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Existence and stability of equilibria in infectious disease dynamics with behavioral feedback
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Mathematical models have provided a general framework for understanding the dynamics and control of
infectious disease. Many compartmental models are limited in that they do not account for the range of
behavioral feedbacks that have been observed in the response to emerging infections. Here we expand on the
SIR compartmental model framework by introducing a general class of behavioral feedbacks that encompasses
both individual responses and nonpharmaceutical interventions. By linking transmission dynamics and behavior,
this class of models can capture the interplay of disease incidence, behavioral response, and controls such as
vaccination. We prove mathematically the existence of two endemic equilibria depending on the vaccination
rate: one in the presence of low vaccination but with reduced societal activity (the “new normal”), and one with
return to normal activity but with vaccination rate below that required for disease elimination. Establishing the
existence and stability of these equilibria is a precursor to designing control strategies that may exploit them.
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I. INTRODUCTION

To understand and control epidemics, models have been
developed that reflect the fundamental properties of infectious
disease transmission [1]. To embody biological understanding
and develop effective policy these models rely on abstractions
of complicated phenomena: mortality, reinfection, vaccina-
tion, loss of immunity, and spatial networks [2]. Nevertheless,
a substantial barrier to progress has been that transmission
depends on human behavior, which is impossible to model
in detail. To meet this challenge, we must consider all possi-
ble responses with minimal assumptions about the behavioral
response to disease.

*Contact author: mjf283@psu.edu
†Present address: Department of Neurosurgery, Yale University,

New Haven, Connecticut 06510, USA.

A hallmark of classical models for emergent epidemic
dynamics is a large initial outbreak with final size larger
than the critical herd immunity threshold [3]. The initial
emergent epidemic is followed by a period of low prevalence
and then outbreaks of much smaller magnitude. This phe-
nomenon raised concerns about the magnitude of the initial
waves of infection of Ebola in 2014 [4], SARS-CoV-2 in
2020 [5,6], and Mpox in 2022 [7,8], and the potential strain
on health systems from such large initial epidemic waves in
the absence of behavioral restrictions. However, in all three
settings, the initial epidemic wave was curtailed by behavioral
change that resulted from a combination of individual behav-
ior to limit risk of exposure and top-down restrictions.

For example, as shown in Fig. 1, in the first year of
the SARS-CoV-2 pandemic, before the emergence of the
first meaningful immune-escape variant (Alpha in November
2020), many local regions saw a second wave of the original
wild-type virus that was equal to, or larger than, the magnitude
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FIG. 1. SARS-CoV-2 deaths exhibited multiple increasing waves
in some U.S. states prior to documented immune escape. Left:
SARS-CoV-2 deaths for 54 U.S. states and territories over the period
from February 1, 2020, to October 1, 2020, smoothed with a 56-
day moving average and normalized by the peak deaths. Note the
large gap in peaks between June and July; the traces cluster into
two groups: peak before June (yellow) and peak after July (purple).
Right: Aggregating these two clusters (solid line is the cluster mean
and shaded area shows one standard deviation), we see that the
yellow cluster exhibits a large initial peak with either no second
wave or a smaller second wave (during this time period), whereas the
purple cluster exhibits two increasing waves. The dynamic exhibited
by the purple cluster cannot be captured with a simple compartmental
model and is difficult to explain with spatial dynamics, motivating
us to introduce a framework for modeling behavior as a possible
explanation. Analysis based on the JHU CSSE COVID-19 data [9]
available at [10].

of the initial emergent epidemic. This implies that behavioral
changes, whether individual behavioral or legislated closures,
may have limited the size of the first wave, which left a
sufficiently large susceptible population that a second wave
began when behavior and contact patterns returned towards
pre-SARS-CoV-2 levels. The collective experience of these
recent global emergence events suggests that disease mod-
eling frameworks that do not account for behavioral change
are insufficient to predict the dynamics of the emergence of
pathogens exhibiting sufficient morbidity and mortality that
will drive behavioral change.

Behavioral modeling can take many forms depending on
whether the behavior patterns of interest are exogenous or
endogenous to the disease. Exogenous effects on spread
of disease include seasonality or long-established societal
patterns of behavior. These are distinguished by a lack of
dependence on the state of the disease (number of suscep-
tible, infected, or recovered people) and can be modeled as
external covariates, e.g., transmission rate as a function of

relative humidity [11] or contact rates as a function of time of
year [12]. In contrast, endogenous effects (i.e. feedbacks) are
dependent on the state of the system (e.g., incidence), includ-
ing individual choices to modify behavior or policy changes
that influence behavior in response to incidence or mortality.
Traditional compartmental models omit such feedbacks and
are unable to reproduce the breadth of phenomena illustrated
in Fig. 1.

Exogenous variables have been used retrospectively to ac-
count for observed behavioral phenomena coincident with
epidemic dynamics. For example, modern technology such as
cell phone-based mobility data has enabled exogenous mod-
eling of behavior [13–15]. Modeling behavior as a function
of exogenous variables permits only retrospective evaluation
of the interaction between behavior and transmission. Pol-
icy decisions need to anticipate future changes in behavior
and thus require a framework that can account for future
behavioral change.

