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ABSTRACT

Accurate knowledge of two types of noise, system and observational, is an important aspect of Bayesian

filtering methodology. Traditionally, this knowledge is reflected in individual covariance matrices for the two

noise contributions, while correlations between the system and observational noises are ignored.We contend

that in practical problems, it is unlikely that system and observational errors are uncorrelated, in particular for

geophysically motivated examples where errors are dominated by model and observation truncations.

Moreover, it is shown that accounting for the cross correlations in the filtering algorithm, for example in a

correlated ensemble Kalman filter, can result in significant improvements in filter accuracy for data from

typical dynamical systems. In particular, we discuss the extreme case where the two types of errors are

maximally correlated relative to the individual covariances.

1. Introduction

Consider a discrete time nonlinear dynamical system

with state variable xi 2 RN and observations yi 2 RM

given by
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where vi is called the system or dynamical noise (or the

stochastic forcing) and ni11 is called the observation

noise. In practice these noise terms are needed to ac-

count for model mismatch, truncation errors caused by

differing resolutions, and stochastic terms such as in-

strument errors. There has been considerable recent

interest in the implications of these different sources of

error (e.g., Satterfield et al. 2017; Hodyss and Nichols

2015; Van Leeuwen 2015; Janjić et al. 2018).

On the other hand, most filtering algorithms are

designed based on a separation of dynamical and ob-

servation noise. The nonlinear filtering literature typi-

cally considers noise v;N (0, Q) and n;N (0, R),

allowing correlation within type, but tends to dismiss

correlation between v and n. In this article, we

argue the importance of modeling correlations

between system and observation noise. Specifi-

cally, we will consider Kalman filters and ensemble

Kalman filters (EnKF) that are derived based on the

assumption that�
v

i

n
i11

�
;N (0,C) , where C5

�
Q S

ST R

�
, (3)

and C is assumed to be symmetric and positive semi-

definite. The N3M matrix S contains the cross co-

variances between the variables vi and ni11.

In order for C to be positive semidefinite, both Q and

R must be positive semidefinite. The classical viewpoint

corresponds to simply extracting Q and R and ignoring

S. However, it is reasonable to expect that in many

physical systems, the truncations causing the noise in

the state of the system would also affect the sensor or

observation system. The goal of this paper is to es-

tablish that 1) correlations between system and obser-

vation errors are likely to be common in applied data

assimilation problems caused by truncation of infinite-

dimensional solutions and 2) incorporating these cor-

relations can dramatically improve filter results.

If we consider the true state to be a function of space

and time evolving in an infinite-dimensional function

space, then the truncated true state and the observation

are essentially two different finite-dimensional pro-

jections of this infinite-dimensional space (Dee 1995;

Janjić and Cohn 2006; Oke and Sakov 2008). In section 2

we will show that the errors between the exact pro-

jections and the finite-dimensional approximations are

correlated for generic observations. Error correlationsCorresponding author: Timothy Sauer, tsauer@gmu.edu
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arising from model truncation have been previously

observed (Mitchell and Daley 1997; Hamill and Whitaker

2005; Liu andRabier 2002). In particular, models are often

composed of discrete dynamics occurring at points of a

two- or three-dimensional grid. Remote observations by

satellite or radiosonde can be viewed as integrations

over a region including several grid points. Here, we

provide a general framework to explain correlations

between these quantities. We also consider other

sources of error such as model mismatch and in-

strument error, and we show that significant correla-

tions persist except in the case where instrument error

dominates (since this error will be modeled as white

noise that is uncorrelated with the state).

In section 3, a correlated version of the EnKF is de-

veloped that takes the correlations in (3) into account,

and recovers the Kalman equations for linear systems.

In section 4, the correlated unscented Kalman filter

(CUKF; an unscented version of the EnKF) is applied to

examples from section 2. Using an appropriate S sub-

stantially improves output accuracy, while a filter that

ignores the cross-correlation matrix S can lead to dra-

matically suboptimal results.

In section 5 we investigate the effect of correlations in

greater detail. First, we show that in the linear case when

M5N, for any Q and R there exists a ‘‘maximal’’ S for

which perfect recovery of the state variables is possible.

Second, we demonstrate examples of perfect recovery in

nonlinear systems with such maximal S. In these ex-

amples, if one ignores a maximal S (setting S5 0 in the

filter while the true S is maximal), variables that would

have been perfectly recovered by using the true S will

instead be estimated with variance on the order of the

entries in R (e.g., see Fig. 6).

2. Correlation between system and observation
errors

To understand how correlations arise in applied data

assimilation, we must first leave behind the idealized

scenario described in (1) and (2). Following Dee (1995)

and Janjić and Cohn (2006), we describe the true evolu-

tion and observation processes by replacing the discrete

solution xi 2 RN with an infinite-dimensional solution

~x(z, t), which has some regularity (continuity or differen-

tiability) in the spatial variable z and temporal variable t.

We should note that the following analysis is very similar to

Satterfield et al. (2017), except that we consider an infinite-

dimensional solution ~x instead of a high-resolution solu-

tion [which is denoted xtH in Satterfield et al. (2017)].

The discrete time solution and the observations can be

viewedas projections of this continuous solution.Thedesired

finite-dimensional discrete time solution

x
i
5P

i
(~x)

is a projection of the continuous solution. Meanwhile,

the finite-dimensional discrete time observations

yoi 5H
i
(~x)1 eIi

are given by another projection of the solutionH i, plus an

instrument noise term eIi . Define the system error as the

local truncation error (LTE) of the discrete solver f, namely,

w
i
[ x

i11
2 f (x

i
)5P

i11
(~x)2 f [P

i
(~x)] ,

and define the observation error by

eoi11 [ yoi11 2 ĥ(x
i11

)5H
i11

(~x)2 ĥ[P
i11

(~x)]1 eIi11 ,

where H i is the true observation projection and ĥ is

the approximate discrete observation function. Let-

ting h be a consistent discretization of the true ob-

servation projection [as in (5)], we further decompose

the observation error in terms of the representation

error

eRi11 [H
i11

(~x)2h[P
i11

(~x)] ,

and the observation model error

eHi11 [ h[P
i11

(~x)]2 ĥ[P
i11

(~x)] ,

so that the total observation error becomes

eoi11 5 eRi11 1 eHi11 1 eIi11 .

The above definitions are very similar to those found in

Eqs. (1)–(7) in Satterfield et al. (2017) except that we

have replaced their high-resolution observation func-

tion HL and the truncation smoother Ssc with finite-

dimensional projections of infinite-dimensional spaces,

namely,H andP, respectively. Projections from infinite-

dimensional spaces were also considered by Janjić et al.

(2018) who also considered additional terms in the de-

composition of the observation error. Since our main

focus is the correlations between system and observa-

tion error we will restrict our attention to the three

sources of observation error listed above. We should

note that while the observational errors can be for-

mally decomposed as above, the individual compo-

nents may be correlated (especially the model error

and representation error terms) so in general we do not

expect a corresponding decomposition of the obser-

vation error covariance matrix.

