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ABSTRACT

Standardmethods of data assimilation assume prior knowledge of amodel that describes the system dynamics and an observation function that
maps the model state to a predicted output. An accurate mapping from model state to observation space is crucial in �ltering schemes when
adjusting the estimate of the system state during the �lter’s analysis step. However, in many applications, the true observation function may
be unknown and the available observation model may have signi�cant errors, resulting in a suboptimal state estimate. We propose a method
for observation model error correction within the �ltering framework. The procedure involves an alternating minimization algorithm used
to iteratively update a given observation function to increase consistency with the model and prior observations using ideas from attractor
reconstruction. The method is demonstrated on the Lorenz 1963 and Lorenz 1996 models and on a single-column radiative transfer model
with multicloud parameterization.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5087151

Data assimilation as a means of fusing mathematical models with
observed data is a critical component of geophysical data anal-
ysis in general and numerical weather prediction in particular
and is steadily �nding broader applicability throughout nonlinear
science. Standard theory assumes knowledge of the system equa-
tions of motion and observation function. In applications, it is
necessary to cope with the breakdown of one or more of these
requirements. In this article, we explore ways to correct an incom-
plete or unknown observation function. We propose an iterative
approach to �xing observation model error that can be applied as
part of a sequential data assimilation implementation.

I. INTRODUCTION

The use of modern nonlinear versions of data assimilation such
as the Extended Kalman Filter (EKF) and Ensemble Kalman Filter
(EnKF)1–8 assumes precise knowledge of the dynamical equations
and the relationship between the system state and observables. Some
intriguing recent work has focused on investigating the e�ects of
incomplete knowledge on this process, such as model error, missing
equations and multiple sources of error in observations. In partic-
ular, the issue of observation errors, due to truncation, resolution

di�erences, and instrument error, has received great attention.9–14 In
the case of unknown or incorrect observation models, there is inter-
est in �xing these de�ciencies. For example, a recent study15 discusses
replacing an unknown observation function with a training set of
observations and accompanying states.

In this article, an iterative approach to �xing observation model
error is proposed, which does not require training data, and can be
applied as part of a sequential data assimilation implementation. The
idea is based on an alternating minimization algorithm applied to
the observation function. In the �rst step, a �lter (e.g., Kalman-type
or variational �lter) is applied to �nd the optimal state estimate based
on the given observation model. In the second step, an observation
model correction term is interpolated from the di�erence between
the actual observations and the observationmodel applied to the state
estimate produced by the �lter. At this point, we apply an attractor
reconstruction method from dynamical systems theory to localize
the correction in reconstruction space. The model correction term
is then applied to form a new observation model. The two steps are
then repeated until convergence.

Figure 2 shows an example application of the technique, to the
Lorenz attractor with dynamical noise. The dynamical model equa-
tions (the Lorenz equations) are assumed known, to restrict focus on
the observationmodality. An initial guess ismade for the observation
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function used in the �lter, which is far from the function generating
the observed data. Sequential �ltering is applied iteratively, and the
observation model correction is learned through the iteration. The
rootmean squared error (RMSE) of the �lter decreasedwith iteration
number, and after about a dozen iterations, the minimum RMSE is
approximately attained.

Several other examples illustrate the varying contexts in which
the method can be applied. A critical hurdle for all �ltering methods
is the ability to scale up to large problems, which is typically achieved
with a spatial localization. As a test case for spatiotemporal data, we
consider the Lorenz-96 system, in networks with 10 and 40 nodes. In
the latter case, a spatial localization technique is developed, which
allows interpolation within each local region. Finally, we consider
a more physically realistic example where observation model error
can be especially detrimental to �ltering, namely, the case of radiative
transfer models (RTM). To simulate severe observation model error,
we assign the cloud fractions of a typical RTM to zero in the observa-
tion model. We then generate data using the full RTM (including the
cloud fractions) and apply ourmethodusing the crippled observation
function (with cloud fractions set to zero). The results show signi�-
cant improvement in RMSE after three iterations of our observation
model error correction algorithm.

The algorithm for correcting the observation model error is
described in Sec. II, along with its relation to alternating minimiza-
tion methods in optimization theory, and details of its implementa-
tion in an ensemble �lter. Sections III and IV describe applications of
the algorithm to Lorenz-63 and Lorenz-96 models, the latter to show
how the method scales for spatiotemporal problems. The application
to the radiative transfer model in shown in Sec. V.

