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Abstract. It is known that the parameters in the deterministic and stochastic SEIR epidemic5
models are structurally identifiable. For example, from knowledge of the infected population time6
series I(t) during the entire epidemic, the parameters can be successfully estimated. In this article7
we observe that estimation will fail in practice if only infected case data during the early part of8
the epidemic (pre-peak) is available. This fact can be explained using a long-known phenomenon9
called dynamical compensation. We use this concept to derive an unidentifiability manifold in the10
parameter space of SEIR that consists of parameters indistinguishable to I(t) early in the epidemic.11
Thus, identifiability depends on the extent of the system trajectory that is available for observation.12
Although the existence of the unidentifiability manifold obstructs the ability to exactly determine the13
parameters, we suggest that it may be useful for uncertainty quantification purposes. A variant of14
SEIR recently proposed for COVID-19 modeling is also analyzed, and an analogous unidentifiability15
surface is derived.16

1. Introduction. In nonlinear systems, identifiability of parameters depends17

critically on location in phase space. In this article, we point out a particularly vivid18

illustration of this fact that occurs in SEIR (Susceptible, Exposed, Infected, Removed)19

modeling of epidemics. While the SEIR parameters are identifiable from the infected20

population I(t) if the entire epidemic is observed, the ability to infer parameters from21

the pre-peak portion of the epidemic is strictly limited, due to the approximately22

linear dynamics that occur early in the epidemic.23

We explain this failure of identifiability in Section 3, where we show that for a24

given instance of the infected time series I(t) early in the epidemic, there are multiple25

solutions with various parameters values that are approximately consistent with the26

same I(t). Moreover, we show that these multiple solutions form a two-dimensional27

unidentifiability manifold that indexes the alternative parameter sets that are consis-28

tent with I(t). The alternate parameter sets on this surface share the growth rate29

of the epidemic (the leading eigenvalue of the linearized system) even though their30

respective parameter values vary widely. Thus estimating all parameters solely from31

knowledge of the infected cases during the pre-peak portion of the trajectory is not32

possible in practice, with any parameter estimation algorithm.33

Since the unidentifiability set is two-dimensional, it follows that two of the three34

unknown parameters (in the basic SEIR) must be known a priori in order to determine35

the third. In particular, the reproductive number R0, which is often derived from two36
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of the SEIR parameters, is in practice not identifiable from I(t) alone.37

Unidentifiability is an underappreciated issue in infectious disease modeling. The38

authors of the comprehensive review [16] state that mathematical modeling of epi-39

demics “usually overparameterizes the model and ignores parameter identifiability,40

which makes it difficult to directly fit such models to data.” We corroborate this opin-41

ion by showing that it is impossible in practice to determine more than one unknown42

SEIR parameter from observations of I(t) preceding the peak stage of the epidemic,43

and exhibit the underlying mathematical reasons. While overparametrization is ram-44

pant in the literature, our focus here is deliberately on a reasonably-parametrized45

epidemic model, which suffers from unidentifiability only in a crucial region of phase46

space.47

We will refer to this deficiency as trajectory-dependent unidentifiability. The dif-48

ficulty stems from a phenomenon called dynamical compensation [24], as identified in49

linear compartmental models by Bellman and Aström [2] in 1970. In the terminology50

of [24], it is a structural unidentifiability [21, 25] in the linear model that approximates51

SEIR in the early portion of the epidemic, which gradually disappears as the nonlin-52

earities become significant as the epidemic progresses (see Figure 4). Determination53

of the full parameter set is possible if I(t) can be observed through the peak of the54

infection. In fact, it is well-known ([25], for example) that the parameters of SEIR55

are formally identifiable from the entire I(t) trajectory.56

To illustrate identifiability issues that arise in applications, we employ two in-57

dependent approaches to parameter estimation. One is a parameter estimation al-58

gorithm based on data assimilation from partial observations, and the other an im-59

plementation of Markov Chain Monte Carlo (MCMC) techniques [11]. Both are in-60

troduced in Section 2.2. These are two choices from several alternatives that are in61

common usage, some based directly on Bayesian inference [1], and others using data62

assimilation in more sophisticated ways [8, 12, 18]. The principal unidentifiability63

results of this article are independent of the method of parameter estimation applied.64

Our analysis was preceded by work on dynamical compensation for linear systems,65

for example in [27], that shows how to find alternate parameter sets whose solutions66

do not change the observable I(t). These solutions are designed to match the true67

underlying solution even during the initial and often unobservable transient at the68

outset of the epidemic. However, by ignoring rapidly decaying dynamics at early69

times, our analysis uncovers a larger set of alternative parameters combinations that70

match observations. Somewhat counter-intuitively, it is exactly this expanded set of71

parameters that appear to be explored by parameter estimation methods, not the72

more restrictive parameter set [20]. This indicates that our simplifying assumptions73

allow us to correctly anticipate the performance of these methods (see Figure 5).74

Despite the fact that the unidentifiability surface shows why exact determination75

of parameters is impossible during the pre-peak interval, it has a useful purpose for76

uncertainty quantification, because it constrains the set of alternative parameters that77

also generate I(t). Assume a parameter estimation algorithm is used to calculate a78

parameter set p from an observed I(t) early in the epidemic. Since the system is79

unidentifiable, another algorithm may provide another parameter set p′. However, we80

can expect it to lie on the unidentifiability surface of p, which is a constraint. We81

show in Section 4.3 that the systems corresponding to parameter sets chosen from the82

surface have dynamics much closer to the system generated by p than those chosen83

off the surface. By studying these nearby systems, we may be able to gain knowledge84

about the uncertainty of the system with estimated parameter set p′.85

As the complexity of parametrized dynamical systems models has steadily in-86
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creased over the past two decades, the question of identifiability of parameters has87

become critical. In particular, the nonlinearities inherent in modern dynamical models88

significantly complicate the problem, leading to considerable recent attention to the89

limits and analysis of identifiability [4, 26, 5, 20, 19, 9, 15]. In this work, we address90

a gap in the literature that is easily overlooked by global analysis, which is whether91

certain parts of trajectories, such as the outset of an epidemic, can lack identifiability92

from limited information, even when the entire trajectory considered in full does pos-93

sess identifiability. Our goal is to point out this vulnerability in a particular common94

case, and to encourage modelers to look for similar effects much more broadly.95

In Section 2 we review the deterministic and stochastic SEIR models and intro-96

duce two parameter estimation approaches. In Section 3 the notion of dynamical97

compensation is explored and its existence in a linearized version of SEIR is observed.98