In this article we show that the addition of a population-
level behavioral feedback (between incidence and transmis-
sion rate) to the classical SIR model, under a surprisingly
weak set of assumptions, implies the existence of three possi-
ble equilibrium states: (1) for high vaccination rates, disease
eradication, (2) for a medium range of vaccination, an en-
demic equilibrium with return to normal activity, and (3) for
low vaccination rates, a “new normal” equilibrium with re-
duced societal activity. We will also show that the SIR model
with activity term can have a wider range of stereotypical
behavior, which includes qualitative dynamics during emer-
gence consistent with those shown in Fig. 1.

We show how a wide range of possible endogenous be-
havioral responses (e.g. distancing, masking, hygiene) can
be introduced in a compartmental modeling framework (e.g.,
susceptible, infectious, and recovered, or SIR [16]) in a com-
pletely general way. Rather than specify a particular model of
behavioral response, we choose reasonable and intuitive prop-
erties as assumptions to constrain the form of the behavioral
response.

There has been significant work analyzing models with
feedback between incidence and vaccination behavior (will-
ingness or hesitancy) [17,18]. Bauch and Earn [17] showed
the existence of stable equilibrium vaccination demand that
can explain the challenge of attaining universal coverage. It
is also important to note that vaccination strategies depend
on other variables such as contact matrices and age pyramids,
which influence the various vaccine prioritization strategies
[19–21]. There also has been work modeling feedback be-
tween incidence and activity [22–24] as applied to behavioral
interventions and top-down lock-downs and isolation policies
[25,26] to limit transmission. Current methods typically rely
on choosing a particular model for the feedback [27–34]. The
key advance here is that we avoid the problematic issue of
model specification, so the conclusions we reach are widely
applicable, including novel emergence scenarios in unknown
behavioral contexts.

Consider a standard disease modeling framework [1,16]
for a single well-mixed population that includes vaccination
and loss of immunity. We reflect the endogenous-exogenous
dichotomy by decomposing the transmission rate, β, into a
product of exogenous and endogenous components. The en-
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dogenous response is represented with a single variable a
(the instantaneous activity of individuals averaged over the
population) that quantifies the instantaneous rate of effective
behavioral interactions. Rather than specify an exact model
for the activity dynamics, we assume that the rate of change
of activity is determined by an unspecified reactivity function.
Without specifying the reactivity function, we base our results
on the following three assumptions:

A1. Reactivity: Change of activity depends on the current
level of activity and incidence of infection.

A2. Resilience: When incidence of infection is zero, ac-
tivity will return to a baseline level.

A3. Boundedness: Activity does not exceed the baseline
level.

Reactivity reflects the assumption that the population
chooses its aggregate activity level based on information
available, specifically the currently observed activity level and
knowledge of disease incidence. This means that the reactivity
function, F , is a function of activity, a, and disease incidence,
c, or F (a, c), and does not depend on other variables. Thus,
reactivity does not reflect exogenous influences.

We define a baseline activity level as the level of activity
that the population would go to if the disease were removed
and the activity was allowed to stabilize.

Resilience is here defined as the ability of the activity to
spring back to the previous condition when distorting forces
are removed. In this case, new infections are a distorting force,
so resilience is the assumption that when disease incidence
is zero the activity averaged over the population will return
towards the baseline level. We also assume that, when there is
no incidence, the baseline activity level is stationary.

Boundedness asserts that the baseline activity level of the
population that exists in the absence of infection is also the
maximum activity level. We assign this maximum level to be 1
in arbitrary units, so that the activity level a is always between
0 and 1.

Using only these assumptions, we show that the disease
equilibria and stability are determined almost entirely by the
vaccination rate, v, regardless of the behavioral model. We
illustrate that accounting for an endogenous behavioral feed-
back gives rise to a novel equilibrium en route to the classical
vaccine-based elimination threshold. The existence of this
equilibrium suggests a possible waypoint to guide policy to
achieve a return to normal behavior coincident with disease
control.

II. METHODS

We will demonstrate the power of of our approach on the
most basic infectious disease model. Thus, we start with the
Susceptible, S, Infected, I , Recovered, R, (SIR) model for a
well-mixed population given by

Ṡ = −βSI/N + ρR − vS,

İ = βSI/N − γ I,

Ṙ = γ I − ρR + vS,

N = S + I + R,

(1)

with transmission rate β, average duration of illness 1/γ , and
a conserved population N . The parameter v represents the
vaccination rate, which moves population from susceptible, S,
to recovered, R. Conversely, the parameter ρ represents loss of
immunity, which moves population from recovered, R, back to
susceptible, S. Note that this model for vaccination implicitly
includes booster immunizations, since loss of immunity will
eventually move the previously vaccinated population back
into the susceptible class and the model assumes that they
may eventually be revaccinated or “boosted.” The specific
interpretations of the terms and parameters in (1) are provided
only for aiding in intuition. For example, instead of reinfection
the source of new susceptible population may be births (on a
longer timescale), or there may be other methods of removing
people from the susceptible population besides vaccination.
The model and analysis presented here may be adaptable to
such interpretations since our focus will be on the interaction
of behavior and transmission.