II. FILTERING WITH AN INCORRECT OBSERVATION

FUNCTION

In the general �ltering problem, we assume a system with
n-dimensional state vector x and m-dimensional observation vector
y de�ned by

xk = f (xk−1) + wk−1,

yk = h(xk) + vk,
(1)

wherewk−1 and vk are white noise processes with covariancematrices
Q and R, respectively. The function f represents the system dynamics
and h is a continuous observation function that maps the model state
to a predicted output. The goal is to sequentially estimate the state of
the system given some noisy observations. Below, we will consider a
speci�c �ltering algorithm; however, at this point, our approach can
be formulated in terms of a generic �ltering method.

A. The observation error correction algorithm

The e�ectiveness of standard �ltering approaches is based on
the assumption that the observation function h is perfectly known.
The goal of this section is to address what happens when h is not
known, and in its place an incorrect observation function g is used. In
fact, observation model errors can have many sources, from trunca-
tion error due to downsampling high resolution state variables (also
called representation error) to simple mismatch between the actual
and available observation functions (often referred to as observation

model error).10,12,13 In this article, we will take a very general outlook
by considering h to be the true continuous mapping from the fully
resolved true state variables xk into observed variables yk, which is
subject only to instrument error vk. Meanwhile, g will denote a pos-
sibly incorrect continuous mapping from state variables into obser-
vation variables which can be compared to the actual observations
yk. In such a situation, we can rewrite the second part of Eq. (1) as

yk = h(xk) + vk

= g(xk) + b(xk) + vk, (2)

where b is the error in our estimate resulting fromuse of the incorrect
observation function. The term b(·) encapsulates all sources of error
except for instrument noise which is the noise term vk. We can write
this error term as b(xk) = h(xk) − g(xk), or the di�erence between
the true and incorrect observation functions at step k. Note that this
error is dependent on the fully resolved state xk.

Repairing observation model error was addressed recently15 by
building a nonparametric estimate of the function b using a train-
ing set consisting of observations along with the corresponding true
state. In the current article, we assume that the true state is not avail-
able. A novel approach will be proposed for empirically estimating
the model error term b using only the observations yk. We begin by
describing our method generically for any �ltering scheme. The gen-
eral idea is to iteratively update the incorrect observation function
g by obtaining successively improved estimates of the observation
model error.

We make an initial de�nition g(0) = g. The �lter is given the
known system dynamics f , the initial incorrect observation func-
tion g(0), and the observations y, and provides an estimate of the

state at each observation time k, which we denote x(0)
k . This initial

state estimate will be subject to large errors, due to the unaccounted-
for observation model error. Using this imperfect state estimate,

we calculate a noisy estimate b̂(0)
k of the observation model error,

corresponding to observation yk where

b̂(0)
k = yk − g

(

x(0)
k

)

. (3)

Due to noise in the data as well as the imperfection of the state

estimate, b̂(0)
k will not accurately re�ect the true observation model

error, b(xk).
Here, we will borrow a technique from dynamical systems the-

ory to �lter both errors. A standardmethod of nonparametric attrac-
tor reconstruction due to Takens16–19 builds a homeomorphic model
from delay coordinates of a time series. The error b(x) is uniquely
determined by the system state x. If we can determine the cur-
rent state on the reconstructed attractor, we can force the various
estimates for b(x) at subsequent returns to that state to be consistent.

To build a better estimate of b(xk), we locally �lter the observa-
tionmodel error function as follows. Given observation yk, introduce
the delay-coordinate vector zk =

[

yk, yk−1, . . . , yk−d

]

, with d delays.
For su�ciently large d and technical conditions involving genericity,
it is a fact that the vector zk uniquely represents the system state.16,18

The reconstruction is built by locating the N nearest neighbors
zk1 , . . . , zkN (with respect to Euclidean distance), where

zkj = [ykj , ykj−1, . . . , ykj−d]
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within the set of observations. The corresponding b̂(0)
k1
, b̂(0)

k2
, . . . , b̂(0)

kN
values are used to estimate b(xk) by the weighted average

b(0)(xk) = wk1 b̂
(0)
k1

+ wk2 b̂
(0)
k2

+ · · · + wkN b̂
(0)
kN
. (4)

The weights may be chosen in many di�erent ways.20,21 To impose
smoothness on the function b(0), we could use weights which decay
exponentially in delay space distance. Namely, the weight for the jth
neighbor can be de�ned as

wkj =
e
−||zkj

−zk||/σ

∑N
j=1 e

−||zkj
−zk||/σ

.