The relevance to the problem of identifiability of parameters in the full nonlinear99

SEIR is noted in Section 4. In Section 5, the COVID-19 model of [18] is studied. A100

similar obstruction to identifiability caused by dynamical compensation is observed101

in this model.102

2. Identifying parameters in SEIR.103

2.1. The deterministic and stochastic SEIR models. The deterministic104

version of the SEIR model [10, 14] that we will consider is105

Ṡ = −βI S
N

106

Ė = βI
S

N
− αE107

İ = αE − γI108

Ṙ = γI(2.1)109

where the variables S,E, I, and R represent the populations of susceptible, exposed,110

infected, and removed patients, respectively and N = S+E+ I+R denotes the total111

population. Time is measured in days. We use the simplest, or SEIR without vital112

statistics model, which assumes N to be constant with no births and deaths. There113

are more complex versions with additional parameters, but the identifiability issues114

we want to describe occur even for this simplest model. The sole nonlinearity is the115

βIS/N term which moves patients from the susceptible compartment to the exposed116

compartment according to transmission rate coefficient β.117

We will interpret the model in the following way. The parameter α is the time118

constant of movement from exposed to infected; thus we assume that on average, the119

patient spends 1/α days as exposed before transitioning to infected, where we assume120

viral shedding begins. We will also make the assumption that symptoms are present121

in patients in the I compartment, so that the case can for the first time be observable.122

After 1/γ days in the I compartment, on average, the patient is removed from the123

population and does not return to the susceptible class.124

Our principal interest is in determining what information can be inferred from125

measured reports of infected cases I(t). We address two obvious limitations of these126

assumptions. First, perhaps not all infected cases are reported. Thus, the true in-127

fected number may be c1I instead of I. Furthermore, a portion of the infected cases128

may be asymptomatic, and are not reported due to that reason. Thus, the true in-129

fected number may be c2c1I. In either case, the true number of infected may not130

be knowable. If the true number of infected is proportional to the reported I, the131
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Fig. 1. (a) Solution of the SEIR equations (2.1) with initial conditions S = 106, E = 102, I =
0, R = 0. The parameter settings are β = 1.1, α = 0.2, γ = 0.5. (b) Result of data assimilation using
exact parameters of model with initial conditions S = 106, E = 0, I = 0, R = 0, and the reports ∆I
as inputs.

meaning of the contact transmission parameter β will be changed. However, many132

of the purposes of using the model, such as forecasts of future I(t), may still proceed133

unaffected.134

In addition to the deterministic version, we will also consider the SEIR model as135

a set of stochastic differential equations with Poisson noise. In this version, we will136

calculate trajectories as follows. For each time step, the right-hand side of the equa-137

tions will be evaluated by selecting from a Poisson distribution, and then integrated138

using an Euler method step. In other words, the values139

u1 = Poisson (βIS/N ∆t)140

u2 = Poisson (αE ∆t)141

u3 = Poisson (γI ∆t)142

are chosen to represent the contribution of the right-hand side at each step, i.e.143

∆S = −u1144

∆E = u1 − u2145

∆I = u2 − u3146

∆R = u3.(2.2)147

This version treats the SEIR model as a stochastic system for greater fidelity. How-148

ever, our main conclusions about identifiability will be relevant for both the deter-149

ministic and stochastic versions.150

2.2. Parameter estimation. Parameter estimation is customarily achieved by151

locating, implicitly or explicitly, the optimum of some auxiliary function that measures152

the fitness of the parameters. In some methods, the likelihood or marginal probability153

is maximized, while in others, an error or loss function is minimized.154

In one method to estimate parameters β, α, and γ from daily reports of the single155

observable I(t), we will choose a particular loss function based on data assimilation,156

and explicitly minimize it. This approach will be useful to illustrate the geome-157

try of the minima of the loss function in two different parts of the SEIR trajectory.158
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Our choice for the loss function will be the data assimilation error in I(t) incurred159

while using the proposed set of parameters to optimally reconstruct the trajectory160

(S(t), E(t), I(t), R(t)) from the observed I(t). The use of data assimilation to recon-161

struct unobserved variables is the basis of modern numerical weather prediction, and162

has started to appear in epidemic modeling [6, 8, 12]. For the deterministic SEIR,163

we employ a standard Ensemble Kalman Filter (EnKF) [23, 22] to reconstruct the164

dynamics. For the stochastic SEIR, we use an EnKF tailored to Poisson noise instead165

of the standard Gaussian assumption. The EnKF used for this purpose is based on166

the Poisson Kalman Filter (PKF) from [7].167

Data assimilation gives a way of reconstructing all variables of a differential equa-168

tions model from partial observations, for example by measurements of one key vari-169

able. For SEIR model (2.1), if the parameters β, α, and γ are known, the observable170

I(t), or alternatively the daily changes ∆I(t) = I(t) − I(t − 1), are in general suf-171

ficient to reconstruct the other three variables S,E, and R. Figure 1(a) shows a172

trajectory of a stochastic SEIR model (2.1) with parameters β = 1.1, α = 0.2, and173

γ = 0.5, and with initial conditions S = 106, E = 102, I = 0, R = 0. The inputs to174

the data assimilation algorithm are the model, the exact parameters, and the daily175

reports of new infections ∆I(t) = I(t) − I(t − 1). The assimilation algorithm uses176

the initial condition S = 106, E = 0, I = 0, R = 0. That is, it is allowed to know177

the (constant) total population, but no information about the initial caseload. The178

EnKF is used to estimate the most likely values of S(t), E(t), I(t), and R(t) given the179

reports ∆I(t). Figure 1(b) shows the resulting reconstructed trajectory, a reasonably180

accurate version of the original.181

If the parameters are not known, and incorrect parameters are used in the model,182

the reconstruction in general will be farther from the original. This leads to a conve-183

nient loss function to consider for the purposes of parameter estimation. Let L(β, α, γ)184

denote the mean squared difference between the observed ∆I(t) and the reconstructed185

