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Robust methods to detect coupling among nonlinear dynamic time series
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Two numerical methods are proposed to detect and analyze coupling in time series from deterministic
nonlinear systems. The first identifies the presence of coupling or interdependence, while the second determines
the directionality of coupling. The second method can also identify latent coupling—series that are not directly
coupled but are correlated due to influence by another, unobserved system. Both methods accommodate periodic,
aperiodic, and chaotic dynamics, and use order statistics derived from relative distances within a time-delay
embedding. The methods are intended to be practical and apply to data sets consisting of simultaneous system
recordings, and robust to observational noise due to their use of order statistics.
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I. INTRODUCTION

Determining causal relationships from time series data is a
core challenge in many scientific and engineering fields. This
task becomes especially difficult when dealing with nonlin-
ear dynamic systems, where the deterministic effects of one
component on another may be indirect, delayed, or obscured.
In such settings, the assumption that different causes act in-
dependently often fails due to feedback and coupling. More
importantly, with nonlinear dynamics, which are ubiquitous
in nature, causal relationships can occur even when there is no
measurable correlation between variables or coupled systems
[1].

The traditional link between causation and correlation
reflects the historical influence of linear models, where Pear-
son correlation is often taken as a necessary condition for
causal influence. But this association breaks down in nonlin-
ear systems. Even simple examples, such as the two-species
logistic model [1], demonstrate that one system can drive
another without showing any observable correlation. Given
the widespread nonlinearity observed in natural systems, such
cases undermine widely used classical frameworks such as
path analysis [2], structural equation modeling [3], and causal
graphs [4], which all require the presence of correlation as
preliminary to infer causation.

Over the past two decades, several techniques have been
developed to infer causality in nonlinear systems, includ-
ing methods based on state-space reconstruction. These
approaches have been effective in identifying whether the
dynamics of one system influence another, a concept often
referred to as dynamic causation. However, distinguishing
between different types of coupling—unidirectional, bidirec-
tional, or driven by an unobserved third system—remains a
significant challenge, particularly in noisy or short data sets.

In this paper, we introduce two numerical methods to
detect and characterize causal coupling in time series from

nonlinear deterministic systems. The first method tests for
the presence of coupling, while the second identifies its di-
rection and can reveal cases of latent coupling caused by an
unobserved driver. Both rely on order statistics derived from
relative distances in a reconstructed phase space, allowing
the methods to handle periodic, aperiodic, and chaotic dy-
namics. Because the analysis depends only on the ranks of
distances—not their magnitudes—these methods are robust
to observational noise and well-suited for practical use in
real-world data sets.

Given two nonlinear dynamical systems U and V whose
dynamics are asymptotic to a finite-dimensional attractor, and
their simultaneous time series observations {ut } and {vt }, we
develop criteria to decide which of the following relations
hold:

(1) Unidirectional coupling: U drives V (U → V ) or V
drives U (V → U ).

(2) Bidirectional coupling and generalized synchrony:
Both U and V drive each other (U ↔ V ) or the systems are
in generalized synchrony (GS).

(3) Latent coupling: U and V do not influence each other
but appear coupled because they are driven by a third, unob-
served dynamical system.

(4) Independence: U and V are dynamically independent
of one another.

Our methods rely on genericity of the dynamics, in that
counterexamples to these criteria may be artificially con-
structed, but are not expected to be common in general
circumstances.

GS [5,6] is the circumstance when each state of U occurs
simultaneously with a unique corresponding state of V and
vice versa. Otherwise said, there is a one-to-one invertible
function from the states of U to the states of V . This is a
generalization of the special case of identical synchrony [7],
where U = V and the corresponding states are identical by
definition. Generalized synchrony is often observed as a result
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of unidirectional driving that is relatively strong, although
(perhaps counterintuitively) in specific examples it can also
occur for moderate unidirectional driving. An example of this,
and a more detailed description of GS, is contained in Sec. IV.

In systems that are dominated by linear dynamics or noise,
Granger causality [8] is recognized as an effective means of
ascertaining the direction of coupling from observed time
series. Granger causality is based on the intuitive idea that
causal coupling U → V is established when the prediction
of system V improves when observations from system U are
included in the model. Implementations using linear cointe-
gration, entropy [9] or mutual information [10,11] have been
developed and used successfully for this purpose.

