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Abstract – Assimilation of data with models of physical processes is a critical component of mod-
ern scientific analysis. In recent years, nonlinear versions of Kalman filtering have been developed,
in addition to methods that estimate model parameters in parallel with the system state. We pro-
pose a substantial extension of these tools to deal with the specific case of unmodeled variables,
when training data from the variable is avaiable. The method uses a stack of several, nonidentical
copies of a physical model to jointly reconstruct the variable in question. We demonstrate the
ability of this technique to accurately recover an unmodeled experimental quantity, such as an ion
concentration, from a single voltage trace after the training period is completed. The method is
applied to reconstruct the potassium concentration in a neural culture from multielectrode array
voltage measurements.

Copyright c⃝ EPLA, 2014

Modern data-assisted modeling in the physical and bio-
logical sciences depends heavily on the use of data assimi-
lation techniques to fit unobserved model variables. Their
use in the case of nonlinear models has become standard in
numerical weather prediction [1–4], oceanography [5], and
various areas of spatiotemporal dynamics [6–9]. In the
nonlinear case, the Extended Kalman Filter (EKF) and
Ensemble Kalman Filter (EnKF) have become routine.

Standard extensions of this methodology are used to
approximate model parameters, in addition to unob-
served variables of the model. This approach, known as
dual estimation [10–13], essentially treats system param-
eters as slowly evolving variables. Recently, implementa-
tions using the dual ensemble Kalman filter have been
used for parameter estimation in various neuroscience
experiments [14–16]. Of course, the above-mentioned ap-
proaches are limited to reconstructing state variables and
parameters that are explicitly represented in the model.

In this letter we show how this general methodology can
be naturally extended further, to reconstruct variables of
the system that do not appear in the model, but for which
limited time series measurements are available. A result of
Takens [17–20] shows that sufficiently generic time series
measurements can be used to reconstruct system dynam-
ics. This knowledge has been long used as a basis for black-
box prediction, noise reduction, and control protocols for

nonlinear systems. Here we take a first step at merging
this powerful theory with modern methods of data analy-
sis that can exploit information from models.

The basic concept involves assimilating the available
time series in parallel with multiple, different versions of
the model. In our examples, we use a single model under a
variety of fixed parameter settings. During a training pe-
riod, data from both modeled variables and the unmodeled
variable are available, and a parameterized combination of
reconstructed model variables is fit to the unmodeled vari-
able. After the training period, this combination is used
to track the unmodeled variable. An arbitrary number of
unmodeled variables can be tracked simultaneously and
independently with this method.

Our approach essentially merges two lines of research
on modeling and predicting behavior of nonlinear sys-
tems. One direction, motivated by the seminal paper by
Lorenz [21], attempts to build a collection of models with
slightly different parameters, and regress during a training
period on the outputs of the models of a particular vari-
able to build a good predictor for that variable [22,23].
Independently, researchers in data assimilation have used
multimodel versions of the Kalman filter [24] and the
EnKF [25–27] to improve the tracking capability of the
modeled variables. Our approach combines the ideas by
training a multimodel EnKF on some known time series

68005-p1



Franz Hamilton et al.

data from a variable that is not included in the underlying
model, and using the fitted result to predict the unmod-
eled variable after the training period ends. We think
of the approach as a “platypus” method, since our basic
ansatz is that the unmodeled variable is a combination of
nominally unrelated parts.

A further advantage of a data assimilation approach to
the problem is that after the training period, the unmod-
eled variable can be computed in real time. Moreover, if
further training data becomes subsequently available, it
can be easily exploited to further refine the parameterized
combination, or to do real-time tracking under circum-
stances of drifting parameters.

To illustrate the idea, let us assume the system model

ẋ = f(x, p) + ωt, (1)

y = h(x) + νt

for state vector x and vector p of parameters. Here ωt

and νt are white-noise inputs. The function h is a vector-
valued observation of the state. The standard filtering
problem is to use the time series of observations yt to
calculate an estimate for the current state x.