∆I(t) from the EnKF, over a time interval [T1, T2]. Then minimization of L as a func-186

tion of the parameters should lead to the correct, or generating, parameters.187

To begin, we carried out this idea on the deterministic SEIR model (2.2) with188

a standard simplex minimization algorithm [17]. We started the simplex algorithm189

with 1000 starting guesses for the parameters β, α, γ that varied from the exact val-190

ues by about 50%. Figure 2(a) shows the cumulative results of the minimization191

procedure for a trajectory of length 100 days, using two different intervals of ob-192

servations, [T1, T2] = [0, 50] or [50, 100], with 1000 realizations of starting parameter193

guesses. There is a dramatic difference, depending on whether the time interval [0, 50]194

or [50, 100] is used for the input I(t). The red dottted curve is a histogram of ap-195

proximate parameters using ∆I(t) from the interval [0, 50]. The black histogram uses196

the interval [50, 100]. While the histogram shows no identifiability on [0, 50], on the197

interval [50, 100] the method finds the correct parameters with less than 0.1% error198

on over 95% of the 1000 attempts.199

The success of this simple approach to parameter estimation on [50, 100] (or the200

complete interval [0, 100], not shown) is due to the fact that the SEIR model (2.1) is201

structurally identifiable from I(t), as long as the peak of the epidemic can be observed.202

However, one can see that this approach fails on the outbreak part of the epidemic,203

as shown by the histogram in red. On the time interval [0, 50], the input I(t) is not204

sufficient to constrain the three parameters.205

Figure 2(a) also shows a test of a completely different approach to parameter206

estimation. We applied Markov Chain Monte Carlo (MCMC) to sample the posterior207

density of the parameters given the observations, namely P (β, α, γ |∆Iobs(t)) for t in208
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(a)

(b)

Fig. 2. Histograms of estimated parameters from I(t), collected from the time intervals [0, 50]
and [50, 100]. The SEIR model has β = 1.5, α = 0.2, γ = 0.5, and I(t) was used as input to
two different algorithms. Blue dot denotes exact values. (a) Parameters from I(t) generated by
deterministic SEIR. The red (dotted) and black traces use I(t) from [0, 50] and [50, 100], respectively,
by minimizing L(β, α, γ) from 1000 different trajectories of the deterministic SEIR model. The green
(dotted) and blue traces are marginals of the posterior density computed from MCMC using I(t) from
[0, 50] and [50, 100], respectively. (b) Parameters from I(t) generated by stochastic SEIR. The red
and black traces use I(t) from [0, 50] and [50, 100], respectively as in (a), by minimizing L(β, α, γ).
The MCMC method is not represented in (b), since it would likely be computationally intractable.

the same intervals as above. In the deterministic SEIR (used for the MCMC com-209

putation of the posterior) the likelihood P (∆Iobs(t) |β, α, γ) is a product of Poisson210

densities which allows easy sampling of the true posterior P (β, α, γ |∆Iobs(t)). In211

Fig. 2(a) we show the three marginals of the posterior. We notice similar qualitative212

behavior for this estimator, namely that the parameters are identifiable from the sec-213

ond half [50, 100] of the epidemic (blue curve), but almost completely unidentifiable214

from I(t) during the first half [0, 50] (green curve).215

Figure 2(b) returns to minimization of the data assimilation error L(β, α, γ) as216

above, but applied to the stochastic SEIR model and using a Poisson-based EnKF. The217

histogram shows the variation over 1000 different realizations of Poisson noise. For218

the interval [50, 100], the variation is increased for stochastic SEIR in comparison to219

the deterministic SEIR, but the estimates are unbiased around the correct parameter220

settings. For [0, 50], no meaningful estimation occurs.221

In summary, for both deterministic and stochastic versions of the SEIR model,222

both data assimilation-based and MCMC-based algorithms are able to identify the223

three parameters easily given I(t) from the time interval [50, 100], and fail on the224

interval [0, 50]. The intervals [0, 50] and [50, 100] are chosen to be representative of225

intervals for which identifiability fails and succeeds, respectively. Similarly chosen226

intervals show the same results, that early in an epidemic, before the peak is reached,227

there is a structural reason that the parameters will not be identifiable. We address228
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that reason in the next two sections.229

3. Dynamical compensation in linear models. We will later address the230

fact that during the pre-peak part of the epidemic, the SEIR model is approximately231

linear, and E and I are approximately proportional to one another. The goal of232

this article is to examine how this fact imposes a constraint on our ability to infer233

parameters from data, in particular from observations of I(t). The mechanism that234

causes this is called dynamical compensation. For linear compartmental systems, this235

phenomenon was reported as early as [2, 3].236

3.1. Asymptotic behavior of linear models. Consider a linear initial value237

problem consisting of a vector differential equation ẋ = Ax, satisfying initial con-238

ditions x(0) = x0, where x = [x1, . . . , xn]. Assume A has distinct real eigenvalues.239

Then solutions are of form240

x1(t) = c11e
λ1t + c12e

λ2t + . . .+ c1ne
λnt241

...242

xn(t) = cn1e
λ1t + cn2e

λ2t + . . .+ cnne
λnt243

where λ1 > λ2 > . . . > λn are the eigenvalues of A. Because of the exponential form244

of the solutions, as t moves away from zero, the solutions begin to closely approximate245

x1(t) = c11e
λ1t246

...247

xn(t) = cn1e
λ1t.248

Assuming c11 6= 0, this means that for each i, xi(t) ≈ cix1(t) for some constant ci.249

Example. Consider the linear initial value problem250

Ė = −αE + βI251

İ = αE − γI(3.1)252

which we write as ẋ = Ax, x(0) = [E0 I0]T where253

(3.2) x =

[
E
I

]
, A =

[
−α β
α −γ

]
.254

Let A = PDP−1 be the diagonalization, where the columns of P are eigenvectors of A.255

The diagonalization exists because α, β, γ > 0 implies A has distinct real eigenvalues256

λ1 > λ2. The solution is257

(3.3) x(t) = P

[
eλ1t 0

0 eλ2t

] [
B1

B2

]
where P

[
B1

B2

]
=

[
E0

I0

]
.258

We can consider separate cases, depending on the constants B1 and B2. Although259

the Bi have no particular physical significance, they are formally significant because260

they represent linear combinations of E0 and I0 that grow exponentially with exponent261