Therefore, it is somewhat surprising that for finite-
dimensional, deterministic nonlinear systems under generic
conditions, Granger causality-based methods are ill-posed. In-
deed, the phenomenon of generalized synchrony means that if
U drives V , once the state of V is identified from observations,
U obviously can provide no further information about the state
of V , meaning that Granger causality has no power to iden-
tify the fact that U → V . Moreover, even without synchrony,
Takens’ theorem [12,13] shows that in the large data limit,
U cannot add more information because the state of U can
be determined entirely from histories of V . Conceptually, the
lack of separability of causes that lies at the foundation of
Granger causality undermines its theoretical basis for making
accurate directionality assessments in deterministic nonlinear
systems (see Refs. [1,14] for further discussion of this issue).

The concepts of time-delay embedding imply that each
state of a dynamical system can be represented uniquely by
a sufficiently long delay vector constructed from time series
observations of that system. Assume that U and V are de-
terministic dynamical systems and that U has an input to
V , but that there is no return input from V incident on U .
Then, under technical conditions that are satisfied in general
circumstances [12,13,15], we can expect to reconstruct the
entire combined dynamical system U → V from observations
vt of V . The same is not possible from observations on U
only, because observations on U will lack information about
V , and therefore fail to reconstruct the entire coupled system.
We exploit this asymmetry in our methods.

This asymmetry has been exploited before, for example, in
Refs. [16–18], and more broadly in the convergent cross map-
ping (CCM) method [1]. In Ref. [1], to distinguish time series
data generated as projections from an attractor from statistical
phenomena, CCM includes the crucial ingredient of tracking
the asymmetry as a function of data length, which has been
widely successfully when applied to experimental and field
data [19,20]. The continuity statistic of Pecora et al. [21] is
also based on this asymmetry. Other methods relying on state
space reconstruction to detect coupling include Refs. [22,23]
and a version based on sorting in Ref. [24].

Exploitation of asymmetry of state reconstruction in the
latent coupling case was previously addressed for determin-
istic systems by Ref. [25]. This work demonstrated in theory
why it should be possible to reconstruct the unobserved driver
in latent coupling. More recently, this theoretical idea was
developed into a readily implementable method [26].

Inspired by these prior results, in this article we describe
a unifying approach that exploits the asymmetry in delay-

coordinate reconstructions to affirmatively detect directional
and latent coupling. The use of order statistics is intended to
minimize the requirement on data length, thereby making it
more broadly applicable to real-world problems often con-
strained by limited data availability. The approach is robust in
that it depends only the relative pairwise distances of points in
the reconstructions.

II. DELAY EMBEDDING

The tests to be described in Sec. III rely on the reconstruc-
tion of attractor dynamics from time series observations. The
idea was described early on by Crutchfield et al. [27,28] and
formalized in the embedding theorem of Takens [12]. This
foundational work led to applications in a wide array of fields,
including geophysics [29,30], neuroscience [16–18,31], ecol-
ogy [1,32,33], fault analysis [34], and data assimilation
[35].

Assume {ut }, 1 � t � N is a time series sampled at discrete
intervals from a finite-dimensional, compact attractor U of
a dynamical system. At each time t , define the observation
vector

Ut = [ut , ut−1, . . . , ut−e+1],

where the integer e is the embedding dimension. The collec-
tion of these vectors, {Ut }, forms the time-delay reconstruction
of the attractor U . Note that this process relies on a measure-
ment function hU : U → R, which maps the system’s state to
a scalar observable, ut = h(U (t )).

The main theorem of Ref. [12] states that for generic
conditions and sufficiently large e, there is a one-to-one bi-
jection between the states of a smooth manifold U and the
reconstructed states Ut = [ut , ut−1, . . . , ut−e+1]. The underly-
ing genericity assumption for this theorem is that both the
dynamics of U and the observation function hU are not spe-
cial, meaning that if it fails for U , there is another system
infinitesimally close to U for which the conclusion holds.
Later work [13] simplified the main idea somewhat by in-
cluding the case where the attracting set may not be a smooth
manifold and requiring genericity on the observation function
only, assuming mild and specific conditions on the equilib-
ria of the attractor U . The latter article also replaced the
concept of genericity with a more probabilistic concept of
prevalence.

Expanded versions of Takens’ theorem show that in place
of univariate time series, multivariate time series may be used
to reconstruct the dynamical system [13,15]. In the present ar-
ticle, the results remain unchanged whether the reconstruction
is made from univariate or multivariate times series, since only
the fundamental property of a one-to-one correspondence is
relevant to the success of the statistical tests. The major re-
quirement we make is on genericity of the dynamics and
coupling. That is, for each state of U , or U and V if they are
coupled, we assume that both the dynamics and the observa-
tions are not special, so the delay coordinate reconstruction
faithfully replicates the upstream dynamical states.