The key to a frequency-based transmission model such as
(1) is the nonlinear (S multiplies I) term for case incidence,

βSI/N,

which quantifies the incidence rate of the disease. Following
[35], we can break down the transmission rate, β, into a
product of the rate of effective contact, a, and the probability
of transmission given an effective contact, B, so that

β = aB. (2)

The activity rate, a, represents an effective rate that can include
changes in behavior such as distancing or masking. To see
this, it is worthwhile to note the formal descriptions of a and
B from [35]: a represents the rate of contacts that are of an
appropriate type for transmission to be possible if one of the
hosts is infectious, and B represents the probability that con-
tact between an infectious and a susceptible host does in fact
lead to transmission. Using these definitions, this framework
allows for activity change that reduces either the rate of all
contacts (e.g., distancing) or the rate of effective contacts (e.g.,
masking).

Substituting (2) into the formula for case incidence, C, we
define

C ≡ aBSI/N. (3)

In this product S is the susceptible population who are having
effective interactions with people at rate a. The probability of
each interaction happening with an infected person is I/N , and
B is the conditional probability that such an interaction with
an infected person gives rise to infection. By separating β into
its component factors, we see that it is much more reasonable
to assume that B is constant (or at least that it changes on
a longer time scale), whereas a behavioral response could be
quite rapid and makes it likely that the rate of effective contact,
a, could change on fast timescales. Notice that when a = 1
we have β = B so we refer to a = 1 as the baseline level of
activity.

We are now ready to quantify the various assumptions A1–
A3 that we will consider for the behavioral dynamics. First,
reactivity (Assumption A1) says that the rate of change of the
activity parameter is a continuous function, F , that depends on
only the current activity, a, and case incidence rate, c, which is
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the rate of new infections, c ≡ C/N (here C is raw incidence
and c is the incidence as a percentage of the total population).
In other words, reactivity allows any behavioral dynamics of
the form

(A1: Reactivity) ȧ = F (a, c), (4)

and we call F the reactivity function. The fact that there
cannot be a "negative" infection incidence implies that a � 0.
When a = 0 the rate of change of activity cannot be negative.
Thus, in addition to the form (4), reactivity also includes the
assumption that F (0, c) � 0.

We can now quantify resilience (Assumption A2), which
states that when incidence is zero activity will increase. Here
we come to one of the significant advantages of not specifying
a model for activity. Recall that the baseline activity level is
defined to be the level of activity that would be reached if
the disease were removed and a long time were allowed for
the activity to stabilize. Since the reactivity function, F , is
not specified, we can always choose units for a such that the
baseline activity level is a = 1 by incorporating the change
of units into the definition of the reactivity function. When
a = 1, transmissibility during contacts reflects the baseline
contagiousness of the disease. All we are assuming here is that
there is some baseline value for activity, and then choosing
units which rescale that value to one. Thus, without loss of
generality, resilience can be quantified as

(A2: Resilience) F (a, 0) > 0 for a < 1

and F (1, 0) = 0, (5)

which implies that when activity is below baseline activity
(a < 1) and incidence is zero (c = 0) activity will increase
(ȧ = F (a, 0) > 0). We also need to assume that F (1, 0) = 0
to ensure that baseline activity is stationary when there is
no incidence. The condition (5) is all that is required when
we are also assuming boundedness (A3), but for technical
reasons when the behavior is not bounded we will also assume
F (a, 0) < 0 when a > 1. Note that we have assumed we are
working in units where a = 1 corresponds to baseline activity,
so a < 1 means any level of activity that is below baseline and
a > 1 means activity is above baseline. Moreover, F (a, 0) >

0 means that, when there is no incidence, the rate of change
of activity is positive, so activity is increasing, and this cap-
tures the assumption of resilience. Resilience also includes the
assumption that baseline activity (a = 1) is stationary when
there is zero incidence (c = 0); this assumption is captured by
the equation F (1, 0) = 0 in (5).

Lastly, boundedness (Assumption A3) says that the base-
line activity level (averaged over the whole population) is the
highest level possible, meaning that a � 1. This means that
when a = 1 we must have

(A3: Boundedness) F (1, c) � 0, (6)

otherwise the activity would increase beyond the boundedness
limit of a = 1.