For simplicity we assume that wi, vi11 are both mean

zero and define the error variances to be
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We briefly note that, while it may be reasonable to

assume that the representation and observation model

errors are uncorrelated from the instrument error eI,

their cross covariance is

lim
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1
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i
(~x)]gT ,

which seems unlikely to be zero. However, our main

concern here is the cross covariance between system and

observation error, which is defined as

S5 lim
T/‘

1
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(assuming uncorrelated instrument errors). In this gen-

eral setting it is already puzzling why one would assume

that S5 0. By averaging over the full time series, we are

defining global covariance matrices that are fixed in

time. More generally, one could also consider time-

varying covariance matrices that are either localized in

time or in state space. However, this would only change

the indices of the averages above and in most situations

one should expect nonzero S matrices. In the next sec-

tion we will show explicit examples of substantial cor-

relation between system and observation errors in many

practical situations. By imposing additional assumptions

on the observation model (viz., that it is linear and local

in both space and time) we will be able to show that the

correlations are close to maximal. When these assump-

tions on the observationmodel are satisfied, we expectS

to be very important to the filtering problem except when

the observation errors are dominated by instrument error.

a. Evaluation and averaging projections

We will assume that the finite-dimensional dynamics

f and observation function h are consistent, meaning that

the errors wi and eRi11 go to zero in the limit of small

discretization parameters Dz in space and Dt in time. As

an example, consider the case when the evolution of the

full solution ~x is governed by a PDE

›

›t
~x5F (~x) ,

and consider the projection of the state onto a grid

z5 fzjg at time ti, namely,

P
i
(~x)5 ~x(z, t

i
).

If we assume that the solution ~x has n1 1 continuous

derivatives in space and m1 1 in time, we can use a

solver that is order n in space and order m in time to

obtain the system error

w
i
5 ~x(z, t

i11
)2 f [~x(z, t

i
)]5 a

i
Dtm 1 b

i
Dzn 1 h.o.t. ,

where for simplicity we assume a uniform spatial gridDz
in each dimension. The coefficients ai and bi depend on

the derivatives of ~x within Dz and Dt of (z, ti).
Now consider the associated observation operatorH .

Rather than sampling at an instantaneous time, most

observation modes have an associated time constant,

and an average value of an interval [ti 2 d, ti 1 d] with

some weight function C is returned. Similarly, the

observation may involve multiple spatial grid points,

as in the case of satellite observations involving radi-

ative transfer that explicitly integrate over the entire

vertical grid. Even for very local observations, the

true observing system may be located between grid

points, thereby involving interpolation between grid

points. Thus, we assume the true observation has the

following form:

H
i11

(~x)5

ð
js2ti j,d

ð
kw2zk,«

~x(w, s)C(w, s) dwds ,

meaning that a consistent observation function h should

be a quadrature rule for approximating this integral.

Assuming that the discrete observation function has

order q# n convergence in space and order r#m in

time, the representation error is

eRi115H
i11

(~x)2h[x(z, t
i11

)]5 c
i11

Dtr 1d
i11

Dzq1h.o.t. ,

(5)

where the coefficients depend on the derivatives of ~x

within Dz and Dt of (z, ti11).
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The situation described above is common in applica-

tions, namely, where the discrete solution is given by (or

equivalent to) evaluation on a grid and the true obser-

vation operator is a local weighted average of the full

solution. In this case, we find the cross covariance of the

system and observation errors to be (excluding higher-

order terms)

S5 lim
T/‘

�
T

i51

(a
i
Dtm 1 b

i
Dzn)(c

i11
Dtr 1 d

i11
Dzq)

and in the limit of small Dz and Dt, the derivatives in

a, b, c, d will all be evaluated at points less that (Dz, Dt)
apart. Therefore, up to higher-order terms, a, b, c, d can

be rewritten in terms of derivatives evaluated at the

same point (z, ti). Notice in particular that when m5 r,

the coefficients a and c are the same up to a scalar, and

similarly when n5 q the coefficients b and d are linear

combinations of the same order derivatives. While it is

possible for these terms to combine so as to exactly

cancel when averaged over time, the correlation will

often be nonzero.

As a special case, consider the situation when both the

system and observation errors are dominated by the

same single variable (either time or one of the spatial

variables). In this case, the leading-order terms would

differ only by a constant, so that up to higher-order

terms the system error and observation error would be

multiples of one another. This not only implies that

S 6¼ 0 but also, as we will show in section 5, that the

system and observation errors are maximally correlated

up to higher-order corrections, so that S is as large as

possible relative to the individual variances. For exam-

ple, in the case of satellite observations of radiative

transfer, the true observation integrates over the entire

vertical component of the atmosphere, whereas the in-

tegral may be very localized in time and the horizontal

variables. This would suggest a relatively large error in

terms of vertical Dz (depending on the number of ver-

tical grid points and the order of the quadrature rule

used to estimate the radiative transfer) even if themodel

was perfectly specified. If the vertical model error also

dominated the model error then we would expect a high

correlation of the model and observation errors.

Similar to the above analysis, we can also consider the

observationmodel error to be a difference of quadrature

rules given by the observation function h and an ap-

proximate function ĥ. With these assumptions we find

eHi11 5 h[x(z, t
i11

)]2 ĥ[x(z, t
i11

)]5�
j

(a
j
2 â

j
)x(z

j
, t

i11
) ,

where a and â are the quadrature weights for h and ĥ,

respectively. Since both observation functions are

assumed to be local, we again obtain an error in terms of

Dz and Dt according to the order of agreement between

h and ĥ, which will lead to maximal correlations with the

truncation errors. In practice, either the model error or

the representation error could be the dominant term,

but in either case we find nontrivial correlation with the

system errors. In what follows, we focus on examples

where representation error dominates, since this term

will be the easiest to estimate in practice. The impor-

tance of treating correlated errors will hold in either

case. We now turn to some concrete examples.

Even for general nonlinear observations functions h

and approximate observation functions ĥ, we expect the

correlation given in (4) to be nonzero, since setting (4)

equal to zero imposes a nontrivial constraint on the

system. The analysis in this section shows that for linear

observations that have a local structure in space and

time, truncation error can be expected to be nearly

maximally correlated with both observationmodel error

and representation error. When the observations are non-

linear or not local in space and time we still expect error

correlations to be present, although if not close tomaximal,

they may not be crucial to the filtering problem.

b. Time-averaged observations of an ODE

First consider the case when the true solution ~x is

discrete in space, meaning that ~x5 ~x(t) 2 RN is a vector

evolving continuously in time. Assume that the true

evolution of ~x is governed by an ODE

~x0 5F (~x) ,

and the projection xi 5Pi(~x)5 ~x(ti) is evaluation at a

discrete time grid ftig. If the discrete evolution operator

f is Euler’s method, the system error is

w
i
5 x

i11
2 f (x

i
)

5 x
i11

2
�
x
i
1DtF (x

i
)
�

5
1

2
(Dt)2~x00(t

i
)1O [(Dt)3]

5
1

2
(Dt)2~x00(t

i11
)1O [(Dt)3] , (6)

where we have used ~x00(ti11)5 ~x00(ti)1O (Dt).
We assume the true observation is an unweighted

average over a short interval [ti11 2 d, ti11 1 d], namely,

H
i11

(~x)5
1

2d

ðti111d

ti112d

~x(s) ds .

Consider the discrete observation function h to be a

consistent quadrature rule using the grid points fall-

ing within the interval [ti11 2 d, ti11 1 d]. In particular
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when d#Dt we find h(xi11)5 xi11 and the representation

error is

eRi11 5H
i11

(~x)2 h(x
i11

)5
1

2d

ðti111d

ti112d

~x(s) ds2 x
i11

.