Extensions of embedding theorems for coupled systems as
discussed in this article are proved in Ref. [14]. This reference
applies a method of Ref. [21] to assess certain coupling results
from time series recordings.
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III. STATISTICAL TESTS

In this section, we propose two statistical tests to analyze
coupling. The first test (DetC) evaluates whether two systems
are coupled at all. If this test is positive (i.e., relation 4 above
is ruled out), the second test (DirC) is applied to determine the
direction of influence or, more precisely, to distinguish among
the relationships outlined in relations 1–3 above.

A. Detection of coupling

Assume that two simultaneous time series {xt } and {yt } of
length N are measured from U and V , respectively, and that
delay coordinate vectors {Ut } and {Vt } are formed as above.
Fix time t and a number of nearest neighbors n. Using a
Euclidean norm, find the n nearest neighbors {Vt1 , . . . ,Vtn} of
Vt . Consider the corresponding set {Ut1 , . . . ,Utn}, representing
the simultaneous states Utj in the U system and examine their
proximity to Ut , the simultaneous correlate to Vt .

If U and V are independent, the set {Ut1 , . . . ,Utn} should
have no special relationship to Ut . On the other hand, if U
drives V , then each Vt determines a unique state in U and
V , and the nearest neighbors Vtj correspond to simultaneous
Utj that are relatively near Ut (in particular, much nearer than
random choices from the U time series). The same is true if
instead of U → V , there is a latent coupling, meaning a third
system D such that D → U and D → V .

This distinction can be analyzed statistically due to the
theory of order statistics (see, e.g., Ref. [36]). Given a uniform
random choice of n numbers from the interval [0,1], the jth
smallest of the n numbers follows a beta distribution Beta
( j, n − j + 1), whose mean and variance are μ = j/(n + 1)
and σ 2 = j(n + 1 − j)/((n + 1)2(n + 2)), respectively.

We will apply this fact in the following way. Consider a
time step 1 � t � N , the reconstructed state Vt , and as above,
its n nearest neighbors Vt1 , . . . ,Vtn according to the Euclidean
distance di = |Vt − Vti | from Vt . Define the subset Ut1 , . . . ,Utn
of contemporaneous delay vectors at the times t1, . . . , tn, and
their distances di = |Ut − Uti | from Ut . As mentioned above,
we would like to know whether the U subset is as close to Ut

as the V subset is close to Vt .
Each distance ds = |Ut − Us|, 1 � s � N − e, can be as-

signed a relative rank among all N − e distances of the
reconstructed states, as follows. If ds is the Rsth smallest
distance from Us, let rs = Rs/(N − e) denote the relative rank.
By construction, the rs are uniformly distributed between 0
and 1. If the subset S = {rs1 , . . . , rsn} is randomly chosen
from the entire set, order statistics gives the expected relative
position of the jth smallest number r( j) of the subset to be
j/(n + 1). On the other hand, if the subset S is chosen ran-
domly from a reduced proportion p of the entire set, then the
expected relative position will be j p/(n + 1). Therefore, we
can use

p̂ = (n + 1)r( j)

j
(1)

for each 1 � j � n, as an estimator for p. If the dynamical
systems U and V are uncorrelated, we expect to recover p = 1
for each j. If there is a direct or indirect coupling between the
two systems, the contemporaneous delay vectors in S will be

FIG. 1. DetC and DirC tests applied to time series from skew
system U → V . Each of U and V are given by Eqs. (3). (a) For zero
forcing (upper curves), both DetC(U,V) (blue traces) and DetC(V,U)
(red traces) show that 1 lies inside the confidence intervals for p, and
for positive forcing c = 0.5 (lower curves), 1 lies outside the con-
fidence intervals. (b) For c = 0.5, the slope estimate for DirC(U,V)
(blue trace) rejects zero, and DirC(V,U) (red trace) does not, correctly
implying a forcing U → V .

chosen from a portion of the attractor that is limited in extent,
with a corresponding proportion of the state space p < 1.

Summarizing this discussion, the following test averages
the estimate over the time series Ut as a null hypothesis for
independence of the two time series.