Here, ||zkj − zk|| is the distance of the jth nearest neighbor, zkj , to the
current delay-coordinate vector, zk, and σ is the bandwidth which
controls the weighting of the neighbors in the local model. Methods
are available to tune the σ variable. In this work, we set it to half of
themean distance of theN nearest neighbors to give a smooth roll o�
of the weights with distance. This choice adapts to the local density
of the data.

Note that Eq. (4) is still just an approximation of b(xk), although
a more accurate estimate compared to Eq. (3). Our observation
function can now be updated, namely,

g(1) = g + b(0).

This improved observation function is given to the �lter, and the

data are reprocessed. An improved state estimate, x(1)
k , at time k is

obtained, a more accurate reconstruction, b(1)(xk), of the observa-
tionmodel error is formed using Eqs. (3) and (4) and the observation
function is again updated, g(2) = g + b(1).

The method continues iteratively, and in each iteration, an
improved reconstruction of b(xk) is obtained, resulting in a better
estimate of the state on the next iteration. Themethod is summarized
for steps ` = 0, 1, 2, . . . as follows:

1. Initialize g(0) = g, 1g = Inf
2. While 1g is greater than threshold

(a) For each observation yk, use �lter to estimate state x(`)

k given
known f and observation function g(`)

(b) Calculate the noisy observationmodel error estimates b̂(`)

k =

yk − g(x(`)

k )

(c) For each k, �nd the N-nearest neighbors of delay vector zk
and set

b(`)(xk) = wk1 b̂
(`)

k1
+ wk2 b̂

(`)

k2
+ · · · + wkN b̂

(`)

kN
. (5)

(d) Update the observation function, g(`+1) = g + b(`)

(e) Update 1g = 1
T

∑T
k=1 |b̂(`)

k − b̂(`−1)
k |.

In the absence of results on convergence for most nonlinear
Kalman-type �lters, it is di�cult to analyze the convergence of our
method. At each step of the algorithm, we estimate the local average

of the observation model error from the previous estimates b̂(`)

k and
then add this estimate to the observation function. Notice that if the
same state estimates x(`+1)

k = x(`)

k were found in the next iteration of
the Kalman �lter, then the observation model error estimates would
be unchanged. Informally, if the state estimates only change by a
small amount and if g is continuous then the observationmodel error

estimates should also only change by a relatively small amount. In
Sec. II B, we will present an interpretation of the method as an alter-
nating minimization approach for estimating the local observation
model error . Moreover, we will present numerical results demon-
strating convergence for strongly nonlinear systems with extremely
large error in the speci�cation of the observation function.

B. Interpretation as alternating minimization

algorithm

Themethod introduced above can be viewed as belonging to the
family of projection algorithms in optimization theory called alter-
nating minimization algorithms.22,23 Implicit to the above construc-
tion is the following nonparametric representation of the estimated
global observation model error b(`)(x), which interpolates the errors
at each xk as

b(`)(xk) =

N
∑

i=1

b̂(`)

ki

e
−||zkj

−zk||/σ

∑N
j=1 e

−||zkj
−zk||/σ

=

N
∑

j=1

b̂(`)

kj

e
−d(x,xkj

)/σ

∑N
j=1 e

−d(x,xkj
)/σ

,

where {xkj}
N
j=1 are the N nearest neighbors of the input x. Takens’

theorem16,18 states that we can use the delay coordinate vectors zkj
as a proxy for the unknown true states xkj . Using the Euclidean dis-
tance on the proxy vectors zkj implicitly changes the distance function
in state space to a metric d, which is consistent since all metric are
equivalent in Euclidean space, and this has really only a�ected the

weights in the average. Notice that the �nite set of parameters {b̂(`)

k }
determine the function b(`)(x). From (2), we assume that

yk = g(xk) + b(xk) + νk,

where νk ismean zeroGaussian noisewith covariancematrixR. Thus,
the likelihood of the estimated observationmodel error b(`)(x) can be
estimated on the data set as