λi, respectively. Thus if one of the Bi is zero, the solutions E(t) and I(t) will evolve262

exactly proportionally. If both are nonzero, they will still behave asymptotically263

proportional to one another, with exponent λ1, the larger eigenvalue.264
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To be more precise, in what we will call the exactly proportional case, one or both265

of the Bi is zero. If B1 = B2 = 0, the solution is identically zero. If one of the Bi = 0,266

or equivalently the eλit term of the solution is absent, then I(t) = cE(t) for some267

constant c and for all t.268

In what we call the approximately proportional case, both Bi 6= 0, and the solution
will be

x(t) =

[
E1

I1

]
eλ1t +

[
E2

I2

]
eλ2t,

meaning that I(t) ≈ cE(t) asymptotically, where c = I1/E1. Note that in all cases,269

I(t) ≈ cE(t) with the approximation improving exponentially in time.270

3.2. Identifiability in linear systems. A general approach to assessing iden-
tifiability in linear systems is suggested in [27]. To search for alternative solutions to
(3.1) with the same output I(t), but different E(t) and different parameters (α′, β′, γ′),
define the coordinate change z = Sx for a nonsingular matrix

S =

[
s11 s12
s21 s22

]
.

Specifically, we seek an S that satisfies

z = Sx = S

[
E
I

]
=

[
F
I

]
for some F . The new variable z will reproduce I(t) as its second entry, using a271

“dynamically compensating” F (t) as its first entry, with a different set of parameters,272

determined below.273

This equation is expressible as [0 1]Sx = [0 1]x. From (3.3), this constraint is274

[0 1]SP

[
B1e

λ1t

B2e
λ2t

]
= [0 1]P

[
B1e

λ1t

B2e
λ2t

]
275

[0 1] (S − I)P

[
B1e

λ1t

B2e
λ2t

]
= 0276

[s21 s22 − 1]P

[
B1e

λ1t

B2e
λ2t

]
= 0.277

Transposing yields278

[B1e
λ1t B2e

λ2t]PT
[

s21
s22 − 1

]
= 0279

for all t. Now we split into two cases, depending on the initial conditions (see (3.3)).280

Case 1 (Approximately proportional). In this case, B1 6= 0 and B2 6= 0. Then for two281

different times t1, t2, the rows of the leftmost matrix in282 [
eλ1t1 eλ2t1

eλ1t2 eλ2t2

] [
B1 0
0 B2

]
PT
[

s21
s22 − 1

]
=

[
0
0

]
283

are linearly independent. Since all matrices on the left side are nonsingular, s21 = 0
and s22 = 1, and therefore

S =

[
s11 s12
0 1

]
.
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With this change of coordinates, we can consider the alternative system to (3.1) as284

ż = Sẋ = SAx = SAS−1z, where285

SAS−1 =

[
α(s12/s11 − 1) αs12(1− s12/s11) + βs11 − γs12

α/s11 −αs12/s11 − γ

]
286

=

[
−α/s11 α(s11 − 1)/s11 + βs11 − γ(s11 − 1)
α/s11 −α(s11 − 1)/s11 − γ

]
≡
[
−α′ β′

α′ −γ′
]

(3.4)287

and where we have set s12 = s11 − 1 to match the desired form (3.1). This gives288

a family of alternative solutions of (3.1) sharing I(t), but with different parameters289

and different E(t), that are indexed by the single parameter s11. The revised E(t) is290

F (t) = s11E(t) + (s11 − 1)I(t). These solutions exactly match I(t) for all t ≥ 0, and291

satisfy292

(3.5)

[
Ḟ

İ

]
=

[
−α′ β′

α′ −γ′
] [

F
I

]
.293

The approximately proportional case provides a one-dimensional family of alter-294

native solutions. As promised in [27], these alternative solutions show that in the295

approximately proportional case, the parameters of (3.1) are unidentifiable from I(t).296

That is, on the basis of I(t) alone, one cannot distinguish between the infinite set297

of solutions of (3.5). If our information about the system (3.1) or its parameters298

are to be inferred from I(t), the existence of multiple solutions consistent with the299

observations of I(t) will make recovering the parameters effectively impossible.300

Case 2 (Exactly proportional). Now assume that either B1 or B2 is zero. Then301

I(t) = cE(t) for all t.302

The proportionality constant c can be calculated from the equations, and depends303

only on the parameters α, β, γ. Keeping the approximation S ≈ N and substituting304

I = cE:305

Ė ≈ cβE − αE306

cĖ ≈ αE − cγE307

which implies308

(3.6) c(cβ − α) = α− cγ.309

The largest solution c of this quadratic equation is real and positive, assuming that310

α, β, γ > 0.311

Lemma 1. Let α, β, γ > 0 and let c > 0 be the unique positive solution of the312

quadratic equation313

(3.7) c(cβ − α) = α− cγ.314

Define E(t) = E0e
(cβ−α)t and I(t) = cE(t). Let α′, β′, γ′ > 0 lie on the surface in R3315

defined by316

(3.8) (α′ − α)(γ′ − γ − (β′ − β)) + (α/c− β)(α′ − α) + βc(γ′ − γ)− α(β′ − β) = 0317

and define Fα′,β′,γ′(t) =
(γ′ − γ)c+ α

α′
E(t). Then for all α′, β′, γ′ satisfying (3.8), the318

set (F = Fα′,β′,γ′ , I, α′, β′, γ′) satisfy319

Ḟ = −α′F + β′I320

İ = α′F − γ′I.(3.9)321
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Fig. 3. Plot of SEIR populations with parameters β = 1.1, α = 0.2, γ = 0.5. The new cases ∆I
are denoted by the dashed curve (Reports in the legend). (a) Full plot on [0, 100]. (b) Magnification
of (a), restricted to the time interval [0, 50]. (c) The blue curve is a plot of the ratio I(t)/E(t). Here
I ≈ cE for the first 50 days, where c = 0.31, as calculated from (3.6).

Proof. Set A = (γ′ − γ)c+ α, so that F = A
α′E.