Detection of Coupling Test: DetC(U,V)

For each t , find the n nearest neighbors of the delay vec-
tor Vt and denote their times t1, . . . tn. Sort the entire set of
N − e distances |Ut − Us| for 1 � s �= t � N − e + 1, and for
each 1 � j � n, find the relative rank r( j) of the jth smallest
distance in the subset S = {|Ut − Ut1 |, . . . , |Ut − Utn |}, among
the entire set {|Ut − Us|}. For each j, 1 � j � n, an estimate
p̂ is found from the expected value

p̂ = E

[
(n + 1)r( j)

j

]
(2)

averaged over t . The value of p is equal to 1 if and only if
there is no coupling between U and V .

A one-sample student’s t-test can be used to assign a confi-
dence interval to the estimate p̂ in (2). A 95% interval around
p̂ contains the possible values of p with 95% certainty, and we
would like to know whether the interval contains p = 1. Since
the one-sample t-distribution has N − 2 degrees of freedom,
it is well approximated by the normal distribution for large
N , which represents two standard deviations for the 95%
level. (Note that we can further average over e to decrease
the variance even more, although we have not done so in the
examples, where a fixed e = 8 was used.)

Figure 1(a) shows the results of the DetC test for obser-
vations of U and V where U → V for two different coupling
strengths. When the coupling is zero [top red and blue curves
represent DetC(U,V) and DetC(V,U), respectively[, the null
hypotheses p = 1 is not rejected, and we conclude there is no
coupling. When the coupling is positive (lower red and blue
curves) the null is rejected, and coupling is concluded.

The length-1000 time series used to make Fig. 1(a) were
generated by coupled discrete dynamical systems. Both U and
V are two-cell networks of Hénon-like [37] maps. Specifi-
cally, each U or V consists a four-dimensional discrete map
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FIG. 2. DirC test applied to (a) bidirectional coupling U ↔ V
and (b) latent coupling D → U, D → V . DirC(U,V) in blue and
DirC(V,U) in red. (a) Both slope estimates reject zero slope, correctly
implying bidirectional driving. (b) Neither of the slope estimates
reject the null hypothesis of zero slope, correctly implying latent
coupling from an unobserved common driver.

of two Hénon-like maps coupled together, with equations

xi+1 = b1 cos xi + c1yi + d1zi,

yi+1 = xi,

zi+1 = b2 cos zi + c2wi + d2xi,

wi+1 = zi. (3)

Here the parameters bi, ci, and di were chosen randomly
near 2.2, 0.1, and 0.1, respectively, which resulted in chaotic
dynamics in the network. The time series observation from
each network is the x variable. The coupling between the two
networks is achieved by adding the x variable from system U
to the z variable of system V , multiplied by a coupling strength
(either 0 or 0.5) in Fig. 1.

The map in Hénon’s original paper [37] is often studied due
to the fact that it has a chaotic attractor near a basin boundary.
Here we use a variant of the original Hénon map. The version
used in (3) replaces a quadratic term in the x equation with
a cosine, which retains the chaotic dynamics but moves the
basin boundary of the attractor far away to enhance stability
when used in a network. In Eq. (3), two such maps are coupled
together to produce a hyperchaotic attractor of correlation
dimension slightly greater than 2.0. Each of the attractors U
and V in Figs. 1 and 2 is an attractor of this type.

B. Direction of coupling

The second test assesses directionality of the coupling.
Our general assumption is that there is an unknown finite-
dimensional attractor embodying one of the above joint
dynamics scenarios 1–3, and that it is observed by two time
series that have each been used to reconstruct dynamics as in
Takens’ theorem.

First assume that relation 1 holds. Thus, a unidirectional
coupling exists, which we will suppose, without loss of gen-
erality, is U → V . Further assume that time series recorded
from both U and V are used for time delay reconstruction
using generic observations functions and sufficiently large
embedding dimension e required by Takens’ theorem. Let
R(U ) [respectively, R(V )] denote the reconstructed attractors,
and let TU,U , TV,U , and TV,V denote the projections from the
reconstructions to U and V as shown in the diagram:

R(U) R(V )

U V
TU,U TV,U

TV,V

.
Takens’ theorem implies that generically, there is a homeo-
morphism between R(U ) and U , which we denote here by
TU,U , and also between R(V ) and the skew product U → V ,
which can be further projected to the two components by TV,U

and TV,V . While the map TU,U is one-to-one, the other two
maps are not: Although R(V ) reconstructs the skew product
U → V , unless U and V are in general synchronization, TV,U

and TV,V will fail to be one-to-one, because there is no return
coupling V → U . In particular, the inverse image T −1

V,U (x) will
generally be more than one point, since the state of U does not
determine the contemporaneous state of V .