P
(

x(`)

k | b(`)
)

∝

T
∏

k=1

exp

[

−
1

2
||yk − g(x(`)

k ) − b(`)(x(`)

k )||2R

−
1

2
||x(`)

k+1 − f (x(`)

k )||2Q

]

, (6)

where ||ν||2R = ν>R−1ν is the norm induced by the covariancematrix
R. Our goal is to maximize the probability simultaneously with

respect to both the state estimate x(`)

k and the observationmodel error

estimate b̂(`), or equivalently, to minimize − logP, the negative log
likelihood.

At the `th step of our approach, we �rst �x the observation
model error estimate b(`) and use the nonlinear Kalman �lter to
approximate the best estimate of the state x(`)

k given the current esti-
mate of the observation model error. The nonlinear Kalman �lter is
approximating the solution which maximizes (6) where b(`) is �xed.
One could also apply a variational �ltering method to achieve this
maximization.

Next, we �x the estimate x(`)

k and estimate the parameters b̂(`+1)
k

tomaximize (6). Since the second term in the exponential is indepen-

dent of b̂(`+1)
k , the solutionwhichmaximizes (6) is simply the solution
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to the linear system of equations

yk − g(x(`)

k ) = b(`)(x(`)

k ) =

N
∑

j=1

b̂(`)

kj

e
−d(x,xkj

)/σ

∑N
j=1 e

−d(x,xkj
)/σ

. (7)

Instead of explicitly solving this system, in our implementation, we
simply used the approximate solution given by

b̂(`)

k = yk − g(x(`)

k ) (8)

since each point is its own nearest neighbor and dk1 = 0 yields the
largest weight in the summation. In Fig. 1, we show that the obser-
vation model error estimates (7) and (8) are very similar. The latter
is simpler to compute and is more numerically stable, so (8) will be
used in all examples below.

C. Ensemble Kalman filtering with observation model

error correction

In this section, we assume a nonlinear system with
n-dimensional state vector x and m-dimensional observation vec-
tor y de�ned by (1). The ensemble Kalman �lter (EnKF) is a data
assimilation algorithm designed for nonlinear systems that forms an
ensemble of states to handle the nonlinearity., One simple implemen-
tation is known as the unscented transformation (see Refs. 24–26,
for example). The state estimate at step k − 1 is denoted x+

k−1 and
the covariance matrix is denoted P+

k−1. The unscented version of the

EnKF employs the singular value decomposition to calculate S+
k−1, the

symmetric positive de�nite square root of P+
k−1. The singular direc-

tions form an ensemble of E new state vectors at step k − 1, where
x+
i,k−1 identi�es the ith ensemble member .

On each step, the EnKF applies a forecast, predicting the state,
followed by analysis, correcting the state prediction with bene�t of
the current observation. The model f advances the ensemble one
time step, and then the observation function g(`) is applied

x−
i,k = f

(

x+
i,k−1

)

,

y−
i,k = g(`)

(

x−
i,k

)

.
(9)

Notice that in the ideal �ltering situation, we would apply the true
observation function h in (9). In this context of this article, we assume
that we are only given an incorrect observation function g. In the
initial iteration of the �lter (` = 0), we simply use the best available
observation function g(0) = g, and in future iterations (` > 0) we
incorporate the `th observation model error estimate to form g(`) =

g + b̂(`) as described above. Notice that each ensemble member has

the same correction b̂(`) applied since the correction is computed
based on the neighbors in delay-embedded observation space, so the
neighbors do not change based on the state estimate or iteration of
the algorithm. We emphasize that the state estimate and observation
model error estimates change at each iteration, but the indices of the
neighbors, k1, . . . , kN that are used to estimate the observationmodel
error at time step k do not change (they are independent of `).

FIG. 1. Comparison of the observation
model error correction which solves (7) (red,
dashed) to the correction given by (8) (grey,
solid) which is used in all the examples
below. Observation errors are shown from
the Lorenz-63 example described below
(see Fig. 2).