Expanding ~x(s) in a Taylor series centered at ti11 and

cancelling odd terms we find

eRi11 5
1

2d

ðti111d

ti112d

x
i11

1
(s2 t

i11
)2

2
~x00(t

i11
)

1O [(s2 t
i11

)4] ds2 x
i11

5
d2

6
~x00(t

i11
)1O (d4) . (7)

Comparing (6) and (7) shows that up to leading order,

eRi11 and wi are directly proportional, meaning that if the

leading-order terms are nonzero, they are correlated.

If a backward Euler method were used instead of a

forward Euler method, the leading term of the system

error would be2 (Dt2/2)~x00(ti11), which is negatively cor-

related with vi 5 (d2/6)~x00(ti11). Moreover, if the observa-

tions arose from an asymmetric average (e.g., over

[ti11 2 d, ti11]) then the observation error would be in

terms of the first derivative of ~x instead of the second de-

rivative; however, these different derivatives are still likely

to be correlated since

~x00 5
d

dt
~x0 5

d

dt
F (~x)5DF (~x)~x0 .

If higher-order methods were used, then the errors

would involve higher-order derivatives, which are still

highly likely to be correlated.

c. Estimation of the full covariance matrix

The correlations described above will be illustrated in

two simple examples. To show the effects most clearly,

we assume a perfect model. We begin with a simple

ODE solver.

Consider using forward Euler on the Lorenz-63 sys-

tem (Lorenz 1963)

_x
1
5s(x

2
2 x

1
)

_x
2
5 x

1
(r2 x

3
)2 x

2

_x
3
5 x

1
x
2
2bx

3
, (8)

where s5 10, r5 28, and b5 8/3. To demonstrate the

correlation derived above, we first used a higher-order

integrator [Runge–Kutta fourth order (RK4) with a

0.005 time step] to produce a finely sampled ground

truth signal. To define the truncated model, we used a

forward Euler method with Dt5 0:1. We used a 21-point

composite trapezoid rule to approximate the integrated

observation with d5 0:05. In Figs. 1a and 1b we show

the correlation between the system error, in this case

the local truncation error (LTE) of the Euler solver,

and the observation error, in this case only the repre-

sentation error, as a function of time.

In Fig. 1c we show the estimated covariance matrix C,

which reveals the strong correlations (S 6¼ 0) between

the system and observation errors. The covariance ma-

trix C is estimated by concatenating the system and

observation errors at each step into a six-dimensional

vector, and then computing the empirical covariance

matrix of these vectors (averaged over T 5 12 000 dis-

crete time steps). The estimated Cmatrix will be used in

section 4 in a nonlinear filter, and this method can be

used to estimate the C matrix for general problems as

long as one can afford a long offline run using a very fine

discretization. Figures 1d–f show the same phenomenon

for a more accurate solver, RK4 with a time step of

Dt5 0:05. Although the system errors are much smaller,

the correlation with observation errors are still evident.

The difference between the positive correlations in

Figs. 1b and 1c and negative correlations in Figs. 1e

and 1f will have a noticeable effect in filter accuracy, as

shown in section 4a. In section 5, we will establish a

theory explaining this disparity in the linear case.

As a second example, consider spatiotemporal dy-

namics ~x(z, t) given by the Kuramoto–Sivashinsky PDE

(Kuramoto and Tsuzuki 1976; Sivashinsky 1977)

~x
t
52~x

zzzz
2 ~x

zz
2 ~x~x

z
, (9)

defined on a periodic domain with length L5 100. For

simplicity, we will use an explicit method applying RK4

in time and second-order finite-difference formulas for

the spatial derivatives. While an implicit method would

be stable for much larger values of Dt, we will later see

that the filter will be able to stably recover the signal

from noisy observations even for large Dt (the filter uses
the observations to stabilize what would otherwise be an

unstable numerical scheme). To obtain a high-resolution

‘‘ground truth’’ signal we use a grid with 512 equally

spaced spatial grid steps and a time step of 1024.

To simulate a PDE integrator in practice, we truncate

the model, applying the sameRK4 solver with a reduced

number of grid steps and a larger Dt. Let P# 512 be the

number of spatial grid steps on [0, L] and let Dz be the

spatial step size, so that PDz5L. We define an obser-

vation function that integrates in space as

H
i
(~x)

j
5

1

2d

ðzj1d

zj2d

~x(w, t
i
) dw , (10)

where d defines the spatial region over which the obser-

vations are averaged. So for example, when d5L/128, we
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FIG. 1. Demonstrating correlated noise in the truncated L63 system. (a) Comparing the true x coordinate of L63

(gray) to a one-step forecast using the forward Euler method (blue, solid curve) with Dt5 0:05 and the integrated

observation (red, dashed curve). (b) Comparing the system error (defined as LTE) to the observation error (only

representation error in this example), note the correlation. (c) Empirical covariance matrices, C with red lines

dividing the Q, S, ST, and R blocks. (d)–(f) As in (a)–(c), but using the RK4 integrator with the same coarse time

step Dt5 0:05. Color ranges in (c) and (f) are selected to emphasize the S matrix and may saturate for Q and R.

Notice positive correlations in (b),(c) and negative correlations in (e),(f).
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will first estimate the true observation H i using a

composite trapezoid rule with (2d/Dz)1 15 9 grid

points from the full 512 gridpoint solution. If we

consider a truncated model with P5 128 grid points,

then the observation function will have to be estimated

using only (2d/Dz)1 15 3 grid points. If we consider a

truncated model with P5 64 grid points, we will esti-

mate the observation functions using only a single grid

point, in other words our coarse model for the obser-

vation function will be direct observation at each grid

point. This is because the integration range d has be-

come smaller than our truncated Dz. In each case, the

estimated observation function h is consistent with the

true observation H i, so we are not considering obser-

vation model error yet but only representation error.

In Fig. 2 we compare the full resolution and truncated

solutions for 64 grid points and Dt5 0:1. The observation

representation errors (top right) are tightly correlated to

the system errors, consisting of truncation errors from

the one-step integrator (bottom right). Both errors are

also correlated with the underlying truth solution.

It is helpful to view the empirical full covariance

matrix C of the system plus observation errors that can

be estimated from the data in Fig. 2. In Fig. 3 (left) we

show the matrix C where the submatricesQ, S, ST, and

R have been spatially averaged [using the symmetry of

(9) on the periodic domain], which reveals the strong

correlation between the system and observation errors.

In Fig. 3 (right), we plot the sorted eigenvalues of the

empirically estimated C matrix (black, solid curve),

which result purely from the correlation of the trunca-

tion error in the model and the representation error in

the observation.

Next, we consider the case of a large observation

model error and show that the observed correlations are

still present in this case. While leaving the truncated

FIG. 2. (top) (left) Ground truth 512 gridpoint solution (middle left) the same solution decimated to 64 grid points (middle right) the

observation, which integrates the leftmost solution over 9 grid points before truncating, and (right) the observation error, which is the

difference between the middle two solutions. (bottom) (left),(middle left) As in (top). (middle right) The 1-step integrator output from

the truncated model, using 64 grid points and Dt5 0:1. (right) System error, difference between the middle two solutions.
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observation function unchanged, we changed the true

observation function to compute a weighted spatial av-

erage of the four nearest grid points to each observed

point. Explicitly, prior to applying the composite trap-

ezoid rule, we first average each location with its four

nearest neighbors with weights:

~x(z
j
)5

~x(z
j
)1 ~x(z

j11
)/21 ~x(z

j21
)/21 ~x(z

j12
)/41 ~x(z

j22
)/4

2:5
,

which maintains the local structure but also implies that

the quadrature rule used for the truncated state is no

longer consistent with this new observation. In Fig. 3

(right), we plot the eigenvalues of the empirically esti-

mated C matrix (red, dashed curve) for this new obser-

vation, which contains both observationmodel error and

representation error. While the correlation is slightly

further than maximal, the same strong decay of eigen-

values and almost singular behavior is present as in the

case of representation error alone.