The innovation of this method is to go beyond estimat-
ing unobserved variables and parameters in the model, i.e.
the components of x and p, to estimate quantities that are
not explicit model variables or parameters. We assume
that a time series St of the desired unmodeled variable is
available during a training phase, with the goal of contin-
uing to estimate the variable after the training period has
ended.

We construct a parallel set of m subfilters, each of which
are the system model with separate parameter settings pi.
This parallel set is used for data assimilation during the
training phase, corresponding to the equation

ẇ = F (w) + ωt,
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Note that each xi denotes a separate copy of the sys-
tem state vector, with n components xi

j for j = 1, . . . , n.
Each ci is an unknown coefficient vector of n components
ci
j that will be learned along with the states xi during the

assimilation process, in order to best fit the unmodeled
variable S =

∑

i,j ci
jx

i
j + d. The inputs to the assimila-

tion procedure during the training phase are the modeled
observables yt, and the time series St of the unmodeled
variable, that is provided only during the training phase.
The coefficients ci

j and d are estimated during the training
phase (along with the system variables xi

j), and then fixed
during the prediction phase, which uses only the yt inputs,
and assimilates the system model
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During the prediction phase, the expression
∑

i,j ci
jx

i
j + d

gives an estimate of the unmodeled quantity S using only
the yt inputs.

For nonlinear models, the assimilation can be done using
dual versions of either the EKF or the EnKF; we use the
latter in the following results. Equations for the EnKF
are given in appendix A.

As a simple demonstration, we describe the reconstruc-
tion of a gating variable from the Hodgkin-Huxley (HH)
neural model [28] consisting of four differential equations,
modeling the voltage V and three gating variables h, m
and n (see the first subsection of appendix B). We will use
the Hodgkin-Huxley equations to generate a time series
of the four variables. However, for the purposes of the
illustration, we make no use of the knowledge of how the
time series was created. As the assimilation model, we
purposely choose an unrelated, standard spiking model,
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(a)

(c)

(b)

(d)

Fig. 1: (Color online) Estimating unmodeled dynamics using
data assimilation with multiple models. Hodgkin-Huxley time
series is input into the EnKF using Hindmarsh-Rose multiple
models. The end of the training phase and beginning of the pre-
diction phase are shown. (a) Hodgkin-Huxley voltage (black)
and assimilated version of voltage in training phase (blue) and
prediction phase (red). (b) Hodgkin-Huxley gating variable h

(black) and assimilated version of h. During the prediction
phase (red), only the Hodgkin-Huxley voltage is available to
the EnKF. The procedure also obtains the other two Hodgkin-
Huxley gating variables, (c) m and (d) n.

the Hindmarsh-Rose (HR) equations [29]

V̇ = y − V 3 + 3V 2
− z + I,

ẏ = 1 − bV 2
− y,

ż = τ(s(V + 1) − z),

(4)

where V represents the voltage, y is a fast recovery vari-
able and z is a slow variable. The rate of z is controlled
by the time scale parameter τ , while I, b and s are free
parameters to be estimated alongside the state variables
V, y and z by the EnKF [13,14,16,30]. We use V (t) and
h(t) from the Hodgkin-Huxley series during the training
phase. Note that 1) the gating variable h(t) is not explic-
itly represented as a variable in the assimilation model (the
Hindmarsh-Rose equations) and is therefore an unmodeled
dynamic, and 2) the waveforms of HR (see fig. 2(b) for an
example) are quite unlike all waveforms of the HH vari-
ables (see fig. 1(a)–(d)).

In the assimilation process, we use two HR models
to reconstruct h(t), with time scale parameters τ1 =
0.001 and τ2 = 0.1, respectively. According to (2), we
make the approximation h(t) ≈

∑

i,j ci
jx

i
j + d. Using two

assimilation models, this approximation during the train-
ing phase can be achieved in several ways. If we recon-
struct using only the y variables from the models, we
find h(t) ≈ −2.46y1 + 1.92y2 + 0.50 as a result of the
training phase. This approximation gives us prediction

root mean squared error (RMSE) = 0.140. A much im-
proved reconstruction uses only the z variables, giving
the approximation h(t) ≈ 1.21z1 − 0.17z2 − 1.35 which
yields prediction RMSE = 0.025. Using both the y
and z variables yields the most accurate estimate h(t) ≈

−0.42y1 + 0.33z1 + 0.48y2 − 0.16z2 − 0.83, and prediction
RMSE = 0.016, as shown in fig. 1(b). When it is unknown
a priori which variables allow for a more faithful recon-
struction of the unmodeled quantity, all variables can be
considered for discovery of the optimal weighting. We re-
peat this process and reconstruct the m(t) and n(t) gating
variables, shown in fig. 1(c), (d), using two assimilation
models each.