Chaos 29, 053102 (2019); doi: 10.1063/1.5087151 29, 053102-4

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

The prior state estimate x−
k is de�ned to be the mean of the

state ensemble, and the predicted observation y−
k is de�ned to be the

mean of the observed ensemble. De�ne P−
k and P

y

k to be the covari-
ance matrices of the resulting state and observed ensembles, and
let P

xy

k denote the cross-covariance matrix of the state and observed
ensembles. More precisely, in the notation of Ref. 21, we set

P−
k =

1

E

E
∑

i=1

(

x−
i,k − x−

k

) (

x−
i,k − x−

k

)T
+ Q,

P
y

k =
1

E

E
∑

i=1

(

y−
i,k − y−

k

) (

y−
i,k − y−

k

)T
+ R,

P
xy

k =
1

E

E
∑

i=1

(

x−
i,k − x−

k

) (

y−
i,k − y−

k

)T
.

(10)

Then, the Kalman update equations

Kk = P
xy

k (P
y

k)
−1,

P+
k = P−

k − KkP
yx

k ,

x+
k = x−

k + Kk

(

yk − y−
k

)

(11)

are used to update the state x+
k and covariance estimates P+

k with the
observation yk. The covariance matrices Q and R are quantities that
have to be known a priori or estimated from the data.

A realtime adaptive method27 will be used for the estimation of
the covariance matrices Q and R. This is a key component in our
method since theR covariance will be in�ated by the adaptive �lter to
represent the error between the true observation function h and the
observation function g(`) that we actually use in the �lter. In other
words, the adaptive �lter is combining the covariance of the obser-
vation model error and the instrument noise into the R covariance
matrix. As we iterate the algorithm (as ` increases), we �nd that g(`)

more closely approximates the true observation function h and the
adaptive �lter will �nd smaller values for R.

III. ASSIMILATING LORENZ-63 WITH AN INCORRECT

OBSERVATION MODEL

In the results presented below, we assume noisy observations are
available from a system of interest and we implement an ensemble
Kalman �lter (EnKF) for state estimation. The EnKF approximates
a nonlinear system by forming an ensemble, such as through the
unscented transformation.24 The correct observation function h that
maps the state to observation space is unknown, and in its place an
incorrect function g is chosen for use by the EnKF. Throughout, we
will compare our corrected �lter with the standard �lter (essentially,
the ` = 0 iteration) which assumes no correction.

As a feasibility test, we consider the Lorenz-63 system28

ẋ1 = σ(x2 − x1),

ẋ2 = x1(ρ − x3) − x2, (12)

ẋ3 = x1x2 − βx3,

where σ = 10, ρ = 28,β = 8/3.Wewill assimilate 8000 noisy obser-
vations of the system, sampled at rate dt = 0.1, to which we add

independent Gaussian observational noise, νk, with mean zero and
covariance R = 2I3×3. Our goal is to �lter the observations

Ey = h(Ex) + νk

(see Fig. 2, blue circles) and reconstruct the underlying state, Ex (Fig. 2,
solid black lines). However, we assume that the true observation
function h, given by

h(Ex) = h









x1
x2
x3







 =





sin(x1)
x2 − 6
cos(x3)





is unknown to us. Instead, the EnKFwill use an incorrect observation
function g, given by

g(Ex) = g









x1
x2
x3







 =





x1
x2
x3



 .

Using the incorrect mapping g, and with no estimate of the observa-
tionmodel error, the �lter’s reconstruction of the system state su�ers
substantially [Figs. 2(a)–2(c), solid gray lines]. We should note that
even obtaining these poor estimates requires adaptive estimation of
the system and observation noise covariance matrices Q and R used
by the EnKF. The RMSE for reconstructing the three Lorenz-63 vari-
ables x1, x2, and x3 using an EnKFwith observation function g and no

FIG. 2. Results of filtering noisy Lorenz-63 (a) x1, (b) x2, and (c) x3 time series
when true observation function, h, is unknown and R = 2I3×3. Notice the large
difference between the true observations h(Exk) + νk (blue circles) to the true
state variables (solid black curve). We compare the EnKF estimate using the
wrong observation function, g, without observation model error correction (solid
gray lines) and the EnKF estimate with correction (solid red lines) shown. (d) Plot
of RMSE vs iteration of the observation model error correction method, where
` = 0 corresponds to the standard EnKF without correction. RMSE for x (solid
black line), y (dashed black line), and z (dotted black line) shown. After a sufficient
number of iterations, the observation model error estimates converge as does the
RMSE of the state estimate.
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observation model error correction is 8.10, 6.77, and 22.33, respec-
tively. This is not surprising, since without the correct observation
function, the analysis step of the EnKF, where the state and covari-
ance estimates are updated, su�ers due to the errors in mapping the
predicted state to observation space.