Thus, we consider the following infection model that
incorporates vaccination, loss of immunity, and arbitrary be-
havioral dynamics:

Ṡ = −aBSI/N + ρR − vS,

FIG. 2. Universal equilibria of resilient behavioral responses
with high (left) and low (right) vaccination. The state space (gray
shading) of the SIR model with endogenous behavioral feedback
plotted on the susceptible (s), infected (i), and activity (a, where
a = 1 represents the baseline activity level) axes. The susceptible
and infected population sizes are instantaneously constant along the
purple and yellow surfaces, respectively. An equilibrium must occur
along the blue line that shows the intersection of the purple surface
with the front of the domain (the i = 0 plane) or along the red curve
that shows the intersection of these surfaces. When vaccine rates, v,
are greater than the critical threshold, T1 (a), the only equilibrium is
disease-free (blue) and resilience will drive the activity to baseline,
which is the top of the blue line. When vaccination rates drop below
the T1 (b), the baseline endemic equilibrium (green dot) is created,
along with at least one new normal endemic equilibrium which can
be anywhere along the red curve.

İ = aBSI/N − γ I,

Ṙ = γ I − ρR + vS,

ȧ = F (a, aBSI/N2),

N = S + I + R. (7)

In order to remove the algebraic equation N = S + I + R we
rewrite the model in terms of population fractions. Setting
s = S/N , i = I/N , and r = R/N we have s + i + r = 1 and
ṡ + i̇ + ṙ = 0. Moreover, we can remove the equation for the
recovered population fraction, r, by setting r = 1 − s − i in
the remaining equations. Thus, the following equations gov-
ern the fractions of the population:

ṡ = −aBsi + ρ(1 − s − i) − vs,

i̇ = aBsi − γ i,

ȧ = F (a, aBsi). (8)

In these units, the basic reproduction number is R0 ≡ B/γ ,
which defines the expected number of secondary infections
due to the initial infection in a completely naive population.

III. RESULTS

Starting from the reactivity assumption (A1), we first de-
veloped a framework for incorporating any reactive behavioral
dynamics into the compartmental disease modeling paradigm
(see Methods). The state of the modeled disease at any given
time can be characterized by three variables (Fig 2): the
percentage of the population that is susceptible, s, the per-
centage infected, i, and the activity relative to the baseline,
a. The feature here is that the reactivity function, F , which
determines the feedback between activity and infection rate, is
left completely unspecified. This means our results will apply
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very broadly to any behavioral response that satisfies our basic
assumptions.

First, for any model with reactivity (Assumption A1), we
find a universal vaccination threshold, T1, that is independent
of the feedback between activity and incidence. When the
vaccination rate is above this threshold any equilibrium must
be disease-free. Figure 2 illustrates the surfaces where the
infected population (yellow) and the susceptible population
(purple) are not changing; an equilibrium can happen only at
the intersection of these two surfaces, or where the purple
surface intersects the i = 0 plane (disease-free). When the
vaccination rate is greater than T1 the only equilibrium is
disease-free [Fig. 2(a) and Fig. 5(a) in the Appendix].

Second, by assuming resilience (Assumption A2), we
prove that when the vaccination rate is above T1 the disease-
free equilibrium is stable in the face of baseline activity
[Fig. 5(a)]. Resilience assumes that when incidence is zero
(disease-free) and activity is below baseline, then activity will
increase. While this seems intuitive it does not imply stability
by itself. Stability requires that even if we perturb the disease-
free equilibrium by introducing a small number of infections,
the system must return to the disease-free equilibrium. In The-
orem A2 (see the Appendix), we prove that the disease-free
equilibrium is in fact stable, as long as the vaccination rate is
above T1.

Assuming both reactivity (A1) and resilience (A2), when
the vaccination rate drops below the universal threshold T1, the
disease-free equilibrium becomes unstable, and endemic equi-
libria become possible [Fig. 2(b)]. One equilibrium, which
we call the baseline endemic equilibrium, is stable even
when activity is at baseline (a = 1). For a baseline endemic
equilibrium to exist, we require only that normal activity be
stationary for this incidence level, meaning that F (1, c) = 0.
Not every reactivity function, F , will have a baseline en-
demic equilibrium, and we give several examples in Sec. III
of reactivity functions that show the range of possibilities.
If the baseline endemic equilibrium does exist, the infection
rate at equilibrium depends on the vaccination rate, but is
independent of the behavioral model.

While not as desirable as a disease-free equilibrium, an
endemic equilibrium with baseline activity (a = 1) may still
be preferred to permanently modifying behavior, so it is
important to determine its stability. Recall that a bounded
behavioral response limits the average activity, a, to be at most
the baseline level, a = 1, by imposing A1. In Theorem A3
(see the Appendix), we show that for any bounded behavioral
response, there will be a second vaccination threshold, T2,
which determines the stability of the baseline endemic equi-
librium. The T2 threshold is given by (see the Appendix)

T2 = T1 − ξF R0(ρ/γ + 1), (9)

where ξF is a constant that depends on the properties of the
reactivity function, F , near the baseline endemic equilibrium,
R0 is the average number of infections after contact in a fully
susceptible population or basic reproduction number, and ρ

and γ are rates (see the Appendix). The ξF constant will often
be positive, and in these cases the T2 vaccination threshold
will be lower than the T1 threshold. In these cases, when the
vaccination rate is higher than T2 but less than T1, the baseline
endemic endemic will be stable. For some reactivity functions,

the constant ξF can be negative or zero, and for these reactivity
functions the baseline endemic equilibrium will not be stable
for any vaccination rate. Once the reactivity function, F , is
specified, T2 can be computed explicitly, and we show how
to compute T2 along with several examples in the Appendix.
This shows that even when the classical threshold for effective
vaccination cannot be achieved, there can still be a substantial
benefit at a lower vaccination rate. As long as the vaccination
rate exceeds the new T2 threshold, the baseline activity level
will be stable (see examples in Fig. 3).