To further simulate the type of model error we would en-
counter in a laboratory setting, we consider data generated
from a second, more sophisticated system as described
in [31], where it was used to investigate ionically medi-
ated bursting. The model equations (see the second sub-
section of appendix B) include the membrane potential
based on transmembrane currents for sodium and potas-
sium. The gating variables for potassium activation and
sodium inactivation are modeled dynamically whereas the
sodium activation is assumed to be instantaneous. In ad-
dition, the ionic dynamics for extracellular and intracellu-
lar potassium and sodium concentrations, respectively, are
modeled by two equations. Sodium concentrations depend
only on transmembrane conductances making their intra-
and extracellular concentrations linked through mass
conservation. The extracellular potassium dynamics also
include glial buffering.

The model was driven by a Poisson spike train to cre-
ate a sequence of irregular seizures, shown in fig. 2(a). As
with the HH data from our first example, the potential is
treated as the observable of the system. The goal is to
use data assimilation with the (unrelated) HR model to
reconstruct and predict the sodium and potassium con-
centrations, given only the voltage and a brief sequence of
training data. The increased complexity of these data re-
quires us to use three copies of the HR model. We set two
of the models to have time scale parameters τ1 = 0.001
and τ2 = 0.0001 and individually optimize the third time
scale, τ3, for minimum training phase RMSE. Figure 2
shows the resulting reconstruction of the potassium and
sodium dynamics from this system. Using only three as-
similation models we are able to reconstruct these quan-
tities with a high degree of accuracy (RMSE = 0.12 and
0.11, respectively).

To apply the method in a laboratory setting, we col-
lected a potassium time series from a neural culture ex-
periment. Cortical neurons extracted from embryonic
day 17 mice were cultured on microelectrode arrays as
described in [32]. A microelectrode array (MEA) pro-
vides a convenient in vitro platform for the study of neu-
ronal networks by allowing for the simultaneous recording
of the neuronal extracellular potential at each of the ar-
ray’s electrodes. Cultures were kept in incubator under
controlled temperature (37 ◦C) and humidity (10% CO2)
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(b)

(d)

Fig. 2: (Color online) Estimation and prediction of simulated
seizure dynamics. A single seizing neuron is driven by a Poisson
spike train with constant parameter λ. The neuron voltage (a)
is continuously measured, and assimilated using the EnKF with
three versions of HR, whose voltage trace is shown in (b) with
parameters b = 5, τ = 0.001, s = 4 and I = 0. Potassium (c)
and sodium (d) are only observed for a brief training period
of 200 s. During the training period, our algorithm finds the
optimal combination of the model variables (blue). After this
training period, we can predict (red) the potassium (RMSE =
0.12) and sodium (RMSE = 0.11) dynamics from the three HR
models.

Fig. 3: (Color online) Training phase for potassium measure-
ments. A potassium-sensitive electrode is used to record the
extracellular potassium concentration changes in a small region
between three active electrodes of an in vitro cortical culture
plated on an MEA. During a 110 s training period, the po-
tential from the three electrodes is assimilated and estimated
with our EnKF (bottom), while an optimal combination of the
model variables is found (top, blue) to reconstruct the mea-
sured potassium (top, black). For this example, each electrode
is represented by four differently parameterized models, result-
ing in a total of twelve system models.