In Fig. 3 we should emphasize the presence of many

small eigenvalues, indicating that theCmatrix is close to

singular. To show that these small eigenvalues come

from the special structure of the correlated errors, we

artificially increased the diagonal of the S submatrices

by 50%, and the resulting eigenvalues are shown as the

blue dashed curve in Fig. 3. In other words, by increasing

the correlation beyond the true correlations we destroy

the special ‘‘almost rank deficient’’ nature of this type

of correlated error. In section 5, we focus on this phe-

nomenon, which indicates that the system and ob-

servation errors are very close to being maximally

correlated. We will show that the strong correlation be-

tween the system and observation errors has significant

consequences for the ability to estimate the true state

from the observations.

3. Filtering in the presence of correlations

In this section we review versions of the Kalman

filter for linear and nonlinear dynamics, which include

full correlations of system and observation errors. We

begin with the linear formulas, and then discuss the

unscented version of the ensemble Kalman filter for

nonlinear models.

a. The Kalman filter for correlated system and
observation noise

We begin by reviewing the Kalman update equations

for a linear system with correlated noise (e.g., see Simon

2006). Assume the following model and observation

equations:

x
i
5 f (x

i21
)1Gv

i21
, (11)

y
i
5 h(x

i
)1 Jn

i
, (12)

where F5 f and H5 h represent the systems dynam-

ics and linear observable, respectively; and G and J

FIG. 3. For the Kuramoto–Sivashinsky model truncated onto 64 grid points with Dt5 0:1 we show (left) the

spatially averaged C matrix, note that the cross covariance between dynamical truncation errors and observation

representation errors has a larger magnitude than the variance of the observation errors and (right) the eigenvalues

of C (black, solid curve) decay quickly. The presence of eigenvalues that are very close to zero indicates that the

matrixC is close tomaximally correlated as wewill show in section 5.We also show the eigenvalues for a correlation

matrix computed in the presence of both observational model error and representation error (red, dashed curve).

Finally, we show the eigenvalues after the diagonal of the S matrix is increased by 50% (blue, dotted curve).
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are fixed matrices. Assume (3) represents the noise

covariances.

Given the posterior estimate of the state xai21 and co-

variance Pa
i21 at step i2 1, the Kalman update for a

linear system (Simon 2006; Bélanger 1974) is

xbi 5Fxai21

ybi 5Hxbi

Pb
i 5FPa

i21F
T 1GQGT , (13)

K
i
5 (Pb

i H
T 1GSJT)(HPb

i H
T 1HGSJT

1 JSTGTHT 1 JRJT)21 , (14)

xai 5 xbi 1K
i
(y

i
2 ybi )

Pa
i 5Pb

i 2K
i
(HPb

i 1 JSTGT) , (15)

where xbi represents the forecast of the state given only

the observations up to time i2 1 and Pb
i represents the

covariance of the forecast. Similarly, ybi represents the

forecast of the ith observation given only the observations

up to time i2 1, and the difference between the observed

variables and the forecast mapped into observation space,

e
i
[ y

i
2 ybi ,

is called the innovation. These innovations are often used to

estimate the system and observation error as in Bélanger
(1974),Mehra (1970, 1972), andBerry andSauer (2013).The

Kalman gain matrix Ki optimally combines the forecast xbi
with the innovation to form the posterior estimate xai , which

is the maximal likelihood and minimum variance estimator

of the true state xi. The filter also produces the covariance

matrix Pa
i of the estimator for use in the next filter step.

b. The correlated unscented Kalman filter (CUKF)

We now generalize the correlated system and obser-

vation noise filtering approach to nonlinear systems and

we will show that for linear systems we recover exactly

the equations above.

To apply the unscented Kalman filter we need to

generate an unscented ensemble with the correct cor-

relations. Since the noise realization is independent of

the current state, we consider the concatenated state and

noise vector as follows:2
64
x
i21

v
i21

n
i

3
75;N (~xai21,

~Pa
i21)

[N

0
@
2
4 xai21

0

0

3
5,

2
4Pa

i21 0 0

0 Q S

0 ST R

3
5
1
A.

Notice that the concatenated state is 2N1M dimensional,

and the joint covariance matrix is (2N1M)3(2N1M).

We then form the unscented ensemble, which is repre-

sented in a (2N1M)3 (4N1 2M1 1) matrix

2
64
Xa
i21

W
i21

V
i

3
75[ ~xai21, ~x

a
i21 1

ffiffiffiffiffiffiffiffiffiffiffiffi
a~Pa

i21

q
, ~xai21 2

ffiffiffiffiffiffiffiffiffiffiffiffi
a~Pa

i21

q	 

,

whereXa
i21 contains the firstN rows of the ensemble,Wi21

contains the next N rows, and Vi21 contains the final M

rows. We also define the associated ensemble weights as

w
i
5

8>><
>>:

12
N

a
i5 1

1

2a
i 6¼ 1

for i5 2, . . . , 2N1 1. The scalar a defines the scaling of

the ensemble, which is often chosen to be a5N or

a5N6 1 although Julier and Uhlmann (2004) suggests

a5 3 [in the limit as a/ 0 the unscented Kalman filter

(UKF) approaches the extended Kalman filter (EKF)].

Notice that if the matrixC is constant, the square root of

C can be computed offline and then
ffiffiffiffiffiffiffiffiffi
~Pa
i21

q
can be

formed at each step as the block diagonal matrix with

blocks
ffiffiffiffiffiffiffiffiffi
Pa
i21

p
and

ffiffiffiffi
C

p
.

Now that we have generated an unscented ensemble

with the correct correlations we can pass this ensemble

through the nonlinear transformations defining

Xb
i 5 f (Xa

i21,Wi21
) ,

Yb
i 5h(Xb

i ,Vi
) ,

where the nonlinear functions f and h are applied to each

column of the ensemble matrices to form the forecast en-

semble matrices Xb
i and Yb

i that are N3 (4N1 2M1 1)

and M3 (4N1 2M1 1), respectively. Now we can com-

pute the following forecast statistics:

xbi 5Xb
i w

ybi 5Yb
i w

Px
i 5 �

2N11

j52

w
j
[(Xb

i )�,j2 xbi ][(X
b
i )�,j2 xbi ]

T

Py
i 5 �

2N11

j52

w
j
[(Yb

i )�,j2 ybi ][(Y
b
i )�,j2 ybi ]

T

Pxy
i 5 �

2N11

j52

w
j
[(Xb

i )�,j2 xbi ][(Y
b
i )�,j2 ybi ]

T
,

where (Xb
i )�,j is the jth column of Xb

i (the jth ensemble

member).

We can now define the unscented version of the

Kalman update for correlated noise as follows:
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K
i
5Pxy

i (Py
i )
21

xai 5 xbi 1K
i
(y

i
2 ybi )

Pa
i 5Pb

i 2K
i
(Pxy

i )
T
. (16)

Finally, as an implementation detail, the last equation

should be computed as

Pa
i 5Pb

i 2K
i
Py
iK

T
i

in order to maintain numerical symmetry.

