let Z be a subset of the Euclidean space R
N1 × R

N2 .
(LZ): Z has measure zero

if and only if

(LX): the intersection of Z with each translate {X} × R
N2 has measure zero for almost every

X ∈ R
N1 .

The above happens if and only if

(LY ): the intersection of Z with the translate RN1×{Y } has measure zero for almost every Y ∈ R
N2 .

Proof of Lemma 1.
Let r be the maximum of the rank of A for A ∈ L(G). Choose M ∈ L(G) to have rank r.

The matrix M has some collection of r rows and r columns such that the determinant denoted
detr of the restricted matrix Mr has non-0 determinant. For any matrix A ∈ L(G) write Ar for
the restriction to those columns and rows, and write detr for the corresponding determinant. If
detr Ar 6= 0, then rank(A) = r. Let Z = {A ∈ L(G) : detr Ar = 0}. Let P0 ⊆ L(G) be the set
of matrices A for which rankA < r. We will prove P0 has measure zero. Note that P0 ⊆ Z, so it
suffices to prove Z has measure zero in L(G).

Consider the one-dimensional subspace E0 = {λM : λ ∈ R} of L(G). We examine translates
A + E0 and show that each such translate, i.e for each A in L(G), A+ E0 intersects Z in a finite
set.

For each A in L(G), detr(Ar+λMr) is a degree r polynomial in λ. It equals λr ·detr(
1
λ
Ar+Mr).

It is not identically zero since for large λ, detr(
1
λ
Ar + Mr) is approximately detr(Mr), which by

assumption is non 0.
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By the Fundamental Theorem of Algebra, such a polynomial can be zero for at most r values
of λ. Hence, each line A+ E0 intersects Z in at most r points, a finite set. Hence, Z is essentially
a surface (with turning points and singularities) whose dimension is 1 less that that of L(G).
Therefore Z has measure zero with respect to Lebesgue measure on L(G). Hence, almost every
matrix in L(G) has rank r.

Alternative proofs are available in algebraic geometry, but our goal here has been to provide
intuition concerning the geometry of Z.

6.1 Proof of Theorem 1

Proof of part(I).
For each F , let Z = {(X,A) : rank(DF (X) +A) < r}.
For each X, let ZX be the intersection of Z with {X} ×R

E(G).
For each A, let ZA be the intersection of Z with R

N × {A}.
Note that Z, ZX , and ZA are closed sets.
Write P = L(G), which can also be written R

E(G). Recall P is a finite-dimensional subspace of
F(G). Write P0 = {A ∈ P : rank(A) < r}.

To conclude prevalence, recall the meaning of P in our definition of prevalence. To prove the
Theorem 1, part (I), according to the Fubini Theorem it is sufficient to show that ZX is of measure
zero for almost every X ∈ R

N .

To prove (LX), let σ : P → P be the translation given by σ(A) = A + DF (X). Then
(X,A) ∈ ZX if and only if σ(A) ∈ P0. Since σ is a translation, mapping ZX onto P0, σ preserves
measure, proving the claim since P0 has measure 0 by Lemma 1, and thus proving Theorem 1, part
(I).

Proof of Theorem 1, part(II). Let dX denote a volume element at the origin with volume
denoted |dX| so we can write X + dX for the volume translated to X. For U ⊆ R

N ,

Volume(F (U)) ≤

∫

U

|detDF (X)| · |dX|

If DF (X) has rank less than N , then detDF (X) = 0. It follows that the set F (RN ) has measure
0.

6.2 Proof of Theorem 2

In the proofs below A = (aij) is in L(G). Thus, the aij ’s are required to be zero for certain i, j in
the structure matrix.