Using our proposed method, the EnKF state estimate can be
improved by iteratively building an approximation of the observa-
tion model error, essentially augmenting our observation function.
In building our reconstruction of the observation model error, we
use d = 2 delays and N = 100 nearest neighbors. AfterM = 20 iter-
ations of our method, we are able to obtain and accurate estimate of
the Lorenz-63 state [Figs. 2(a)–2(c), solid red lines]. The resulting
error in our estimates is signi�cantly smaller (RMSE of 2.11, 1.77,
and 2.91 for x, y, and z, respectively) compared to �ltering without
an observation model error correction.

Figure 2(d) shows the error in our estimation of x (solid black
line), y (dashed black line), and z (dotted black line) as a function
of number of iterations of our algorithm. We note that ` = 0 corre-
sponds to running the EnKF without any observation model error.
At each iteration, we obtain a better reconstruction of the observa-
tion model error which helps improve our estimate of the state in the
next iteration. At a certain point, our reconstruction of the observa-
tion model error and system state converges, a period indicated by
the plateau in our RMSE plot.

IV. SPATIOTEMPORAL OBSERVATION MODEL ERROR

CORRECTION

To show themethod canwork in a spatially extended system, we
consider the Lorenz-96 system,29 which represents a ring of K nodes
coupled by the equations

ẋi = (axi+1 − xi−2)xi−1 − xi + F, (13)

with parameter settings a = 1 andF = 8. The system exhibits higher-
dimensional complex behavior that can be adjusted by changing
the number of nodes and the forcing parameter F. In this example,
we generate 10 000 observations, corrupted by mean-zero Gaussian
noise with variance equal to 2, from each node in the ring. Denoting
x = [x1, x2, · · · , xK], the true observation function h for this system
is de�ned as h (x) = Cx, where

C =
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,

c1 = 1, c2 = 1.2, c3 = 1.1. In e�ect, our observations at each node in
the ring is a linear combination of the current node and its two spatial
neighbors. The true observation map h is assumed unknown to us,

and in its place we use the incorrect function

g (x) = IK×Kx,

where IK×K is the K × K identity matrix.
We�rst consider aK = 10 dimensional Lorenz-96 ring. Figure 3

shows the results of reconstructing the 10 dimensional Lorenz-96
state. Figure 3(a) shows a representative reconstruction of the x2
state (similar results are obtained for each node of the ring). Given
the noisy observations (blue circles), the EnKF without observation
model error correction (solid gray line) is unable to estimate the true
trajectory (solid black line), resulting in an RMSE of 5.83. Account-
ing for the observation model error (M = 15 iterations, d = 2 delays
and N = 100 neighbors), we are able to improve our reconstruction
of the x2 trajectory (solid red line, RMSE = 2.37). As in the Lorenz-
63 example, we see in Fig. 3(b) that as the number of iterations of the
observation model error correction method increases, convergence
occurs to a stable RMSE.

We next consider a K = 40 dimensional ring. Figure 4 shows
the spatiotemporal plots of the system. The top plot shows the true
system dynamics and the second plot our noisy observations of the
system. Similarly to the 10 dimensional ring, the �ltering without
observation model error correction is unable to provide an accurate
reconstruction of the system state (third plot). The high dimension-
ality of the system can make �nding accurate nearest neighbors for
observation model error reconstruction di�cult. We implement a
spatial localization technique when �nding neighbors, whereby for
each node we look for neighbors in a delay-coordinate space consist-
ing of its delays and the delays of its two spatial neighbors. While our
method can be successfully implemented in this high dimensional
example without localization, results are improved through use of the
localization technique. The bottom plot of Fig. 4 shows the resulting
�lter estimate with observationmodel error correction. Again, we see
that there is a substantial improvement in the state reconstruction