In appendix A we show the equivalence of the

CUKF and Kalman filter (KF) for linear problems

with correlated noise, which shows that the CUKF is a

natural generalization to nonlinear problems with

correlated errors. We note that the generalization of

the CUKF approach to an ensemble square root

Kalman filter (EnSQKF) is a straightforward exten-

sion of the same Kalman update formulas. Integrating

correlated noise into other Kalman filters such as the

EnKF and ensemble transform Kalman filter (ETKF)

can also be achieved using the Kalman update for

correlated noise. For large problems the covariance

matrix would need to be localized in order to be a

practical method; for example, the localized ensemble

transform Kalman filter (LETKF) can be adapted to

use the unscented ensembles used here Berry and

Sauer (2013). A significant remaining task is gener-

alizing the ensemble adjustment Kalman filter EAKF

for additive system noise and correlated system and

observation noise. Serial filters such as the EAKF

cannot currently be applied even for additive system

noise, which is not correlated to the observation noise,

and instead these filters typically use inflation to try to

account for system error. Generalizing the serial fil-

tering approach to allow these more general types of

inflation is a significant and important task and is be-

yond the scope of this article.

4. Filtering systems with truncation errors

In this section we apply the CUKF to truncated ob-

servations of the Lorenz-63 and Kuramoto–Sivashinsky

systems as described in section 2. The dynamics and

observations considered in this section have no added

noise, so that the system errors arise only from trun-

cation of the numerical solvers, and the observation

errors arises only from local integration (representa-

tion error only). The CUKF will use the empirically

estimated C matrices described in section 2, and we

compare these to the filter results with the covariance

matrix C modified by setting the S block equal to the

0matrix, which we denote as UKF.

a. Example: Lorenz equations

First we consider the Lorenz-63 system in (8) with the

observation described in section 2b. Using the same data

generated in that example, we applied the CUKF and

UKF. The estimates produced by these filters are shown

in Fig. 4a (for the same time interval shown in Fig. 1). In

Fig. 4b we show the errors between each filter’s esti-

mates and the truth, compared to the observation rep-

resentation errors over the same time interval. The

CUKF, which uses the fullCmatrix, obtains significantly

superior estimates of the true state. Averaged over 6000

filter steps (after removing the initial filter transient) the

root-mean-squared error (RMSE) of standard UKF

estimates is 0.29 whereas that of the CUKF estimates is

0.16. Compared to the RMSE of the raw observations,

which is 0.35, the UKF reduced the error by 17%, while

the CUKF reduced the error by 54%.

We then repeated this experiment using the RK4 in-

tegrator instead of forward Euler with the same trun-

cated time step of Dt5 0:05 and the results are shown in

Figs. 4c and 4d. The RMSE of the UKF estimates with

this integrator is 0.18 and the RMSE of the CUKF es-

timates is 0.16. Recall that the local truncation errors of

RK4 were negatively correlated with the observation

representation errors, resulting in relatively small dif-

ferences between the UKF and CUKF for this example.

The difference between positively and negatively cor-

related errors will be studied below in section 5. Notice

that the CUKF with forward Euler obtains better esti-

mates than the UKF using the far superior RK4 in-

tegrator. This shows that by using the correlations we

can obtain better results with a much faster integrator. It

also emphasizes the importance of the sign of the cor-

relations, so that if possible one should select an in-

tegrator that yields errors that are positively correlated

with observation representation errors (in the global

average), possibly even if this requires using a lower-

order method.

b. Example: Kuramoto–Sivashinsky

Next we consider filtering the observations of the

Kuramoto–Sivashinsky model in (9) introduced in

section 2c. Using a ground truth integrated with 512 spatial

grid points and Dt5 1024 we consider truncated models

with 64, 128, and 256 grid points and Dt5 0:05 (results

were similar for Dt5 0:1 and Dt5 0:025). In Figs. 5a and

5b we compare the RMSE of the UKF estimates, CUKF

estimates, and the observations for two different spa-

tial integration widths d5L/512 and d5L/128. When

d5L/512 the integral in (10) defining the true obser-

vation is estimated using the composite trapezoid rule

on 3 grid points of the full 512 grid point solution and the
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RMSE of the observation representation errors is 0.01,

which is 0:3% of the signal variance. In Fig. 5a we see

that for 64 grid points the UKF does not reduce the

error much relative to the observation representation

error, whereas the CUKF obtains a much better esti-

mate. In fact, the CUKF error with 64 grid points is

comparable to the UKF error with 256 grid points.

When d5L/128 the integral in (10) is estimated using

the composite trapezoid rule on 9 grid points of the

full 512 grid point solution and the RMSE of the ob-

servation representation errors is 0.11, which is 3:5%

of the signal variance. As shown in Fig. 5b, the CUKF

still outperforms the UKF; however, the difference at

64 grid points is less significant since d,Dz meaning

that each integral is completely contained between

grid points.

The results of both UKF are robust for large Dt until
the numerical solver becomes extremely unstable, which

occurred for Dt5 0:1 with 256 grid points, since more

grid points generally require smaller Dt to stabilize the

solver. However, we should note that the numerical

solver is unstable even for 64 grid points with Dt5 0:1

and the filter is stabilizing the solver using the observa-

tions. We also examined the robustness of these results

in the presence of additive Gaussian observation noise

with covariance R in Fig. 5c. Notice that for small R the

random noise is small and the errors from truncation

dominate, meaning the correlations in S are significant.

As the uncorrelated noise R is increased it eventually

dominates the correlated part of the observation errors,

so that UKF and CUKF have similar performance.

Finally, in Fig. 5d we show the effect of inflation in the

UKF by adding a constant multiple of the identity to

either Q or R, and in each case the best performance is

found when using no inflation.We also tried inflating the

filter background covariance matrix by multiplying by a

constant greater than one, and this also had very little

effect as shown in Fig. 5d. These results indicate that

FIG. 4. (a) Comparison of the true solution, ~x (gray) and its discrete time samples xi (black circles) and integrated

observations yi (green circles) with the UKF estimates (blue, solid) and CUKF estimates (red, dotted) over the

same time interval shown in Fig. 1. (b) Errors computed by subtracting the true discretized signal from the ob-

servation (green circles), the UKF estimates (blue, solid), and the CUKF estimate (red, dotted). (c),(d) As in

(a),(b), but using the RK4 integrator with the same Dt5 0:05.
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inflation cannot account for the correlated error. Since

the Q and R used in the UKF were determined empiri-

cally to be optimal in this example, the only way to im-

prove the performance is to account for correlations

using the CUKF.

5. Maximally correlated random variables and
perfect recoverability

In the previous section, the importance of using the

full correlation matrix C was demonstrated, for system

and observation errors that arise naturally from trun-

cation and averaging that is common in geophysical

modeling and filtering. In this section, we investigate the

effects of cross correlation in a more systematic way. In

particular, we identify the extreme case of maximally

correlated random variables.

a. Maximum correlation

We begin by defining maximally correlated random

variables.

DEFINITION 5.1 (MAXIMALLY CORRELATED

RANDOM VARIABLES)

Let X 2 RN and Y 2 RM be random variables

with covariances Q5E[(X2E[X])(X2E[X])T] and

R5E[(Y2E[Y])(Y2E[Y])T], respectively, and let

S5E[(X2E[X])(Y2E[Y])T] be the cross covariance.