Proof of Lemma 2. Let t denote the number of unspecified entries of b. Rearrange the
structure matrices SA, Sb so that the first t positions of Sb are allowed to be nonzero and the
remaining N − t are zero. Define A1 to be the top t rows of A and A2 the last N − t rows of A.
Hence, AX = b can be rewritten as follows.
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t
N − t

[

A1

A2

]

X =











b1
...
bt
0











N − t

t

By Lemma 1, the rank of A is constant for almost every (A1, A2) respecting A. Hence, for such
A, dim

(

ker(A)
)

is constant. Since ker(A) = ker(A1) ∩ ker(A2), dim
(

ker(A1) ∩ ker(A2)
)

is also

constant. dim
(

A1

(

ker(A2)
)

)

= N− dim
(

ker(A1) ∩ ker(A2)
)

is a function of the entries aij that

takes a fixed integer value on a full measure set of aij . If this fixed value is t, then there is a solution
for almost every A and every b. If the fixed value is less than t, almost every b is not in the image
of A, so there is no solution for almost every (A, b).

Proof of Lemma 3. The existence of a cycle covering for G is equivalent to the existence ofN edges
{v(1) → u(1), . . . , v(N) → u(N)} in G such that the sets {u(1), . . . , u(N)} and {v(1), . . . , v(N)}
are both equal to {1, . . . , N}. That is equivalent to there being a matrix M = (mij) ∈ L(G) such
that mij = 1 when j → i is one of the edges and otherwise mij = 0. Since M has exactly one
non-0 entry in each row and in each column, M maps all of coordinate basis vectors ei to all of
the coordinate basis vectors. Hence it has rank N . By Lemma 1, the structure matrix has generic
rank N .

Now we give a formal definition of null nodes, that shows that Def. 1 is well-defined. For each
integer j, let Sj be the set of matrices A ∈ L(G) such that for all X in ker(A), the coordinate
xj = 0. The set Sj is a subset of an E(G) dimensional space. Any nonsingular matrix that respects
the graph (if there are any) is automatically in Sj.

Lemma 4. For each integer 1 ≤ j ≤ N , either Sj or its L(G)-complement Sc
j is measure zero.

Then we recognize node j as a null node if Sj is measure zero. In other words, such a node has
nullvectors in ker(A) with coordinate xj 6= 0 for almost every A ∈ L(G).

Proof of Lemma 4. Recall that for each integer k, Sk is the set of matrices A such that G(A) = G
and for all X in Ker(A), the coordinate xk = 0. The set Sk is a subset of an E(G) dimensional
space, where E(G) denotes the number of edges in the structure matrix. Lemma 4 claims that for
each integer 1 ≤ k ≤ N , either Sk or its complement Sc

k is measure zero.
Without loss of generality, set k = 1. The proof proceeds by noting that a matrix A is in Sc

1 if
and only if there exists an X in kerA with nonzero first component x1. Hence,

a11x1 + . . .+ a1NxN = 0
...

aN1x1 + . . .+ aNNxN = 0

with x1 6= 0, which is equivalent to

a12
x2
x1

+ . . .+ a1N
xN
x1

= −a11

...

aN2
x2
x1

+ . . .+ aNN
xN
x1

= −aN1
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having a solution. According to Lemma 2, this occurs for either a measure zero or full measure
subset of the aij.

Lemma 4 can be illustrated explicitly for 2× 2 structure matrices A. Let

A =

[

a11 a12
a21 a22

]

,

where some of the entries may be 0 in the structure matrix. The reader should understand that
each set {· · · } below is a subset of L(G). Without loss of generality, we describe set of matrices S1

as follows

S1 = {a11a22 − a12a21 6= 0} ∪ {a12 = 0 and a11 6= 0} ∪ {a22 = 0 and a21 6= 0},

and accordingly, its complement is

Sc
1 = {a11a22 − a12a21 = 0} ∩ {a12 6= 0 or a11 = 0} ∩ {a22 6= 0 or a21 = 0}.

If the structure matrix allows all entries of A, then (Sc
1) is of measure zero, and so S1 has full

measure.
On the other hand, if the structure matrix requires a11 = a21 = 0, the roles are reversed. In

that case S1 is of measure zero and so Sc
1 has full measure.