(i) Note that the right-hand side of the first equation is

β′I − α′F = cβ′E(t)− α′F = α′(cβ′/A− 1)F

We can calculate322

α′(cβ′ −A) = (α+ ∆α)[c(β + ∆β)− c∆γ − α]323

= cαβ − cα∆γ − α2 + c[∆α∆β + β∆α+ α∆β −∆α∆γ − α

c
∆α]324

= cαβ − cα∆γ − α2 + c2β∆γ = (cβ − α)(c∆γ + α) = (cβ − α)A,325

where we have used the notation ∆α = α′ − α,∆β = β′ − β,∆γ = γ′ − γ, and used
(3.8) to arrive at the last line. Dividing by A recovers cβ − α. The time derivative of
F (t) is (cβ − α)F , which verifies the first differential equation of (3.9).
(ii) The right-hand side of the second equation is

α′F − γ′I = AE − γ′cE = [(γ′ − γ)c+ α− γ′c]E = (α− γc)E = c(cβ − α)E,

by the quadratic equation (3.6). This agrees with İ, verifying the second differential326

equation.327

The significance of the lemma is that in Case 2, the equation (3.8) reveals a two-328

dimensional family of solutions of (3.9) with asymptotically identical I(t), further329

complicating the identifiability of the parameters. There are substantially more al-330

ternative solutions in the exactly proportional Case 2, a two-dimensional set instead331
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of a one-dimensional set found in Case 1. However, since the asymptotic convergence332

is exponential, and because infected case counts are often noisiest at the outset of an333

epidemic, the difference is likely to be insignificant in practical applications. Curi-334

ously, we will observe in the next section that the alternative parameter sets found335

by standard estimation procedures appear to fill out the two-dimensional set found336

in Case 2, even though as a solution of a system of linear equations, the initial condi-337

tions are less generic than in Case 1. This fact, that the solutions that are mistakenly338

mirrored by a parameter estimation algorithm will often correspond to non-generic339

choices of solutions, will be opaque to the modeler – there is no way to tell whether340

the solution being reproduced by data assimilation is generic or non-generic. One can341

visualize the comparison in Figure 5.342

Fig. 4. Estimation of parameters by minimization of data assimilation error on the time
interval [0, T ] for various T . Each red dot is the value of the sum of squares assimilation error
for randomly chosen parameters (β′, α′), while the exact γ′ = γ = 0.5 is assumed known. The
blue dot represents the calculated minimum. For T significantly below 80, the loss function has no
well-defined minimum, and the generating parameters (β = 1.1, α = 0.2) are poorly estimated. For
larger T , the minimum becomes more pronounced and the parameters can be well estimated.

4. Applications to identifiability. In this section, we apply our knowledge343

of dynamical compensation in linear compartmental models from the last section to344

the nonlinear SEIR model. We find that in using a linear approximation valid in the345

pre-peak portion of the epidemic, it is the exactly proportional case (case 1 above)346

that turns out to be the most informative on identifiability.347

4.1. Unidentifiability in pre-peak SEIR. The SEIR model (2.1) is a coupled348

set of nonlinear differential equations, but at the beginning of the epidemic, S ≈ N .349

As the first cases of exposed individuals begin to transition into the infected class,350

note that the second and third equations approximate a linear system351

Ė ≈ −αE + βI352

İ ≈ αE − γI.353
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(a) (b)

Fig. 5. The unidentifiability surface defined by (3.8). (a) The red plotted points are the param-
eter values that minimized (landed in the smallest one percent of values) the loss function L(β, α, γ)
from the stochastic nonlinear SEIR model (2.1) trained on I(t) from the time interval [0, 50]. They
are in remarkable agreement with the quadric surface (3.8) generated by the “exactly proportional”
solutions. The black curve represents the parameter sets that generate the “approximately propor-
tional” solutions from (3.4). The color represented on the surface corresponds to the computed
R0 = β′/γ′. (b) MCMC using I(t) on [0, 50] from the deterministic version of the nonlinear SEIR
(2.1) to sample the posterior (red dots). They all lie on the surface (3.8). The true parameters are
represented by the black dot.

This approximation was exploited in [13] to derive a formula R0 = 1 + (L + D)λ1 +354

LDλ21 for the reproductive number R0 = β/γ in case β is unknown but the latent and355

infectious periods L = 1/α and D = 1/γ and the exponential growth rate λ1 from356

(3.3) can be independently estimated.357

According to the previous section, we will observe the asymptotics of the approx-358

imately linear dynamics,359

I(t) ≈ cE(t)360

for some c as t moves away from 0. In fact, this behavior is apparent in Figure 3(b),361

which is a magnification of panel (a). The trace of I(t) appears to be a constant362

proportion of E(t), and this is confirmed in Figure 3 (c) where the ratio is plotted363

versus time.364

Figure 4 shows the results of a parameter estimation computation using the data365

from Figure 3, which sets β = 1.1, α = 0.2, and γ = 0.5. We run data assimilation on366

the time interval [0, T ] using only the daily case numbers ∆I(t) as input, for various367

choices of T . To simplify the situation, we will fix the parameter γ = 0.5 to be the368

exact value, and attempt to estimate β and α. We accomplish this by minimizing369

L(β, α, 0.5) as described in Section 2.2.370

The function L(β, α, 0.5), sampled at 10,000 random values, is displayed in Figure371

4, projected onto the β and α axes, respectively, for ease of analysis. For “pre-372

peak” values of T , the parameters β and α are not well estimated. As T increases373

and approaches the epidemic peak 60 < T < 80, the parameter estimates gradually374

become quite accurate. This corroborates our finding in Figure 2, that parameter375

estimation fails to isolate correct parameters early in the epidemic.376

The lesson from Figure 4 is that as the proportion of susceptibles S(t)/N(t) de-377

creases from 1, the error bounds on the parameter estimates will grow. The parameters378
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are identifiable for [0, T ] for T well above 50 due to the fact that S(t)/N(t) < 1, and379

the parameter estimation will degrade continuously as T is decreased. This degrada-380

tion is shown explicitly in Figure 4.381

4.2. The unidentifiability manifold.. The dynamical compensation results of382

the previous section explain the phenomenon seen in Figure 4. The unidentifiability383

manifold, in this case a surface, is plotted in Figure 5. The red dots identify the384

parameter points (β′, α′, γ′) whose evaluated loss function computed on the time385

interval [0, 50] is in the lowest 1% of points (among 10,000 random points sampled).386

The points lie extremely near the unidentifiability surface (3.8). The wide distribution387

of the points shows the impossibility of estimating the generating parameter set (β =388