Fig. 4: (Color online) Training and prediction phases for potas-
sium measurements. After the training period is complete,
eq. (3) accurately predicts (RMSE = 0.024) the potassium con-
centration changes during spontaneous activity while using as
input only the neural potential from 3MEA electrodes.

until recording at 28 days in vitro. Extracellular record-
ings were obtained with a Multichannel Systems (MCS)
recording system (Reutlingen, Germany) and temperature
was maintained at 37 ◦C with a heated baseplate. Each
electrode was recorded at a rate of 25 kHz, but downsam-
pled to 1 kHz. Individual units on active electrodes were
not sorted, meaning each electrode was considered as a
neural assembly. The recorded time series from each elec-
trode was filtered and rectified prior to assimilation.

Local potassium measurements were performed using
the same type of resin-based potassium-sensitive micro-
electrodes used in slice experiments [33]. Potassium and
reference electrodes are positioned in the mat of cultured
cells located in the vicinity of a three active MEA record-
ing sites. The potassium data are acquired using an
high-impedance differential amplifier and digitized and
recorded at 100 Hz. The data are low-pass filtered and
input to the Nernst equation to find to potassium concen-
tration in the vicinity of the electrode.

Figure 3 shows the recorded in vitro neural activity from
each of the three electrodes during the training phase.
The assimilation is done with eq. (2) using four HR mod-
els for each electrode, with time scales τ1 = 0.001, τ2 =
0.0001, τ3 = 0.005, τ4 = 0.0005, resulting in a total of
twelve system models. Here the training period is only
110 seconds, during which the potassium and potential
are available for assimilation and an optimal weighting of
the twelve models is found to reconstruct the potassium
time series. Figure 4 shows the prediction phase, where we
are able to track the potassium dynamics while only as-
similating the neural potential. Discrepancy between the
actual and predicted values may be partially attributed to
uncertainties in our measurement, since the potassium is
recorded from a general region rather than a specific cell
and there are likely other active neurons in the area, con-
tributing to the potassium changes whose potential we are
unable to capture due to the MEA architecture.
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We have introduced an extension of standard data
assimilation techniques, based on Takens’ embedding
theorem, that uses a short time series from an unmodeled
variable to train a predictor for the variable using multiple
versions of the model. The use of multiple versions serves
to bring the strength of relatively simple mathematical
modeling to bear on complicated dynamics, by training
with time series data. For simplicity, we described an im-
plementation with the EnKF, and used the Hindmarsh-
Rose equations as a basic model, even though the latter
is designed for intracellular, not extracellular dynamics.
With appropriate modifications, other data assimilation
techniques, and other models, can be readily substituted.

The approach taken here is global in the sense that the
coefficients ci

j are constant in phase space. To the extent
that the data makes it practical, it may be beneficial to
develop a further extension of these ideas that treats the
data more locally.

Although we demonstrate its use for variables that do
not appear in the model, the method can be beneficial
in cases of poorly modeled variables, or in general when
the model error is significant. The success of the method
will depend on the choice of the multiple models. We have
found that the method works well when using neural mod-
els to reconstruct quantities that are not included among
the model variables. Its use will be crucial for experi-
ments on control of spreading depression and seizures in
neural cultures, where extensive, real-time measurements
of potassium and calcium concentrations are needed but
are not feasible, while voltages are easily available. We ex-
pect the method to find application in a variety of physics,
geophysics and biological contexts where current models
are poor or nonexistent.
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Appendix A. Data assimilation equations: the

EnKF. – In our data assimilation we assume a general
nonlinear system with n-dimensional state vector x and
m-dimensional observation vector y defined by

xk+1 = f(xk, tk) + wk,

yk = h(xk, tk) + vk, (A.1)

where wk and vk are white noise with covariance ma-
trices Q and R, respectively. The ensemble Kalman
filter (EnKF) approximates a nonlinear system using a
weighted ensemble. The filter is initialized with state
vector x+

0 = 0n×1 and covariance matrix P+
0 = In×n. At

the k-th step of the filter there is an estimate of the state
x+

k−1 and the covariance matrix P+
k−1.