When the vaccination rate is below both the T1 and T2

thresholds (e.g., early stages of a novel disease before a
vaccination, v = 0) both the disease-free equilibrium and the
baseline endemic are unstable and there is no stable equilib-
rium with baseline activity. In Theorem A4 (see the Appendix)
we prove that there is at least one new equilibrium [Fig. 2(b)],
which we term a “new normal” endemic equilibrium. Unlike
the disease-free and baseline endemic equilibrium, the inci-
dence rate at the new normal endemic equilibrium depends
on the form of the behavioral feedback and implies long-term
behavioral changes with activity level below baseline. When
vaccination is below both thresholds, the stability of the new
normal endemic cannot be determined universally, and it may
have a complicated dependence on the details of the behav-
ioral feedback and exhibit periodic cycles or chaos.

IV. EXAMPLES

We emphasize that our results apply to any reactivity func-
tion, F , that satisfies A1–A3. To illustrate our results we
introduce three basic examples of reactivity functions:

Flinear (a, c) = w1(1 − a) − w2c, (10)

Fquadratic(a, c) = (1 − a)(w1 − w2c), (11)

Fbilinear (a, c) = (1 − a)(w1 − w2c/a). (12)

These functions all satisfy resilience and boundedness for
any w1,w2 > 0m and we illustrate them in the top row of
Fig. 3 for w1 = 0.1 and w2 = 10. The first two functions
[(10), (11)] are important because they are the leading order
approximation of any reactivity function. Note that the func-
tion Fquadratic is quadratic in a since c = aBsi and similarly
Fbilinear is bilinear in a and i. In the Appendix we show that
the simplest model, Flinear, does not have a baseline endemic
equilibrium because T2 = T1. Both Fquadratic and Fbilinear have
T2 < T1, so for vaccination rates between these thresholds the
baseline endemic is stable.

The primary difference between the three example reactiv-
ity functions is how quickly the equilibrium level of activity
falls off as vaccination rate decreases (Fig. 3). For Flinear

the activity versus vaccination curve is concave down, and
this moderate response results in a new normal infection rate
that increases rapidly as vaccination rate decreases (Fig. 3).
For Fquadratic equilibrium activity increases linearly with vac-
cination rate. This model has the interesting feature that a
decrease in vaccination rate leads to a decrease in activity
that maintains a constant level of infection in the new nor-
mal endemic. Finally, Fbilinear has the most robust behavioral
response, with a concave up increase in activity as vacci-
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FIG. 3. Vaccination may increase or decrease infection rate depending on the form of the behavioral response. Relationship between activ-
ity, incidence, and vaccination rate for three example reactivity functions (columns). In the top row we illustrate zones of increasing (brown)
and decreasing (purple) activity as a function of incidence; white indicates regions where activity is stationary (at least instantaneously). In
the middle row the equilibrium activity is shown as a function of vaccination rate with colors indicating the disease-free, baseline endemic,
and new normal regimes. The bottom row indicates the equilibrium incidence as a function of vaccination; stable equilibria are shown as solid
lines and unstable equilibria as dashed lines. Note that when vaccination is less than T2 (the new normal), increased vaccination may lead to
either higher (bottom right) or lower (bottom left) infection rates depending on the reactivity function.

nation rate increases. This response results in infection rate
increasing as vaccination rates increase. Thus, when initially
introducing a vaccination to a population the infection rate
may initially increase until the critical vaccination rate thresh-
old T2 is reached and the baseline endemic is stabilized. This
will especially be the case for a new vaccination that is being
gradually rolled out, since a slow change in the vaccination
rate can help keep the system near equilibrium as the new
normal shifts.

Finally, we note a fascinating feature of Fbilinear. If we
consider the fraction of the population that remains suscep-
tible to infection as approximately constant and set 1 − a as
"distancing," then we recover a form equivalent to the Lotka-
Volterra predator-prey model where infections, i, play the role
of prey and distancing, 1 − a, plays the role of the predator
[Eq. (A5) in the Appendix]. Oscillations are present at the
beginning of the epidemic, when the susceptible population
is large and almost constant. The oscillations are not damped,
but they have a very slow decay due to the slow decrease
in the susceptibles. Finally, the model exhibits a phase tran-
sition when the the susceptible population drops below 1

R0
,

at which point the predator-prey oscillations cease and the
system reverts to a more typical epidemic trajectory allowing
the system to come to equilibrium. These oscillations depend
on the vaccination rate (Figs. 4 and 7). This illustrates how
behavioral feedback can lead to a wide range of epidemic
dynamics including oscillations that are independent of any
external (e.g., seasonal) forcing.