As observers, our access to this diagram is only along the
top row. According to the diagram, the reconstructed state Vt

in R(V ) corresponds to a single point T −1
U,U TV,U Vt in R(U ).

That means for each Vt , only a single pair of simultaneous
states (Ut ,Vt ) will exist. On the other hand, a reconstructed
state Ut in R(U ) corresponds to a nonsingleton set of points
T −1

V,U TU,U Ut in R(V ), since TV,U is not one-to-one. This is the
asymmetry referred to earlier. For each Ut , there is a multiple
point set of simultaneous pairs (Ut ,Vt ), unlike the case for Vt .
If we can use the observed time series to distinguish between
the two cases, one point versus multiple points, for pairs
(Ut ,Vt ), we can infer in which direction the coupling exists.

Case 2 of bidirectional coupling is simpler, because un-
der generic conditions, each of the reconstructions R(U ) and
R(V ) are in one-to-one correspondence with states of the
bidirectionally coupled system U ↔ V , and therefore R(U )
and R(V ) are in one-to-one correspondence. Unlike the asym-
metric case (1), in case (2), for each Ut in R(U ) there is a
unique Vt in R(V ), and vice versa.

Now consider case 3 of latent coupling, where there is
an unobserved driver D that is coupled to both the observed
systems U and V , but no direct connection between U and V ,
as in the diagram:

D

U V .
Then, generically, observations from U (respectively, V )

reconstruct the skew product D → U (respectively, D → V ).
This results in the diagram

R(U) R(V )

U D V

TU,U

TU,D TV,D

TV,V

,
where none of the four maps are one-to-one. Now both
T −1

U,DTV,D Vt and T −1
V,DTU,D Ut comprise sets of multiple points,

i.e., more than one. This observation suggests a criterion for
U and V being driven by an unobserved system, which is that
for each Ut , there are multiple simultaneous (Ut ,Vt ), and the
same for each Vt .

Although not essential for the goals of the present article,
this structure can be exploited to theoretically reconstruct a
latent driver D from time series observations as follows. Con-
sider a state Vt in R(V ). In this case, T −1

U,DTV,D Vt consists of
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multiple points {Ui} by assumption, usually dispersed along
a proper subset of R(U ). For each of the Ui, we can repeat
the process in the opposite direction, which represent different
indices in the time series. By assumption, the T −1

V,DTU,D Ui are
multiple points sets in V , only one of which is the original
Vt . Recursing this process identifies an equivalence class of
point sets in both R(U ) and R(V ), which corresponds to a
theoretical state d linked to the multiple points in R(U ) and
R(V ). If we repeat this construction for all Vt in R(V ) and
Ut in R(U ), these equivalence classes represent the states of
an unobserved attractor D that implies scenario 3, i.e., latent
coupling D → U and V . This process of reconstructing the
driver was the subject of Ref. [25], which was recently put on
a more stable numerical footing [26].

The preceding discussion clarifies the critical distinction
between cases 1–3, which depends on whether the sets
(Ut ,Vt ), for fixed Ut or Vt , are singleton sets or more than one
element. The possibilities can be efficiently summarized in a
diagram:

(Ut , many Vs) (Ut , single Vs)

(many Us, Vt )

D

U V

V → U

U ↔ V
(single Us, Vt ) U → V or

generalized synchrony

For example, the diagram says that on the reconstructed com-
bined system attractor R(U ) × R(V ), if each Ut belongs to a
set (Ut ,Vs) with several different Vs, and if each Vt belongs
only to a single (Us,Vt ), this is evidence for the coupling
U → V . Alternatively, if each Ut belongs to a set (Ut ,Vs)
with several different Vs, and if each Vt belongs to a set
(Us,Vt ) with several different Us, then evidence exists for a
latent coupling by a third, unobserved system. While this is
a compelling theoretical description, it remains to propose
a way to determine which of these cases are likely to have
produced the time series under study.

The following statistical test is designed to determine
which of these cases hold, using only the observed time series.
The logic is as follows: If for a given Vt , there is a unique
corresponding time delay vector Ut , then if we look at the Us

that are time contemporaneous with Vs that are close to Vt ,
these Us should be close to Ut . The test checks to see whether
the Us progressively move farther from Ut as the Vs are moving
away from Vt .