The singular value decomposition is used to find the
symmetric positive definite square root S+

k−1 of the matrix

P+
k−1. We use the scaled unscented transformation (see,

for example, [34]) to form a weighted ensemble of state
vectors. The model f is applied to this ensemble, advanc-
ing it one time step, and then observed with function h.
The mean of the resulting state ensemble gives the a priori
state estimate x−

k and the mean of the observed ensemble
is the predicted observation y−

k . Denoting the covariance
matrices P−

k and P y
k of the resulting state and observed

ensemble, and the cross-covariance matrix P xy
k between

the state and observed ensembles, the equations

Kk = P xy
k (P y

k )−1,

P+
k = P−

k − P xy
k (P y

k )−1P yx
k ,

x+
k = x−

k + Kk

(

yk − y−

k

)

(A.2)

are used to update the state and covariance estimates with
the observation yk.

Appendix B. Neuron models. –

Hodgkin-Huxley model [28]. The Hodgkin-Huxley
equations form a system of four ordinary differential
equations,

C
dV

dt
= −g1m

3h(V − E1) − g2n
4(V − E2)

− g3(V − E3) + Istim,

dm

dt
= (1 − m)αm(V − E0) − mβm(V − E0),

dn

dt
= (1 − n)αn(V − E0) − nβn(V − E0),

dh

dt
= (1 − h)αh(V − E0) − hβh(V − E0),

where

αm(V ) =
2.5 − 0.1V

exp(2.5 − 0.1V ) − 1
, βm(V ) = 4 exp

(

−
V

18

)

,

αn(V ) =
0.1 − 0.01V

exp(1 − 0.1V ) − 1
, βn(V ) =

1

8
exp

(

−
V

80

)

,

αh(V ) = 0.07 exp

(

−
V

20

)

, βh(V ) =
1

exp(3 − 0.1V ) + 1
.

The parameters of the system are set to typical values:
C = 1, E0 = −65, E1 = 50, E2 = −77, E3 = −54.4, and
Istim is a stimulating Poisson spike train with parameter λ.

Model of ionically mediated bursting [31]. The model
consists of five differential equations,

C
dV

dt
= −INa − IK − ICl + Istim,

τ
d[K]o

dt
= γβ(IK − 2Ipump) − Ĩglia − Ĩdiffusion,

τ
d[Na]i

dt
= −γ(INa + 3Ipump),

dh

dt
= φ [αh(V )(1 − h) − βh(V )h],

dn

dt
= φ [αn(V )(1 − n) − βn(V )n].
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The first equation describes the spiking behavior where C
is the membrane capacitance, V is the membrane poten-
tial, and the membrane ion current densities are defined
as

INa = gNam
3
∞

h (V − ENa) + gNaL (V − ENa),

IK = gKn4 (V − EK) + gKL (V − EK),

ICl = gClL (V − ECl).

Istim is a stimulating Poisson spike train with parameter
λ. The second and third differential equations model the
time evolution of the local extracellular potassium and the
intracellular sodium concentrations. In these equations
the Ĩ’s are molar currents (millimolars per second) and
depend on the ion concentrations as follows:

Ip =
ρ

γ

⎛

⎝

1

1 + exp
(

25.0−[Na]i
3.0

)

⎞

⎠

×

(

1

1 + exp (5.5 − [K]o)

)

,

Ĩdiff = ε
(

[K]o − [K+]bath

)

,

Ĩglia =
Gglia

1.0 + exp
(

18.0−[K]o
2.5

) .

The fourth and fifth differential equations represent the
gating variables where

αh(V ) = 0.07 exp

(

−
V + 44

20

)

,

βh(V ) =
1

1 + exp(−0.1(V + 14))
,

αn(V ) =
0.01(V + 34)

1 − exp(−0.1(V + 34))
,

βn(V ) = 0.125 exp

(

−
V + 44

80

)

.

For simplification, we follow [31] in making the assumption

[K]i = 140.0 mM + (18.0 mM − [Na]i),

[Na]o = 144.0 mM − β ([Na]i − 18.0 mM)

which allows us to define the sodium and potassium equi-
librium potentials ENa and EK , respectively,

EK = 26.64 ln
(

[K]o
[K]i

)

,

ENa = 26.64 ln
(

[Na]o
[Na]i

)

.
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