Proof of Theorem 2, Part (I). Assume there is a m-bottleneck (B,B→). Therefore B and B→

have b and b−m nodes, respectively, where b > 0. The N × b submatrix SB of S consisting of the
b columns represented by the nodes of B has b−m nonzero rows, the rows corresponding to nodes
of B→. Thus, the kernel of SB is at least m-dimensional, which implies the same about the kernel
of S, and so GenRank(S) ≤ N −m. Moreover, the structure matrix can be written as the following

S =

b N−b
[

0 ⋆

⋆ ⋆

]

N − b+m

b−m
(6)

where we have renumbered the nodes so that B consists of the first b columns and where we have
situated the b−m nonzero rows at the bottom of the matrix for simplicity (the nonzero rows could
be anywhere in S).

Conversely, let m
∗ = N− GenRank(S) > 0 . We will show that S must have form (6) with

m = m
∗, with the proviso, as above, that the bottom b − m

∗ nonzero rows could occur anywhere
in S. Let B = Null(S) be the set of nodes j such that Sj is measure zero guaranteed by Lemma 4.
For a node j in B, xj 6= 0 for some x ∈ ker(A) for almost every A that respects S.

If B is the empty set, then the intersection of the Sj is a full measure set, i.e. for almost every
A respecting the structure S, ker(A) = {0}, a contradiction to S being rank deficient. Thus B is
nonempty, and b = |B| > 0. Note that if j is in the complement Bc, then xj = 0 for every vector
x in ker(A), for every A not in the measure zero set T =

⋃

j∈Bc Sc
j . We use this fact below.

Consider matrices A that respect the structure matrix, and are not in the set T . Renumber
the nodes such that B = {1, . . . , b} . Let AB denote the submatrix of first b columns of A. Since A
is not in T , xb+1 = . . . = xN = 0 for x in ker(A), so we can assume ker(A) = [U, 0, . . . , 0], where
U is a dimension m

∗ subspace of Rb, and the space U⊥ is b−m
∗ dimensional. For almost every A

satisfying S, the rows r1, . . . , rN of the submatrix AB must all be in U⊥, and satisfy the following
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two properties, proved below: (1) the nonzero rows of AB are linearly independent, and (2) no set
of p columns of AB contains all of the nonzero entries of p or more nonzero rows. Property (1)
forces all but b−m

∗ of the rows of AB to be zero rows in the structure S. Thus the first b columns
of A have at most b −m

∗ nonzero rows. Let K be the set of indices of b− m
∗ rows which include

the nonzero rows. Then (B,K) is an m
∗-bottleneck. The set K is shown as the last b−m

∗ nodes
in (6), but they could be any of the rows of A.

Finally, we verify (1) and (2). If b = 1, (1) is true because if any entry in the (single) column of
AB is nonzero, the first component of vectors in ker(A) is zero for almost every A, a contradiction
to the definition of B. For b > 1, we induct on b. Let 0 =

∑

ciri be a dependency of rows of
AB , where all ci 6= 0. If the union of the coordinates appearing in the rows of the ri does not
include all b coordinates, use the induction hypothesis. If they include all b coordinates, clearly no
such dependency exists, for almost every A. To verify (2), suppose there are columns ci1 , . . . , cip
and p such rows. By (1), the rows are linearly independent, and their entries are restricted to p
columns. Therefore, any vector x = (u, 0, . . . , 0) in ker(A) must be zero in entries ui1 , . . . , uip . This
contradicts the fact that i1, . . . , ip are null nodes.
Proof of Theorem 2, Part (II). Note that Bnull is the m

∗-bottleneck used above in the first
part of the proof, where m∗ is such that rank(S) = N −m

∗. No bottleneck exists with larger m, by
Part (I). Also, B is minimal because no node can be deleted without the bottleneck becoming an
m-bottleneck for m < m

∗, due to property (2) above. Therefore Bnull is the minimax bottleneck.
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