We say thatX, Y aremaximally correlated if the Schur

complement of R in C, namely Q2SR21ST, has min-

imal trace among allN3Mmatrices S. In other words

trace(Q2SR21ST)5minCftrace(Q2CR21CT)g.
While it is not immediately obvious from the defini-

tion, Lemma B.1 in appendix B shows that the roles of

FIG. 5. (a),(b) Comparison of filter results using the UKF without correlations to filtering with correlations

(CUKF) on the Kuramoto–Sivashinsky model truncated in space to 64, 128, and 256 grid points for observations

integrated over (a) d5L/512 and (b) d5L/128. (c) For 64 grid points and Dt5 0:1, we show the robustness of the

results after adding various levels ofGaussian instrument noise with varianceR to the observations. (d) For the case

R5 1022 we test the UKF with inflation by adding the identity matrix times a constant to Q (blue, solid) or R (red,

dashed). We also show the effect of inflating the filter background covariance (black, dotted) where the x axis

indicates inflation percentage. In each case, inflation degraded the filter performance.
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X and Y are symmetric, so that S also minimizes

trace(R2STQ21S). The idea of maximally correlated

random variables is that by choosing an appropriate S

the (N1M)3(N1M) matrixC becomes rank deficient

with rankN. Notice that we can make a linear change of

the X variables,
�
~X
~Y

�
5

�
I
N3N

2SR21

0 I
M3M

��
X

Y

�
,

so that ~Y5Y is unchanged but the covariance matrix of
~X, ~Y is

~C[E

��
~X
~Y

��
~X
~Y

�T�

5

�
Q2SR21ST 0

0 R

�
, (17)

and the new state variables ~X have covariance matrix

Q2SR21ST with minimal trace. In other words, the

variables ~X have minimal variance among all possible

choices ofS. According to the rank additivity formula of

Guttman (1946), the rank of C is equal to the sum of

the rank of R and the rank of its Schur complement

Q2SR21ST, meaning that rank(C)5 rank(~C). Thus, by

reducing the rank of the Schur complementwe are actually

choosing S, which minimizes the rank of C. Intuitively

speaking, this choice of S minimizes the dimensionality of

the joint noise process.

A simple example of maximal correlation is to

consider the 23 2 case where Q5 q, R5 r, and S5 s

are scalars. By setting s56
ffiffiffi
q

p ffiffi
r

p
, we find the Schur

complement to be q2 sr21s5 0. Moreover, with this

choice of s the eigenvalues of C are f0, q1 rg, so that

rank(W)5 1 is minimal over all possible choices of s. In

general, when N5M we can set S5
ffiffiffiffi
Q

p ffiffiffiffi
R

p T
, whereffiffiffiffi

Q
p ffiffiffiffi

Q
p T

5Q and
ffiffiffiffi
R

p ffiffiffiffi
R

p T
5R are matrix square roots

(recall that matrix square roots are unique up to a choice

of orthogonal matrix) and we find the Schur comple-

ment to be Q2SR21ST 5 0N3N . When N 6¼M the for-

mula for S is similar and is given in Lemma B.1, which is

stated and proved in appendix B.

It follows from Lemma B.1 that given random vari-

ables X 2 RN and Y 2 RM with covariance matrices

Q, R, respectively, there always exists an N3M matrix

S such that the total covariance matrix C in (3) makes

X and Y maximally correlated, and rank(W)5N. This

finding is striking, in the sense that if X and Y represent

the system and observation errors of a dynamical sys-

tem, respectively, and if they are maximally correlated,

then the underlying noise/error process is actually only

N dimensional, despite appearing N1M dimensional.

Since the observation errors are linear combinations

of the system errors, up to an orthogonal trans-

formation we can think of the process as effectively

having no observation noise. We will make this rig-

orous below by showing that in the case of maximal

correlations, the observation errors can be completely

eliminated by filtering and the true state can be per-

fectly recovered.

Now consider the case when Q and R are the system

and observation covariances, respectively. From the

previous lemmawe can see that the easiest way to obtain

maximally correlated processes is when the observation

errors are linear combinations of the system errors

(since this implies that C has rank N). So, returning to

the discussion in section 2a, we can now see that when

the leading-order terms in the system and observation

errors only differ by a constant multiple they will be

maximally correlated up to higher-order terms. More

generally, whenever theN3MmatrixC has rankN, the

system and observation errors are maximally correlated.

In particular, the small eigenvalues in Fig. 3 indicate that

the system and observation errors are close tomaximally

correlated.

b. Perfect recoverability in maximally correlated
linear systems

Consider the linear system of the form (1) and (2),

where

x
i11

5 f (x
i
,v

i
)5Fx

i
1Gv

i

y
i11

5h(x
i11

,n
i11

)5Hx
i11

1Jn
i11

,

and assume the noise is generated by

�
v

i

n
i11

�
;N (0,C) , where C5

�
Q S

ST R

�

as in (3). In this section we will show that when the

covariance matrices Q and R are maximally corre-

lated, meaning that S is chosen as in Lemma B.1, the

state variables become perfectly recoverable, mean-

ing that the limiting variance of the Kalman filter

estimates of those variables is zero. Of course, in real

applications we do not get to choose S. Our purpose

here is to demonstrate the maximal effect that S can

have on the ability to estimate random variables. As a

consequence, if the true S were maximal and one

instead used a suboptimal filter with S5 0, the rela-

tive loss of accuracy would be ‘‘infinite’’ (since per-

fect reconstruction was possible with the true S).

Although the results in this section only apply to

linear filtering problems, in section 5c we will

show similar empirical results for nonlinear filtering

problems.
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We show the effect that the maximal correlationS has

on the stationary posterior covariance P of a Kalman

filter. Without loss of generality, in this section we will

assume G5 IN3N and J5 IM3M since we may replace C

by ~C5BCBT where B is block diagonal with blocks G

and J. Substituting (13) and (14) into (15) and setting

Pa
i 5Pa

i21 5P, we find the discrete time algebraic Riccati

equation (DARE):

P5FPFT 1Q2(FPFTHT 1QHT 1S)(HFPFTHT

1HQHT 1HS1STHT 1R)21(HFPFT 1HQ1ST) .

(18)

If (18) has a solution that is stabilizing, meaning that

all the eigenvalues of (I2KH)F are inside the unit circle

[where K5K‘ is defined by (14) using the solution P],

then this solution is unique and is the limiting covariance

matrix of the Kalman filter as shown in Ran and

Vreugdenhil (1988). We can now state the following

result, the proof can be found in appendix C.

THEOREM 5.2

Assume that all the eigenvalues of the matrix

[I2HS(HS1R)21]F

lie inside the unit circle. Then the limiting covariance

matrix P of a Kalman filtering problem with maxi-

mally correlated noise processes is zero when M$N.

In other words, all state variables are perfectly

recoverable. When M,N, if the general stability

condition on (I2KH)F is met, the limiting covariance

matrix P is zero when projected onto the top M

eigenvectors of Q.

Notice that the Kalman filter has an asymmetry be-

tween Q and R, which is not present in the definition of

maximal correlation, because of their differing roles in

the dynamics. The consequence of this asymmetry is

seen in the stability condition. For simplicity, consider

the case N5M5 1, when HS is positive the stability

condition is met for all jFj, 1, and even for some jFj. 1

since j(12HS(HS1R)21)j, 1. Conversely, when HS is

negative, we find j[12HS(HS1R)21]j. 1 and stability

of F is no longer sufficient.