Direction of Coupling Test: DirC(U,V)

For each t and 1 � j � n, find the jth nearest neighbor of
the delay vector Vt and denote its time s j . Sort the entire set of
distances |Ut − Us| for 1 � s �= t � N , and find the percentile
rank r( j) of the distance |Ut − Usj | among the entire set. Let
r̂( j) denote the average percentile rank over all t . Plot the best
fit line through the points ( j, r̂( j) ).

A slope greater than zero is evidence that for each Vt , the
set of possible simultaneous pairs (Ut ,Vt ) is a single pair. A

slope indistinguishable from zero is evidence that it is a set of
multiple pairs (i.e., not a singleton).

Confidence intervals for the DirC test can be developed
similarly to the DetC test. For the line fit y = α + βt where
we use a one-sample student t-test to compare the slope β with
the null hypothesis β = 0, the radius of the 95% confidence
interval is s = (2

∑n
i=1(yi − ŷi )2)/((n − 2)

∑n
i=1(xi − x)2).

Figure 1(b) demonstrates the use of DirC. Here the two
2-cell Hénon maps U and V are coupled as U → V . The
slope in DirC(U,V) is positive, which provides evidence that
for each Vt , there is a unique Ut that can exist simultaneously
with Vt . On the other hand, the slope of DirC(V,U) cannot be
distinguished from zero, meaning that there are multiple Vt

corresponding to a given Ut . These results are consistent with
case 1, unidirectional coupling from U to V .

The two tests proposed in this article can be used together
in the following way. If the detection of coupling Ttest is
passed in either of the U or V directions, the remaining
possible relations are 1–3. Then, the direction of coupling
test applied to both U and V will distinguish between the
remaining four possibilities. In the table, DirC(U,V) + means
the slope is determined to be greater than zero, and DirC(U,V)
0 means zero slope cannot be rejected.

DirC(V,U) 0 DirC(V,U) +
DirC(U,V) 0 latent D → U,V V → U
DirC(U,V) + U → V U ↔ V or GS

Figure 2 demonstrates the use of the DirC test for time
series collected from two 2-cell Hénon maps in cases 2 and
3. In Fig. 2(a), the times series are generated from a system
U ↔ V with two-way driving. The DirC(U,V) and DirC(V,U)
both identify positive slope outside the confidence interval,
concluding bidirectional driving as in case 2. In Fig. 2(b), zero
slope cannot be rejected in either DirC(U,V) or DirC(V,U),
indicating latent driving from an unobserved system as in
case 3.

The tests can also be applied to continuous systems such as
coupled Lorenz [38] systems. For example, let U,V , and W
each be systems of the form

ẋ = σ (y − x),

ẏ = −xz + ρx − y,

ż = xy − βz, (4)

with slightly different parameter values near σ =
10, ρ = 28, β = 8/3. Further, we couple them in a small
network as in (A) or (B) below:

(A)
U

V W

(B)
U

V W

where each arrow represents a term cx proportional to the x
variable of the driving Lorenz system added to the y variable
of the target system. The following table shows the results of
applying DirC to both scenarios, using c = 5:

The slopes are shown along with the 95% confidence
intervals. A plus sign in the right column means that the cor-
responding coupling was determined to exist by the test, and
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(A) (B)
slope slope

U → V 0.68 ± 0.13 + U → V 0.76 ± 0.20 +
V → U 0.50 ± 0.26 + V → U 0.15 ± 0.36 0
V → W 0.61 ± 0.17 + V → W 0.25 ± 0.17 +
W → V 0.39 ± 0.22 + W → V 0.13 ± 0.16 0
W → U 0.62 ± 0.24 + W → U 0.07 ± 0.23 0
U → W 0.42 ± 0.14 + U → W 0.47 ± 0.22 +

0 means the coupling was not detected to the confidence level.
There are six possible couplings. We note that in scenario (A),
all three systems are driven by each of the others, directly or
indirectly and, accordingly, the DirC test detects that coupling
in each case. In scenario (B), the DirC test correctly detects
the three drivings U → V, V → W , and U → W , and finds
no evidence of the other three possibilities.

To investigate the sensitivity of the DirC test with respect
to parameters, we compared the results for different coupling
strengths and observational noise levels. Figure 3(a) shows
the dependence on the DirC test on coupling strength. The
data series of length 1000 was generated from a coupled
system U → V with dynamics from the two-cell Hénon map
(3). The coupling between the two networks is achieved by
adding a constant c times the x variable from U to the u
variable of V . Figure 3(a) plots the DirC statistic versus the
coupling strength c. For small c, the 95% confidence intervals
of statistics DirC(U,V) and Dir(V,U) overlap. For increased
c, they no longer overlap and definitively pick up the correct
direction of driving. Figure 3(b) shows that the DirC test
degrades gracefully with increased observational noise. For
small noise, the test easily identifies the driving U → V , and
as noise is increased, the test begins to fail.