1.1, α = 0.2, γ = 0.5) with any accuracy. The color shading on the surface corresponds389

to reproductive number R0 = β′/γ′. We note that R0 is not significantly constrained390

by the parameters with minimal loss function.391

The MCMC approach introduced in Section 2.2 shows a similar story. In this case,392

we use observations of the deterministic model (2.2), and apply MCMC using a single393

realization of I(t) in the time interval [0, 50] as observable. The true parameters lie394

inside the envelope of the posterior, as shown in Fig. 5(b). The Metropolis-Hastings395

algorithm within MCMC is rejecting thousands of proposals that do not lie on the396

surface and only accepting those that do.397

Since the unidentifiability surface is a two-dimensional set, we conclude that even398

if one of the parameters is known, the other two are not identifiable – the set of399

possible parameters will only be reduced to a one-dimensional curve. For example,400

with fixed γ, the data assimilation error on the interval [0, 50] has a poorly-defined401

minimum as a function of (β, α). To illustrate this, fixing γ = γ′ = 0.5 in in the402

unidentifiability manifold equation (3.8) yields the curve α′ = α(β−α/c)/(β′−α/c).403

This curve is plotted in blue in Figure 6(a). The plotted red points are the one percent404

of (β, α) pairs with smallest values of the loss function. Instead of a localized ball near405

the true value (β, α) = (1.1, 0.2), there is a curve of pairs equally fitting the observed406

data, which are therefore indistinguishable to the loss function. These pairs form the407

flat minima of the loss function seen in Figure 4 for times T preceding the epidemic408

peak.409

Similarly, if we fix a different parameter, we see the same phenomena when trying410

to estimate the other two parameters. For example, fixing α′ = α = 0.2, the slice411

through the unidentifiability manifold (3.8) is γ′ = γ +α(β′ − β)/(cβ), a line. Figure412

6(b) shows the line in blue, with the near-minimal pairs of the loss function shown413

as red dots. Finally, fixing β′ = β = 1.1 yields the curve γ′ = γ + (β − α/c)/(1 +414

βc/(α′ − α)) from the manifold (3.8), shown in Figure 6(c).415

On the other hand, fixing two parameters on the unidentifiability surface implies416

that the third can be determined. That is, if we have knowledge of the true α and417

γ, setting α′ = α and γ′ = γ in (3.8) implies that β′ = β, so there is a unique418

solution with those parameter settings. Thus even on the pre-peak interval [0, 50]419

in the example, if α and γ are known, then β is structurally identifiable from the420

observations of I(t).421

Of course, there are many other figures of merit that could be minimized to422

determine the parameters from the observed I(t), either based on data assimilation423

errors, maximization of likelihood, or on some other probabilistic measure. However,424

during the pre-peak part of the epidemic, they will all be susceptible to the alternative425

solutions that are equally compatible with I(t), implicit in dynamical compensation.426

A perhaps more intuitive view of the unidentifiability surface, if less geometric,427
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Fig. 6. Continua of best parameter sets from the same I(t). (a) The dots denote the one
percent of (β′, α′) pairs (chosen from 10000 random pairs) with the smallest sum of squares error
from data assimilation over the interval [0, 50]. The blue curve is given by equation (3.8) with
β′, α′, c as in Figure 3, and setting γ = γ′ = 0.5. (b) The dots are the (β′, γ′) pairs with smallest
assimilation error for fixed α = α′ = 0.35. Equation (3.8), plotted as the blue dashed curve, is the
line γ′ = γ +α(β′ − β)/(cβ). (c) The dots are the (α′, γ′) pairs with smallest assimilation error for
fixed β = β′ = 0.7. The red dashed curve is γ′ = γ + (α′βc)/(α′ + βc− α) − α/c from (3.8) setting
β = β′ = 0.7.

is that it is the set of parameters for which the leading eigenvalue λ1 of the resulting428

system is equal to the λ1 (see (3.3)) of the underlying system that generated I(t). (In429

fact, this leads to an alternate derivation of (3.8).) Thus, if we trust the parameter430

estimation algorithm to return to us a parameter set that is at least on the unidenti-431

fiability surface, then it will have the correct λ1. Even if the parameters are wrong,432

this fact can be exploited for uncertainty quantification purposes, as we discuss in the433

next section.434

4.3. Uncertainty quantification. The unidentifiability surface (3.8) is useful435

for theoretical reasons, to show the impossibility of isolating the original parameter436

set p from the infinity of other systems that approximately share I(t) during the437

beginning portion of an epidemic. Next, we suggest that it may be useful in practice438

for uncertainty quantification.439

It turns out to be a helpful fact that the unidentifiability surface generated by an440

arbitrary parameter set p indexes the set of parameter sets that share the observed441

I(t). Assume that we use a parameter estimation algorithm with input I(t), and442

estimate the parameter set as p′, that lies on the surface. The roles of p and p′ are443

symmetric, so we can also consider that p lies on the unidentifiability surface generated444

by p′. That means we can reverse the roles: switch the primed and unprimed variables445

in (3.8), noting that c must be replaced by c′ computed from (3.7) with unprimed446

variables replaced with primed variables.447

As an illustration, assume the correct parameters are p = (β, α, γ) = (1.1, 0.2, 0.5)448

but that a parameter estimation algorithm instead returns, for example, an estimate449

p′ = (β′, α′, γ′) = (0.852, 0.25, 0.4) that lies on the unidentifiability surface. The set450

p′ given here is just for illustration; in this case it was chosen by making an arbitrary451

choice of α′ and γ′, and then computing the corresponding β′ lying on the surface452

(3.8). Next, we ignore the origin of p′, and consider what we can infer from it. In453

Figure 7(a), we produce 30 trajectories of the stochastic SEIR by perturbing p′ by454

10% to new values p′′ = (β′′, α′′, γ′′). We have overlaid as a yellow curve the original455

trajectory that produced I(t), generated by the parameters p. There is a large amount456

of variability in the 30 trajectories.457

Figure 7(b) shows trajectories of 30 stochastic SEIR systems where we have ran-458
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Fig. 7. Trajectories of 30 systems with alternative parameter values. (a) Parameter val-
ues p′′ = (β′′, α′′, γ′′) are chosen by perturbing randomly with 10% Gaussian noise from a fixed
p′ = (β′, α′, γ′) = (0.852, 0.25, 0.4). The original trajectory with parameter values p = (β, α, γ) =
(1.1, 0.2, 0.5) is traced in yellow. (b) Same as (a), but the p′′ are chosen from the surface (3.8).
Specifically, the p′′ are formed by perturbing (α′′, γ′′) by 10% and calculating the corresponding β′′

lying on the surface.