To demonstrate this result, we applied the numerical

DARE solver implemented by MATLAB to a linear

system with F5 lIN3N , where l will be varied to dem-

onstrate the effect of stability and H5 IN3N , Q5 IN3N ,

and R5 4IN3N . To show how the filter estimates im-

prove as S approaches the maximal choice, we let

S5 (22 dj)IN3N for dj 5 22j and j5 0, 1, . . . , 18. In this

case, the correlation in S is positive and we find that the

stabilization criterion is

eig([I2HS(HS1R)21]F)5 [12 2/(21 4)]l, 1

if and only if l, 1:5: In Fig. 6a we plot the mean of

the diagonal elements of the numerical solution P

to (18) against the trace of the Schur complement

trace(Q2SR21ST)5 4Ndj 2Nd2j for all values of j.

The different curves correspond to different values of

l chosen near 1.5. Notice that for l, 1:5, as the noise

approached maximally correlated, the filter estimates

approach the true state up to the limits of numerical

precision. When l. 1:5, P5 0 is still a solution of the

DARE but is no longer stabilizing and so the filter

converges to a covariance matrix that has variances

greater than zero.

To show the effect of negative correlation, we next

consider the case S52(22 dj)IN3N for dj 5 22j and

j5 0, 1, . . . , 18. In this case, the correlation in S is

negative and we find that the stabilization criterion is

eig([I2HS(HS1R)21]F)5 [11 2/(221 4)]l, 1

if and only if l, 0:5: Notice that in this case the dy-

namics are required to be stable (l, 1) in order to

stabilize the P5 0 solution, whereas with positive cor-

relations the dynamics could be unstable (l. 1). In

Fig. 6b we plot the mean of the diagonal elements of

the numerical solution P to (18) against the trace of

the Schur complement trace(Q2SR21ST)5 4Ndj 2Nd2j
for all values of j. The different curves correspond to

different values of l chosen near 0.5. Notice that for

l, 0:5, as the noise approached maximally correlated,

the filter estimates approach the true state up to the

limits of numerical precision. When l. 0:5, P5 0 is

still a solution of the DARE but is no longer stabilizing

and so the filter converges to a covariance matrix with

variances greater than zero.

Finally, we note that a standard form for the DARE

used in numerical solvers, such as MATLAB, is

05ATPA2ETPE2 (ATPB1 Ŝ)(BTPB1 R̂)21

3(BTPA1 ŜT)1 Q̂ ,

and (18) can be put in this form by setting E5 I, A5FT,

B5FTHT, Q̂5Q, Ŝ5QHT 1S, and R̂5HQHT 1HS1
STHT 1R.

c. Examples of UKF and perfect recovery in
nonlinear systems

In this section we will apply the UKF to synthetic

datasets generated with nonlinear dynamics where the

system and observation errors are Gaussian distributed

pseudorandom numbers. A surprising result is that
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despite the nonlinearity, we still obtain perfect recovery

up to numerical precision for maximally correlated er-

rors. Moreover, in analogy to the linear case, perfect

recovery is not possible when the instabilities in the

nonlinear dynamics become sufficiently strong.

We first consider the Lorenz-63 system introduced

above (8). We consider the discrete time dynamics

xi11 5 f (xi) to be given by applying the RK4 solver

with Dt5 0:01 to the chaotic vector field in (8) and

the direct observation function h(xi11)5 xi11. We arti-

ficially add substantial system and observation noise

of covariance Q5 I333 and R5 4I333, respectively. Ac-

cording to the remarks preceding Lemma B.1, the

system and observation noise are maximally correlated

when S5 2I333, which implies the Schur complement of

Q and R is the zero matrix. To test the recovery of the

deterministic variables x, y, z, we set S5 (22 dj)I333 for

dj 5 22j and j5 0, 1, . . . , 18, implying that dj is the trace

of the Schur complement. A time series of Lorenz-63

was produced with noise specified fromQ, R, and S and

theUKF algorithm of section 3awas applied. Results for

RMSE of the recovered variables x, y, z are shown in

Fig. 7a. In the limit as d/ 0 and S approaches maximal

correlation, we find perfect recovery of the true state using

the CUKF algorithm with the true covariance matrix C, as

foreshadowed by the linear case. We repeated this experi-

ment for the alternative parameter value s5 350 in (8),

which yields a globally attracting periodic orbit, and ob-

tained very similar results, also shown in Fig. 7a.

Since perfect recovery in the linear case depended

on the degree of stability of the dynamics, we next in-

vestigate the effect of the Lyapunov exponents of a

chaotic dynamical system on the ability to obtain perfect

recovery. We consider the chaotic Lorenz-96 system, a

40-dimension ODE given by

_x
i
5 x

i21
x
i11

2 x
i21

x
i22

2 x
i
1F , (19)

where F determines the size and number of the

positive Lyapunov exponents of the chaotic dynam-

ics Lorenz (1996). Using Q5 I40340, R5 4I40340, the

maximal correlation occurs when S5 2I40340. We set

S5 (22 dj)I40340 for dj 5 22j and j5 0, 1, . . . , 18 and

generated time series with noise from Q, R, and S as

above. The CUKF algorithm was applied to recover the

40-dimensional state. In Fig. 7b we show that for F5 6

we obtain perfect recovery in the case of maximal cor-

relationbetween systemandobservationnoise.However, as

F increases, the system becomes more strongly chaotic and

the perfect recovery breaks down. Notice that as in the

linear case, the failure of perfect recovery occurs very

sharply between F5 7 and F5 9. This suggests that in

analogy to the linear result, some form of stability

condition is likely necessary for perfect recovery.

6. Discussion

Approximating a dynamical system on a grid is per-

vasive in geophysical data assimilation applications. For

dynamical processes, time is usually handled in discrete

fashion. We have shown that correlation between sys-

tem and observation errors should be expected when the

system errors derive from local truncation errors from

differential equation solvers, both in discrete time and

on a spatial grid, andwhen observational error is dominated

by either observation model error or representation error.

FIG. 6. Mean-squared error of filter estimates for linear models F5lIN3N with (a) positive correlations and

(b) negative correlations. Black curve is based on the filter using S5 0, all other curves use the true S. Notice that

we obtain perfect recovery to the limit of numerical precision when the stability criterion is satisfied: (a) l, 3/2 for

positive correlation and (b) l, 1/2 for negative correlation.
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In section 3, we introduced an approach to the en-

semble Kalman filter that accounts for the correlations

between system and observation errors. In particular,

we showed that for spatiotemporal problems, extending

the covariance matrix to allow cross correlations can

reduce filtering error as much as a significant increase in

grid resolution. Of course, obtaining more precise esti-

mates of the truth with much coarser discretization al-

lows faster runtimes and/or larger ensembles to be used.

Correlations are most significant when other in-

dependent sources of observation and system error are

small compared to the truncation error. Of course, other

sources of error, such asmodel error, may influence both

the state and the observations leading to further signif-

icant correlations, but for simplicity we focus on corre-

lations arising in the perfect model scenario. It is

reasonable to expect that in many physical systems, the

noise affecting the state of the system would also affect

the sensor or observation system.

The generalization of the CUKF to an ensemble square

root Kalman filter (EnSQKF) is a straightforward exten-

sion. However, it remains to extend the ensemble adjust-

ment Kalman filter EAKF for additive system noise to

correlations between system and observation noise. An

EAKF formulation is critical for situations when the en-

semble size is necessarily much smaller than either the

state or observation dimensions (N and M, respectively).