IV. GENERALIZED SYNCHRONY

As mentioned above, the phenomenon of generalized syn-
chrony plays a clarifying role in the study of causation
between dynamical systems. A typical example is given by
a coupled skew system U → V where there is no feedback
from V to U , but where a one-to-one correspondence develops
between states of U and states of V . That is, after transient

FIG. 3. Dependence of DirC statistic on coupling strength and
noise for unidirectional driving U → V . (a) The mean of the DirC
slope over 50 realizations of length 1000 times series of U → V for
two-cell Hénon examples is plotted versus coupling strength along
with its standard error. (b) DirC slope plotted versus observational
noise.

FIG. 4. Generalized synchrony from coupling U → V . The plot
shows the average spread of states of V chosen contemporaneously
with a state of U . GS is indicated when the spread drops to near zero.
(a) Coupling cx from Lorenz U to the x, y, or z variable of Lorenz V .
GS occurs for coupling greater than 0.1 for the y variable and about
0.25 for the x variable. Driving the z variable does not achieve GS
in this range of driving. (b) Coupling cx from Rössler U to x, y, or z
variable of Lorenz V . The rms spread of a set of k = 12 states was
used in these plots.

behavior, each state of U coexists with a unique state of V and
vice versa. This can occur even when U and V are different
dynamical systems.

On the one hand, by its existence, GS shows that Granger
causality cannot detect the fact that U → V , since knowledge
of the U state cannot add to the ability to predict future states
of V . (In fact, the logic of such an ability would be circu-
lar, since one could say the same in the opposite direction.)
Furthermore, GS is also a wild card for the DirC calculation
because the sets of possible pairs (Ut ,Vt ) discussed in the
derivation of the DirC method are singletons, both in the
non-GS case of bidirectional coupling U ↔ V and the case of
GS caused by unidirectional coupling or by latent coupling.
In other words, assuming there is no time lag in the functional
coupling of U → V , for deterministic dynamical systems it is
challenging for any method to distinguish GS under U → V
from the relationship U ↔ V on the basis of observed time
series alone.

We include here two illuminating examples of generalized
synchronization for chaotic flows. The first is constructed
from two Lorenz systems with different parameters. Let U
and V be systems of form (4) with parameters ρ = 27 and
ρ = 30, respectively. Figure 4(a) shows that with coupling of
5x from U added to the y variable of V , the system is not
in GS. However, changing the coupling to 15x induces GS
between U and V . On the other hand, coupling of cx from U
to the x variable of V requires c > 20 to achieve GS.

To positively verify GS in this example, we assume knowl-
edge of all six phase variables of U and V . A number k of
initial conditions (u, v1), . . . , (u, vk ), where the vi are ran-
domly chosen, are used to create trajectories of the coupled
system U → V . After deleting the transients, the k trajectories
represent states of the skew attractor U × V with an identical
x state. Then we calculate the standard deviation of the set of
distances of the k states of V from their center of mass. The
signature of global synchrony is when this standard deviation,
or spread, of points drops to near zero.

The mean of this spread, normalized by the size of the
attractor, as we sweep over states on U is plotted in Fig. 4(a).
For small coupling U → V achieved by adding a coupling
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FIG. 5. DirC statistic for data from Lorenz systems U → V ,
DirC(U,V) in blue and DirC(V,U) in red. (a) For coupling c = 5x
added to y variable of V vector field (not, in general, synchroniza-
tion), only the UV slope is statistically greater than zero, implying
case (1), U → V . (b) Coupling c = 15x (forces generalized synchro-
nization), UV and VU slopes significantly greater than zero implies
case (2), U ↔ V or GS. Data consists of the x coordinate time
series of 1000 points observed from U and V with sampling interval
�t = 0.1.

strength times the x variable of U to the y variable of V ,
there is no synchronization. When coupling strength increases
beyond 10, the systems are in generalized synchrony. The
same is true for adding the x variable of U to the x variable
of V , for coupling strength beyond 20. On the other hand,
Fig. 4(a) also shows that using a coupling proportional to x
added to the z variable of V does not lead to GS in the range
of coupling strengths shown.