(a) (b)

(c) (d)

FIG. 4. Introducing resilient activity accounts for a wide range of
epidemic dynamics. Examples of the dynamics of the reactivity func-
tion Fbilinear with high vaccination (a), v > T1), moderate vaccination
(b), v between T2 and T1), and low vaccination (c), v < T2). Finally
(d) we simulate 300 days without any vaccination followed by a
linear ramp up in vaccination between days 300 and 600 to a fixed
moderate vaccination rate after day 600. Susceptible population, s
(solid blue), activity level, a (dotted blue), and the phase transition
level R−1

0 (dashed black) are scaled to the left axis while the infected
population, i (solid red) is scaled to the right axis. [See Eq. (A5) in
the Appendix for details and Fig. 7 for more examples.
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V. DISCUSSION

The collective experience of recent global emergence
events suggests that the conventional disease modeling frame-
work is insufficient to predict the dynamics of the emergence
of pathogens with severity or mortality that will drive behav-
ioral change. Notably, the standard SIR model overestimates
the expected magnitude of an initial outbreak (in the absence
of knowledge about future individual or legislated behavioral
change) and consequently underestimates the expected time
to and magnitude of subsequent waves. Here we describe the
dynamics and equilibria of a SIR-type model with a general
formulation of behavioral feedbacks.

In the first year of the SARS-CoV-2 pandemic, before
the emergence of the first meaningful immune-escape variant
(Alpha in November 2020), many places (see Fig. 1) saw a
second wave of the original wild-type virus that was equal to,
or larger than, the magnitude of the initial emergent epidemic.
Behavioral change in response to the initial wave may have
left a sufficiently large susceptible population to permit a sec-
ond, larger wave when behavior and contact patterns returned
towards pre-SARS-CoV-2 levels. We find that behavioral
feedbacks that reduce contact rates in response to increasing
infection incidence can produce these novel dynamics in the
transient period of emergence. These behavioral feedbacks
also generate novel endemic equilibria characterized by either
persistent behavior restriction or a return to pre-emergence
behavior levels if vaccination is introduced and sufficiently
high.

We have shown that for a broad range of behavioral feed-
backs between the incidence of infection and activity that con-
tributes to transmission (e.g., contact rates or hygiene) there
exist two novel equilibria in addition to the classic vaccine-
based herd immunity threshold. While coordinated behavioral
interventions may be sufficient to drive incidence to 0, e.g., as
was seen for SARS-CoV-1 in 2004 [36], and Ebola outbreaks
[37] prior to the incorporation of vaccination in outbreak
response [38], such interventions alone cannot stabilize the
disease-free equilibrium if behavior exhibits resilience. In
the absence of vaccination there are no stable equilibria that
have a return to normal activity. SARS-CoV-1 is the rare
example of a pathogen that emerged and was eradicated in
the absence of a vaccine; however, reintroduction from an an-
imal reservoir remains possible [39] and the relaxation of the
behavioral interventions [36] renders the current disease-free
state unstable [40].

Our identified regime with vaccination between T2 and T1

has substantial policy implications for emerging infections
and eradication. In the absence of vaccines, nonpharmaceu-
tical interventions remain an important part of pandemic
response for emerging infections and can be onerous. The
SARS-CoV-2 pandemic led to dramatic economic [41] and
educational [42,43] consequences. Planning for a safe return
to pre-emergence activity can minimize these off-target ef-
fects. While eradication may still be a goal, vaccination at
a level T2 lower than the classic herd immunity threshold T1

permits a return to pre-emergence activity while maintaining
a stable, nonzero incidence. Furthermore, attaining T1 may be
challenging, particularly in the face of vaccine hesitancy, vac-
cine administration logistics, or uncertainty about the rate of

loss of immunity. The existence of T2 suggests a midpoint goal
for vaccination rate that can be used to motivate vaccination
efforts.

The existence of the vaccination regime between T2 and
T1 may further be useful in policies for endemic infections.
The only benefits to vaccination in the standard SIR modeling
framework without behavioral feedbacks are reductions in
morbidity and mortality. Our model implies additional soci-
etal change, in the form of the increased activity, that may
be stabilized at or above a lower vaccination threshold T2.
Whether this represents a societal benefit or not will be highly
epidemic specific. For example, vaccination rates above T2

may allow for relaxation of prescreening requirements and
the costs inherent in such programs. Alternatively, one could
imagine an increase in risky behaviors, e.g., decreased mask
usage as vaccination increases. The positive correlation be-
tween vaccination rate and equilibrium incidence under the
Fbilinear function could lead to population level assessment
of vaccine failure driven by the behavioral response. Any
specific predictions of such phenomena are speculative with-
out a mechanistic understanding of the explicit nature of the
feedbacks. For example, Funk et al. [31] considered that
information, and thus behavioral response, may be available
only locally rather than globally, and Weitz et al. [34] con-
sidered that behavioral response may react to the incidence
of mortality rather than infection. The general extension of
the standard modeling framework for infectious diseases that
we have proposed offers a pathway to guide more specific
mechanistic investigations.