This situation is common when the covariance matrices,

which are explicitly used in the UKF approach above do

not fit in memory. A significant challenge in this formula-

tion is that we cannot appropriately inflate the ensemble

since we assume the full correlation matrix C is of maxi-

mum rank, and any inflation of the small ensemble would

only match the inflation in the subspace spanned by the

ensemble. A promising alternative is to follow the approach

of Whitaker and Hamill (2002) and design an alternative

gain matrix ~Ki such that the analysis ensemble ~Xa
i has the

same covariance as applying the Kalman gain K to an ap-

propriately inflated ensemble.

In this article, we have not dealt with the question of

real-time estimation of the full covariance matrix C.

The importance of correctly specifying the Q and R

matrices was first demonstrated for the Kalman filter

in Mehra (1970, 1972) and for nonlinear filters in Berry

and Sauer (2013). We consider sequential methods for

estimation of the full covariance matrix in parallel with

filtering to be a fruitful area of future research.
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APPENDIX A

Equivalence of CUKF and KF for Linear Problems
with Correlated Errors

To justify our definition of the CUKF in section 3b, we

will show that for linear systems the update in (16) is

equivalent to the Kalman filter equations given in sec-

tion 3a. We can define the covariance of the forecast by

expanding the innovation as

e
i
[ y

i
2 ybi 5H(x

i
2 xbi )1Jn

i

5HF(x
i21

2 xai21)1HGv
i21

1 Jn
i
, (A1)

FIG. 7. Mean-squared error of filter estimates with positively correlated noise for (a) L63 in periodic and chaotic

parameter regimes and (b) L96 dynamical systems for various values of the forcing parameter. Black curve is based

on the filter using S5 0 (UKF), and all other curves use the true S (CUKF).
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and writing HGvi21 1 Jni 5 [HG, J]

�
vi21

ni

�
we find

Py
i [E[e

i
eTi ]

5HFPa
i21F

THT 1 [HG, J]W[HG,J]T

5HFPa
i21F

THT 1HGQGTHT 1HGSJT

1 JSTGTHT 1 JRJT ,

where we recall that E

��
vi21

ni

��
vi21

ni

�T�
5W and

E[(xi21 2 xai21)(xi21 2 xai21)
T]5Pa

i21. Notice that

HPb
i H

T 5HFPa
i21F

THT 1HGQGTHT ,

so that

Py
i 5HPb

i H
T 1HGSJT 1HGQGTHT

1 JSTGTHT 1 JRJT ,

which implies that we can rewrite the Kalman gain

equation as
K

i
5 (Pb

i H
T 1GSJT)(Py

i )
21
.

Similarly, we can define the cross correlation between

the state and observation as

Pxy
i [E[(x

i
2 xbi )(yi 2 ybi )

T
]

5E[(F(x
i21

2 xai21)1Gv
i21

)(HF(x
i21

2 xai21)1HGv
i21

1 Jn
i
)T]

5FPa
i21F

THT 1GQGTHT 1GSJT

5Pb
i H

T 1GSJT ,

and finally we can write the Kalman gain as

K
i
5Pxy

i (Py
i )
21
,

which agrees with the definition used in (16) for our

version of the unscented Kalman filter.

APPENDIX B

Maximal Correlation when N 6¼M

In section 5 we showed how to define the maximal

correlation matrix C when N5M. In the following

lemma we derive the formula when N 6¼M.

Lemma B.1

Let Q, R be symmetric positive-definite matrices

with eigendecompositions Q5ULUT and R5VLVT.

Denote diagonal entries by L1,1 $L2,2 $ � � � $LN,N and

L1,1 $L2,2 $ � � � $LM,M.

1. If N$M, let ~U be the first M columns of U and ~L

be the first M3M block of L and let ~V5V and
~L5L.

2. If N#M, let ~U5U and ~L5L and let ~V be any N

columns of V and ~L the corresponding N3N block

of L.

Then trace(Q2SR21ST) is minimized over all N3M

matrices S by

S5 ~U~L1/2G~L1/2~VT

for any orthogonalmatrixG.Moreover, for anymaximal

S we have rank(Q2SR21ST)5maxfN2M, 0g and

trace(Q2SR21ST)5�N

i5M11Li,i.

Proof

Notice that

SR21ST 5 ~U~L1/2G~L1/2~VTVL21VT~V~L1/2GT ~L1/2 ~UT

5 ~U~L~UT , (B1)

so that Q2SR21S5UL̂UT, where L̂ replaces the first

M diagonal entries of L with zeros if N.M and L̂5 0

if N#M.

APPENDIX C

Proof of Theorem 5.2

Proof

It suffices to show that P5 0 is a solution to the DARE.

Let R1/2 be the unique symmetric square root of R and

let R21/2 be its inverse. Setting A5HSR21/2 1R1/2,

notice that

I5AT(AAT)21A

5AT(HSR21STHT 1HS1STHT 1R)21A ,

and multiplying on the left by SR21/2 and on the right by

R21/2ST we have
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SR21S5 (SR21STHT 1S)(HSR21STHT 1R)21

1 (HS1STHT 1R) .

Finally, since S is maximal with M$N we have

Q5SR21ST by Lemma B.1, which implies that

Q5 (QHT 1S)(HQHT 1HS1STHT 1R)21(HQ1ST) .

Since the previous equation is exactly like our (18) with

P5 0, this shows that P5 0 is a solution to the DARE.

Moreover, since P5 0 implies that the limiting Kalman

gain is

K5 (QHT 1S)(HQHT 1HS1STHT 1R)21

5SR21/2AT(AAT)21

5SR21/2A21

5SR21/2(HSR21/2 1R1/2)21

5S(HS1R)21 ,

where A is invertible since it is the square root of an

invertible matrix. Thus, the stabilizing condition is that

the matrix

(I2HK)F5 [I2HS(HS1R)21]F

has eigenvalues inside the unit circle. Since P5 0 solves

the DARE and is stabilizing, it is the limiting covariance

matrix of the Kalman filtering problem.

In the case whenM,N, recall that Q5ULUT is the

eigendecomposition from Lemma B.1 and ~U contains

the firstM columns of U so that Q5 ~U~L~U1 Q̂. Since S

is maximal we have that Q2 Q̂5SR21ST and multi-

plying both sides by ~UT on the left and ~U on the right

we find ~L5 ~UTSR21ST ~U5 ~SR21~ST, where ~S5 ~UTS.

Similarly, setting ~P5 ~UTP~U, ~F5 ~UTF~U, and ~H5H~Uwe

can rewrite the DARE (again multiplying both sides

by ~UT on the left and ~U on the right). The result is

precisely the DARE from (18) with P, F, H, S, Q re-

placed by ~P, ~F, ~H, ~S, ~L, respectively. Since ~L5 ~SR21~ST,

we have reduced to the case above, so ~P5 0 is a solution

of this DARE. In other words P satisfying ~UTP~U5 0

is a solution of the DARE, and projecting the DARE

onto the eigenvectors of U orthogonal to ~U would yield

another DARE, which would need to be satisfied with a

nonzero solution.Moreover, the resultingKalman gain and

stability condition become nontrivial in this case, but if the

stability condition for the DARE is met, then we find a

limiting covariance matrix, which is zero when projected

onto the top M eigenvectors of Q.
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