domly changed α′ and γ′ by 10% to α′′ and γ′′, but this time have computed the459

corresponding β′′ that lies on the surface. We reiterate that the surface, being the460

unidentifiability surface of p′, can be computed from p′ and is therefore known to us,461

even if the original p is unknown. The ensuing trajectories are much more faithful to462

the original system, given that they share the leading dynamical eigenvalue λ1. Thus,463

even starting with a mildly incorrect parameter set p′, by querying nearby points p′′ on464

its unidentifiability surface, we see reasonable facsimiles of the underlying dynamics465

generated by the original parameters p.466

Note that there are limitations on how far the incorrect parameters p′ can be467

from the original parameters p, in order for the trajectories produced in this way to468

be representative of the original systems. In particular, the constant c in the propor-469

tionality I(t) ≈ cE(t) is in general different for the new system, and so its trajectories470

will be different. Our informal observation is that if the alternative parameters are471

within about 20% of the originals, the approximating trajectories may still be useful472

for uncertainty quantification.473

This observation opens up the possibility of using the unidentifiability surface for474

uncertainty quantification purposes, by studying the spread of nearby solutions as a475

function of uncertainty in the parameters. If an uncertainty in the estimate can be476

determined from the algorithm generating the estimate, bootstrapping techniques can477

be used to move along the surface (3.8) and quantify the variance of key aspects of the478

family of nearby trajectories. We leave a more complete analysis of this phenomenon,479

and its possible utility to forecasting, to future investigation.480

5. Identifiability in other SEIR-like models. The same identifiability prob-481

lems are likely to occur in models similar to SEIR. We describe the details for one482

such example that was proposed recently in [18].483

5.1. The SEUIR model.. In [18], the model was used to represent populations484

in a specific city, and included extra external inputs from other cities. The underlying485
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Fig. 8. (a) Solution of the stochastic SEUIR equations (5.2) with initial conditions S =
106, E = 102, U = 0, I = 0, R = 0. The parameter settings are β = 0.9, z = 0.3, w = 0.2, d = 0.5. (b)
Ratios U(t)/E(t) and I(t)/E(t) (blue traces) compared with b = 0.16 and c = 0.32 calculated from
(5.4), shown in red.

SEIR-style model is486

Ṡ = −β(U + I)
S

N
487

Ė = β(U + I)
S

N
− E

Z
488

U̇ = (1− α)
E

Z
− U

D
489

İ = α
E

Z
− I

D
490

Ṙ =
U

D
+
I

D
(5.1)491

with constant total population N = S + E + U + I + R, where 0 < α < 1. The492

new variable U represents unreported infected cases, while I is reserved for reported493

infected cases. As for SEIR, we will consider I(t) as the observable variable.494

For simplicity, we rewrite the parameters as z = 1/Z, d = 1/D,w = α/Z to arrive495

at the equivalent but more user-friendly system496

Ṡ = −β(U + I)
S

N
497

Ė = β(U + I)
S

N
− zE498

U̇ = (z − w)E − dU499

İ = wE − dI500

Ṙ = d(U + I)(5.2)501

where N = S + E + U + I +R, with parameters β, z, w and d, 0 < w < z, which we502

call the SEUIR model.503
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Fig. 9. The unidentifiability surface defined by (5.6). The red plotted points are the parameter
values that minimized (landed in the smallest one percent of values) the loss function L(β′, z′, d′)
from the nonlinear SEUIR model (5.2), where w′ = w = 0.2 was assumed known. The parameters
generating the input I(t) were (β, z, w, d) = (0.9, 0.3, 0.2, 0.5). The input I(t) was used from the
pre-peak time interval [0, 50]. The surface is colored corresponding to R0.

5.2. Unidentifiability in SEUIR. Again consider the pre-peak portion of the504

epidemic, where S ≈ N . Then there is an approximating linear system505

Ė = β(U + I)− zE506

U̇ = (z − w)E − dU507

İ = wE − dI(5.3)508

which will exhibit dynamical compensation. Given our experience with SEIR, we509

consider solutions of (5.3) where E,U and I are proportional, say U(t) = bE(t) and510

I(t) = cE(t). One checks that if E(t), U(t), I(t) are such solutions, then E(t) =511

E0e
[β(b+c)−z]t where512

b =
2(z − w)√

(d− z)2 + 4βz + d− z
513

c =
2w√

(d− z)2 + 4βz + d− z
(5.4)514

It will be convenient in proving the lemma below to note the identities515

(5.5) b[d− z + β(b+ c)] = z − w, c[d− z + β(b+ c)] = w, w(b+ c) = zc.516

517

Lemma 2. Let β, z, w, d > 0 and E(t), U(t), I(t) be solutions of (5.3). Further,518

let β′, z′, w′, d′ > 0 and consider the functions519

F (t) =
c(d′ − d) + w

w′
E(t)520

V (t) =
c

b

[
z′

w′
− 1

]
U(t)521

where b and c are defined in (5.4). Assume that β′, z′ and d′ lie on the surface defined522

by523

(5.6) ∆z(∆β −∆d) + z∆β + (β − w/c)∆z − β(b+ c)∆d = 0524
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where we denote ∆β = β′ − β,∆z = z′ − z,∆d = d′ − d.525

Then for all β′, z′, d′ > 0 satisfying (5.6) and any 0 < w′ < z′, the set526

(F = Fβ′,z′,w′,d′ , V = Vβ′,z′,w′,d′ , I, β
′, z′, w′, d′) satisfies527

Ḟ = β′(V + I)− z′F528

V̇ = (z′ − w′)F − d′V529

İ = w′F − d′I.(5.7)530

Proof. The left-hand side of the first equation is

Ḟ =
c∆d+ w

w′
Ė =

c∆d+ w

w′
[β(b+ c)− z]E.