The description of these new equilibria represents an
advance for infectious disease and vaccination policy develop-
ment. A stable equilibrium provides a potential policy target
where the system is self-managing and self-maintaining. The
existence of such a stable target allows optimal policy strate-
gies to be formulated to reach that point. Policy formulation
without such an explicit goal requires iterative trial-and-error
which may incur economic or societal costs that can under-
mine support for the process. Such adaptive control strategies
built upon iterative learning have a long history [44–46] and
are useful tools complemented by our results showing that
there are multiple advantageous stable equilibria (disease-free
or endemic) allowing a return to normal behavior. In the face
of uncertainty about the feasibility of elimination, the endemic
state with return to normal behavior provides a potential pol-
icy target to motivate action and guide policy development.
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APPENDIX: STABILIZING THE RETURN TO NORMAL
BEHAVIOR IN AN EPIDEMIC

1. Theorems and proofs

We first show that the disease dynamics are contained in
the region shown in Fig. 2 and can never leave. Under the
assumptions A1–A3, there is a region � (Fig. 2), such that
if the system starts within �, then the system will remain
inside � at all future times (Lemma A1 below). This property
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(a) (b)

(c)

FIG. 5. Equilibria and dynamics projected on the susceptible/infected plane. Here we show three horizontal slices (fixed activity slices)
from the domain, �, shown in Fig. 2. The slices in panels (a) and (b) show the top of the domain (a = 1) with high and moderate vaccination
rates, respectively. The slice in panel (c) is from the middle of the domain when the vaccination rate is very low and only the new normal
endemic is stable. Note that the flow arrows, curves, and intersections shown in these cross sections depend on the disease parameters but are
independent of the behavioral dynamics [except for the activity level, a, of the new normal endemic shown in panel (c)].

ensures that no populations become negative and that the
activity variable a stays within its prescribed range 0 � a � 1.
Thus, all long-term behavior will be determined by dynamical
attractors, which could be equilibria, cycles, or even chaos
[47], which must lie entirely within �.

Lemma A1. Under the dynamics of (8), the set

� = {(s, i, a) ∈ [0, 1]3: s + i � 1}
is invariant when F is resilient (5) and bounded (6).

Proof. Note that when a = 0 we have F (0, 0) � 0 by (5)
(resilience), and when a = 1 we have F (1, Bsi) � 0 by (6)
(boundedness). So the a component is always pointing into
�, and we need only consider the (s, i) variables. When i = 0
we have i̇ = 0, and when ṡ = 0 we have ṡ = ρ(1 − i) � 0, so
along each of these boundaries the vector field is pointing into
the set �. Finally, we check the boundary s + i = 1, where
ṡ = aBs(1 − s) − vs and i̇ = aBs(1 − s) + γ (1 − s) so that
(ṡ, i̇) · (1, 1) = −γ + (γ − v)s < 0 meaning that the vector
field is always pointing into the set [since (1,1) is the outward
pointing normal vector to the boundary s + i = 1 and the
inner product of the vector field with this outward pointing
normal is negative]. �

The lemma shows that for any reactive behavioral response
function, F , which is resilient and bounded, the dynamics of
the disease will always preserve some natural constraints that
we expect. For example, the variables s, i, and r represent
fractions of the population, and so they should always be

between zero and one and they should always sum to one.
If we view the variables s and i as lying in a plane, these
constraints imply that they must always lie in a triangle as
shown in Fig. 5. If we now add the activity variable in the
vertical dimension (coming out of the plane of the paper in
Fig. 5), we see that we have a solid shape with horizontal
triangular cross sections as shown in Fig. 2.

Another natural limitation is that the activity variable, a,
cannot be negative, since that would imply that members
of the infected population are moving directly back into the
susceptible population. The model does allow loss of im-
munity and reinfection through the ρ parameter, but as an
axiom we do not permit "negative" infections. It would also be
possible to allow immediate reinfection by using a term pro-
portional to the recovered and infected populations; however,
for simplicity we assume here that recovery imputes at least a
temporary immunity, and the length of time of this immunity
is controlled by ρ. Altogether, taking the solid shape with
triangular horizontal cross sections and restricting the height
to be between zero and one we have the gray solid shape
shown in Fig. 2 which we call the domain, �, of the dynamics.