FIG. 3. Results of filtering a noisy 10 dimensional Lorenz-96 ring when the true
observation function is unknown. (a) Representative results demonstrated by the
x2 node. We filter the noisy observation (blue circles) in an attempt to recon-
struct the underling state (solid black line). Without observation model error
correction, the EnKF estimate (solid gray line) is unable to track the true state
(RMSE = 5.83). With observation model error correction (solid red line), our esti-
mate of the state improves substantially (RMSE = 2.37). (b) Average RMSE of
Lorenz-96 ring as a function of iteration shown. Similarly to the previous example,
after a sufficient number of iterations our method converges to an estimate of the
observation model error and system state, demonstrated by the convergence of
the RMSE.
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FIG. 4. Results of filtering a noisy 40
dimensional Lorenz-96 system. True spa-
tiotemporal dynamics (top), noisy observa-
tions of the system (second plot), estimate
without observation model error correction
(third plot), and estimate with observation
model error correction (bottom plot) shown.
Without correction, we obtain a poor esti-
mate of the system dynamics (average
RMSE = 5.12). With correction, our esti-
mate is improved (average RMSE = 2.50).

and we are able to obtain a more accurate representation of the true
system dynamics.

V. CORRECTING ERROR IN CLOUDY SATELLITE-LIKE

OBSERVATIONS WITHOUT TRAINING DATA

The presence of clouds is a signi�cant issue in assimilation of
satellite observations. Clouds can introduce signi�cant observation
model error into the results of radiative transfer models (RTM). As
previously mentioned, a recently developed method15 is able to learn
a probabilistic observationmodel error correction using training data
consisting of pairs of the true state and the corresponding observa-
tions. Of course, requiring knowledge of the true state in the training
data is a signi�cant restriction, and while methods such as reanalysis
or local large-scale data gathering are possible, it would be extremely
advantageous to remove this requirement. The innovation of the
method introduced here is that we do not require knowledge of the
true state in the training data. Instead, we use an iterative approach
to learn local observation model error corrections based on delay
reconstruction in observation space. In this section, wewill apply our
method to an RTM and show that the observation model error can
be iteratively learned without the training data.

Themodel30 presented here represents a single column of atmo-
sphere with three temperature variables θ1, θ2, and θeb and a vertically
averaged water vapor variable q. The RTM also contains a stochas-
tic multicloud parameterization with three variables fc, fd, and fs,
which represent fractions of congestus, deep, and stratiform clouds,

respectively. The three temperature variables are extrapolated to yield
the temperature as a continuous function of the height, and then
a simpli�ed RTM can be used to integrate over this vertical pro-
�le to determine the radiation at various frequencies (see Berry
and Harlim15 for details). We follow Liou31 to incorporate informa-
tion from the cloud fractions into the RTM in order to produce
synthetic “true” observations at 16 di�erent frequencies. Each fre-
quency has a di�erent height pro�le which is integrated against the
vertical temperature pro�le. The presence of the di�erent types of
clouds in�uences these height pro�les to simulate the cloud “block-
ing” radiation frombelow it.We �rst show that the EnKF is capable of
recoveringmost of the state variables from the observations when the
correct observation model is speci�ed (meaning the RTM includes
the cloud fraction information from the model). In Fig. 5, we show
the true state (grey) along with the estimates produced using the
correct observation model (black).

Next, we assume that the cloud fractions are unknown or that
their e�ect on the RTM is poorly understood, and we attempt to
assimilate the true observations using an RTM where the cloud frac-
tions are held constant at zero (note that the cloud fractions are still
present and evolving in the model used by the �lter, but they are not
included in the RTM used for the observation function of the �lter).
We should note that this assimilation is impossible without arti�-
cially in�ating the observation covariancematrixR by a factor of 100.
The results of assimilating are shown in Fig. 5 (red, dotted). Finally,
we apply the iterative observation model error correction (3 itera-
tions) and the results are shown in Fig. 5 (blue, dashed). Similar to the
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FIG. 5. (a) True observations (red, dashed) incorporating cloud information are
compared to the incorrect observation function (black, solid) which sets all the
cloud fractions to zero in the RTM. (b)–(h) True state (gray, thick curve) com-
pared to the result of filtering with the true observation function (black), the wrong
observation function using only inflation of the observation covariancematrix (red,
dashed), and the wrong observation function with iterative observation model
error correction (blue, dashed).

results of Berry and Harlim,15 the water vapor variable, q, is di�cult
to reconstruct in the presence of observation model error; however,
the cloud and temperature variables are signi�cantly improved.