The right-hand side is531

β′(I + V )− z′F = β′(cE + c[z′/w′ − 1]E)− z′ c∆d+ w

w′
E532

=
β′cz′ − z′[c∆d+ w]

w′
E533

=
E

w′
[c[∆z∆β −∆z∆d+ z∆β + (β + w/c)∆z] + βcz − zc∆d− zw]534

=
E

w′
[cβ(b+ c)∆d+ βcz − zc∆d− zw]535

=
E

w′
[∆d[β(b+ c)c− zc] + βcz − zw]536

=
E

w′
[c∆d[β(b+ c)− z] + βw(b+ c)− wz]537

=
E

w′
(c∆d+ w)(β(b+ c)− z)538

where we used the unidentifiability surface equation (5.6), and used the identity w(b+539

c) = zc from (5.5) in the penultimate line. This matches the left-hand side.540

The second and third equations use only the definitions of F and W . For the
second equation,

Ẇ =
c(z′ − w′)

bw′
U̇ =

c(z′ − w′)
w′

[β(b+ c)− z]E,

and the right-hand side is

(z′−w′)
[
c∆d+ w

w′
E

]
− d
′c(z′ − w′)

w′
E =

z′ − w′

w′
[c∆d+w−d]E = (z′−w′)(w−cd)E

which agrees with the left side by (5.5). The left side of the third equation is

İ = c[β(b+ c)− z]E

which matches the right side

w′
c∆d+ w

w′
E − d′cE = (w − cd)E

by (5.5).541

This manuscript is for review purposes only.



IDENTIFIABILITY OF INFECTION MODEL PARAMETERS 19

0.8 1 1.2 1.4 1.6
'

0

0.1

0.2

0.3

0.4

0.5

z'

(a)

0.5 1 1.5
'

0.4

0.6

0.8

1

d'
(b)

0 0.1 0.2 0.3 0.4 0.5
z'

0

0.2

0.4

0.6

d'

(c)

Fig. 10. Continuous families of best parameter sets that share the same I(t). The dots denote
the one percent of pairs (chosen from 10000 random pairs) with the smallest sum of squares error
L from data assimilation over the interval [0, 50]. The solid curve is (5.6) with ∆w = 0 and (a)
∆d = 0, (b) ∆z = 0, (c) ∆β = 0.

Figure 9 shows a plot of the unidentifiability surface in R3, along with a plot of542

the one percent of random parameter sets (β, z, d) that have the lowest loss function543

values from the nonlinear SEUIR model, using I(t) as input, on the pre-peak interval544

[0, 50]. The generating parameters were β = 0.9, z = 0.3, w = 0.2, and d = 0.5.545

These parameter sets will be practically indistinguishable when attempting parameter546

estimation with I(t) only over this interval. Here the w parameter value has been547

fixed at the generating value w = 0.2.548

Figure 10 shows the results of repeating the sampling of the loss function while549

fixing w = 0.2 and a second parameter. For example, in Figure 10(a) the best one550

percent of parameter sets (β, z) are plotted as dots, along with the relation (5.6) with551

∆d set to 0. The relation, plotted as a curve, is z′ = z(β′ − w/c)/(β′ − w/c), and552

matches the data accurately. In Figure 10(b), the parameter z′ = z = 0.3, and ∆z = 0553

in (5.6) gives a line d′ = d+ z(β′ − β)/(β(b+ c)). In Figure 10(c) with β′ = β = 0.9,554

the curve is d′ = d+ (β − w/c)(z′ − z)/(z′ − z + β(b+ c).555

The identifiability problem with SEUIR is arguably worse than for SEIR, since556

a glance at the unidentifiability relation (5.6) shows no ∆w term. Thus the multiple557

solutions of Lemma 2 exist for any value of w′ < z′. These solutions have (β′, z′, d′)558

independent of w′, while having adjusted F (t) and W (t) that do depend on w′. This559

results in an added dimension of unidentifiable parameters. In other words, Figures 9560

and 10 can be reproduced identically if w′ is fixed at an inaccurate value w′ 6= w. This561

means that the actual unidentifiability set is a two-dimensional set in R4 of points562

(β′, z′, w′, d′) satisfying (5.6) and all w′ such that 0 < w′ < z′.563

A final comment about the SEUIR model (5.2) is that one can introduce the new564

variable Y = U + I and arrive at the equivalent SEIR system565

Ṡ = −βY S

N
566

Ė = βY
S

N
− zE567

Ẏ = zE − dY568

Ṙ = dY(5.8)569

where N = S +E + Y +R. This may explain the disappearance of the parameter w′570

in the unidentifiability surface equation (5.6). However, under the model (5.2), the571

assumption is that I(t) is observed, not Y (t).572
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6. Discussion. In common epidemic models, practical identifiability from the573

infected cases variable I(t) depends strongly on what portion of the population trajec-574

tory is observed. In the pre-peak interval, when S(t) ≈ N , the linear approximation575

to the full model admits an infinity of solutions with the same I(t) by adjusting the576

unobserved population variables to compensate, a property known as dynamical com-577

pensation. The combinations of parameters that allow for this compensation are given578

by (3.8) and (5.6) in Lemmas 1 and 2, in what we call the unidentifiability surface,579

or unidentifiability manifold. The multiple solutions that coexist in this scenario will580

defeat any parameter estimation method that relies on observing only I(t) to find the581

complete set of parameters. Since the unidentifiability manifold is two-dimensional,582

at least two more independent pieces of information are necessary to isolate any of583

the parameters. This also applies to most combinations of the parameters, such as584

the reproductive rate R0. These obstructions to identifiability disappear if the entire585

time history, including the peak of the epidemic, can be observed.586

We have shown these identifiability obstructions exist for the popular SEIR model587

and another more recent model. It is likely that any other closely-related version of588

SEIR, including versions that include vital dynamics, and compartmental models such589

as SEIRS, SIRD, etc. will harbor similar obstructions, due to the same phenomenon.590

It is notable that the unidentifiability surfaces found for both models are codi-591

mension one in parameter space. We conclude that if all but one of the parameters592

is known a priori, then that last parameter can be determined from an estimation593

process like the minimization technique used here, even during the pre-peak portion594

of the epidemic. We have also proposed that knowledge of the unidentifiability sur-595

face may be crucial for the development of practical uncertainty quantification for596

parameter estimates, although pursuit of that direction is beyond the scope of this597

article.598
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