When we can only measure time series of U and V and
have a smaller data set, we can apply the DirC test to distin-
guish between unidirectional coupling U → V that does and
does not result in GS. The results of analyzing a 1000-point
time series of x coordinates observed from U and V is shown
in Fig. 5. In Fig. 5(a), U drives V by adding 5x to the y
variable of V . Figure 4(a) indicates that generalized synchrony
does not occur in this case. Accordingly, DirC correctly con-
cludes unidirectional coupling U → V . When the driving is
increased to 15x, generalized synchrony occurs, and we find
that DirC rejects zero slope in both directions, as shown in
Fig. 5(b). The explanation for this result is generalized syn-
chronization caused by unidirectional coupling U → V , not
two-way driving U ↔ V .

For a Lorenz attractor driven by the output of another
Lorenz attractor, GS is relatively easy to achieve, even for
nonidentical systems as above. If the driving system sends
a signal cx to the x or y variable of the response system for
c sufficiently large (as in the above paragraph), the system
enters GS.

The second example of generalized synchrony occurs for
the coupling U → V where U is a Rössler attractor driving a
Lorenz attractor V , with the standard parameters σ = 10, ρ =
28, β = 8/3. The Rössler equations [39] are

ẋ = −y − z,

ẏ = x + ay,

ż = b + (x − d )z, (5)

and we will use the parameter settings a = 0.1, b = 0.1, and
d = 14. As before, the Lorenz attractor V is driven by adding
a signal cx from the U system to the x, y, or z variable of V .
Figure 4(b) shows that moderately sized couplings from the x

variable of the Rössler U to the x or y variable of Lorenz V
also cause generalized synchrony.

V. DISCUSSION

The tests proposed here are designed to learn the coupling
characteristics of a pair of time series, produced simulta-
neously by two different deterministic processes. Our goal
is to exploit the fact of asymmetry between the dual re-
constructions as simply and robustly as possible to tease
conclusions from time series that may be short and per-
turbed by observational noise. These tests may be applied
to univariate time series (or multivariate time series) mea-
sured from two or more processes, as long as the state space
reconstructions afford a one-to-one correspondence to the
original systems.

Among the innovations of our methods are the reduction of
the information of distances between points by treating them
ordinally to make the results robust to measurement noise.
This also allows us to apply the theory of order statistics in
the DetC test to determine dependence of the time series and
to retrieve statistical conclusions by assigning confidence in-
tervals. The DirC test exploits the asymmetry of paired Takens
delay coordinate reconstructions to distinguish unidirectional,
bidirectional, and latent coupling. Our goal in this article is to
deploy these innovations in the simplest possible way so they
may succeed with minimal data requirements.

These tests will gradually fail, in general, for stochastic
systems due to the degradation of the delay coordinate em-
bedding that is foundational for this approach. Other methods
more suited toward working under stochastic assumptions
will work better in nondeterministic contexts, although where
the trade-off occurs will be dependent on the details of the
situation.

A key requirement for faithfulness of the delay coordinate
embedding is genericity of the dynamics and observations.
This includes both the internal dynamics of U and V and, in
addition, the connections (if any) between the two systems.
We can expect this genericity to exist normally in natural
systems, in the absence of a particular structural reason that
defeats the hypotheses of Takens’ theorem. However, we are
mindful that the generic case is in a sense the simplest base
case, and that when nongeneric structural elements occur in
the systems under study, the methods proposed here will need
to be refined accordingly.

The strict hypotheses of Takens’ theorem refer to systems
being observed simultaneously. However, the tests developed
here may be of use in systems with a time lag by making
the modeling hypothesis, for example, that a time lagged
system Uτ is driving the system V . Coupling established in
this way can be used to confirm directionality for systems that
communicate with time lags but otherwise might be difficult
to represent by finite-dimensional attractors.

The existence of generalized synchrony presents an in-
teresting complication to the problem of distinguishing the
coupling direction from the time series. On the one hand,
when couplings exist in both directions, i.e., U ↔ V , under
generic conditions, the delay coordinate embedding from ei-
ther U or V will uniquely reconstruct a corresponding state

064208-7



TIMOTHY SAUER AND GEORGE SUGIHARA PHYSICAL REVIEW E 111, 064208 (2025)

from the other that will occur simultaneously, so a one-to-one
correspondence exists between reconstructed states. This is
also the definition of generalized synchrony, but as demon-
strated here, GS can occur solely from unidirectional coupling
U → V . Therefore, evidence such as the DirC results in Fig. 5
cannot distinguish between these two cases.
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