In Table I, we summarize the RMSE of each variable averaged
over 4500 discrete �lter steps (15.6model time units with dt = .0035)
for each �lter, the observation noise variance was set at 0.5% of the

TABLE I. Root mean squared error of cloud model variables averaged over 4500

filter steps. Estimation of the cloud fraction variables is significantly improved by the

observation model error correction.

Percent error (RMSE) θ1 θ2 θeb q fc fd fs

True obs. function 2.8 1.6 6.2 10.6 8.1 3.1 8.2
Wrong obs. function 30.3 9.1 51.0 62.8 44.2 76.2 93.1
Model error correction 11.8 12.0 31.5 103.9 15.6 25.8 45.4

variance of each observed variable. The observationmodel error cor-
rection is able to improve the estimation of all of the cloud fraction
variables fc, fd, and fs alongwith two of the temperature variables. The
estimation of θ2 was only slightly degraded. The estimation of q was
more signi�cantly degraded by the observation model error correc-
tion, probably because q does not enter into the observation function
as directly as the other variables. These results compare favorably
with Berry and Harlim,15 who also found that the q variable was dif-
�cult to reconstruct in the presence of this observation model error,
even using training data that included the true state.

Since our approach here does not depend on perfect training
data, we also found that our results were more robust to observa-
tion noise than the results of Berry and Harlim.15 In that approach,
this was a signi�cant issue since it was assumed that the observa-
tion noise was small in order to be able to recover the true model
error from the training data. As a result, the results were only robust
up to observation noise levels of about 1% of the variance of the
observations.

In Fig. 6, we show the robustness of the observation model
error correction proposed here to increasing levels of observation
noise. We �nd that the iterative observation model error correction
is robust at noise levels over 10% of the variance of the observa-
tions. At extremely low noise levels, such as levels near 0.1%, the
method of Ref. 15 has performance comparable to the true obser-
vation function, so when perfect full state training data are available
and observation noise is small, the methods have roughly equivalent
behavior.

VI. DISCUSSION

Accurate linear and nonlinear �ltering depends on thorough
knowledge of model dynamics and the function connecting states to
observations. The method proposed here uses an alternating min-
imization approach to iteratively correct observation model error,
assuming knowledge of the correct dynamical model. This approach
was shown to succeed in temporal and spatiotemporal examples as
well as a cloud model.

Although the iteration converges to eliminate observation
model error in a wide variety of examples, there is no proof of global
convergence of the method. This is typical for alternating minimiza-
tion methods. A better understanding of the basin of convergence
would be helpful and the object of further study.

The increasing diversity of measurement devices used in mete-
orological data assimilation is subject to a wide variety of separate
errors. It is possible that more re�ned versions of the method can be
designed to target particular subsets of the total observation error.
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FIG. 6. Robustness of filter estimates. RMSE as a percentage of the standard
deviation of each variable is shown as a function of observation noise percent-
age (noise variance is the given percentage of the the observation variance for
each observed variable). The filter using the true observation function (black, solid
curve) is compared to the result of filtering with the wrong observation function
using only inflation of the observation covariance matrix (red, dashed) and the
wrong observation function with iterative observation model error correction (blue,
dashed).

The proof of concept carried out in this article show the potential for
a relatively simple iterative solution to the problem, that can result in
signi�cant improvement in total RMSE. The success of the method
will be limited by the level of noise and the amount of available data,
which are typical for data assimilation techniques.

We envision additional applications in other science and engi-
neering areas, including hydrology, physical, and biological experi-
ments. A particular problem of interest in physiology is the common
usage of intracellular neural models to assimilate extracellular mea-
surements from single electrodes and electrode arrays. The observa-
tion function that connects such measurements to the model is not
well understood by �rst principles and may vary by preparation. An
automated way to solve this issue would potentially be a signi�cant
advance in data assimilation for neuroscience problems.
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