In the way that we constructed the domain in Fig. 2, the
dynamics of the disease should be constrained to that region
for all time; however, a poorly specified dynamical model
could allow the dynamics to "escape" the domain, violating
our axioms. So our first result is Lemma A1, which shows
that for any resilient and bounded activity function, the state
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cannot escape and is confined to the domain in Fig. 2 for-
ever. This result, although a bit cumbersome to check, simply
requires showing that along each surface of the solid shape
all the arrows of the dynamics are always pointing inwards.
Notice that our key assumptions of resilience and bound-
edness concern the boundaries of the domain. For example,
resilience says that F (a, 0) > 0, meaning that it constrains
only what happens when the rate of incidence, c = aBsi, is
zero, which is true only when either i = 0 or s = 0 or a = 0,
and these are the front square surface, left square surface,
and bottom triangular surface of the domain, respectively.
Resilience says that along each of these three surfaces, the
vertical component of the arrows that define the dynamics are
pointing upwards, towards increasing activity. Boundedness
says that F (1, c) � 0, and activity is equal to 1 only along
the top triangular surface of the domain. So boundedness
implies that along this top surface the vertical component of
the arrows that define the dynamics must not point up (they
can point down or horizontally or be zero).

Our main result on equilibria is stated next and will be
derived in stages.

Theorem A1. Consider the reactive dynamics (8) for any
twice differentiable F : [0, 1]2 → R that is both resilient and
bounded. Then we have the following:

(i) There is only one disease-free equilibrium, and it has
baseline activity (a = 1).

(ii) When the vaccination rate is high enough, namely,

v > T1 ≡ ρ(R0 − 1),

the disease-free equilibrium is the only equilibrium in �,
and it is locally asymptotically stable.

(iii) When v < T1 the disease-free equilibrium is unsta-
ble and there exists a unique baseline endemic equilibrium
(a = 1) and at least one new normal endemic equilibrium
(a < 1).

(iv) The baseline endemic equilibrium is stable when

v > T2 ≡ ρ(R0 − 1) + ξF R0(ρ/γ + 1),

where ξF is a constant that depends on F .
(iv) If the vaccination rate is below T2 then the only stable

equilibria are new normal endemic equilibria (a < 1), and at
least one new normal endemic equilibrium must exist.

Theorem A1 follows immediately from Theorems A2–A4
below. For the T2 threshold, we do not have an explicit formula
for the constant ξF ; however, we will show that it is given
by ξF = Fa(1,0)

Fac (1,c) for some c ∈ (0, γ i), and we will show that
Fa(1, 0) < 0 so when Fac(1, c) > 0 we have T2 < T1. It is
also possible to have T2 � T1, and in these cases the baseline
endemic is never stable. In practice, it is straightforward to
find the second vaccination threshold by solving the equation
Fa(1,

ρ(R0−1)−T2

R0(ρ/γ+1) ) = 0 for T2. For examples that show how to
find T2 see Sec. A 2.

To motivate the basic dichotomy for equilibria in terms
of infection rate (disease-free vs endemic), note that setting
di/dt = 0 immediately implies that either i = 0 or aBs −
γ = 0. The former case is the disease-free equilibrium, and,
in the latter case, one can show that the fraction of the infected

population will be

i = (a − 1)R0ρ + ρ(R0 − 1) − v

aR0(γ + ρ)
. (A1)

This cannot be negative, and since a � 1 the first term in the
numerator is negative or zero, so we immediately see that
when the vaccination rate is greater than ρ(R0 − 1) there can-
not be any equilibria of the form (A1). At this point we have
made only Assumption A1, and we already have a universal
vaccination threshold which we call

T1 ≡ ρ(R0 − 1). (A2)

When the vaccination rate is above T1, the only possible equi-
librium is the disease-free equilibrium, and this holds for any
reactivity function F .

In order to analyze the stability of equilibria, we will fre-
quently make use of the Jacobian matrix of partial derivatives
of the right-hand side of (8), which is⎛

⎝−aBi − v − ρ −aBs − ρ −Bsi
aBi aBs − γ Bsi

aBiFc aBsFc Fa + BsiFc

⎞
⎠,

where Fa and Fc are shorthand for partial derivatives and are
evaluated at (a, aBsi) in the Jacobian.

Theorem A2 (Disease-Free Equilibrium). For any reactive
dynamics of the form (8), every disease-free equilibrium has
s = ρ

ρ+v
and the equilibrium activity level solves F (a, 0) = 0.

When the vaccination rate, v, is below the universal threshold,
T1 ≡ ρ(R0 − 1), all disease-free equilibria are unstable.

If we also assume that the behavior is resilient, there is only
one disease-free equilibrium. It has baseline activity (a = 1)
and is stable when the vaccination rate is greater than T1.

Proof. Setting the equations in (8) equal to zero and sub-
stituting i = 0 for a disease-free equilibrium we immediately
find that B = b = 0 and s = ρ

ρ+v
and F (a, 0) = 0. The Jaco-

bian of the right-hand side of (8) at this equilibrium is⎛
⎜⎜⎝

−v − ρ − Bρ

v+ρ
− ρ 0

0 Bρ

v+ρ
− γ 0

0 Fc(a, 0) Bρ

ρ+v
Fa(a, 0)

⎞
⎟⎟⎠,

and the eigenvalues are λ1 = −v − ρ, λ2 = Bρ

ρ+v
− γ , and

λ3 = Fa(a, 0). When v < T1 we have λ2 > 0, which implies
that the equilibrium is unstable. Since this Jacobian applies
to any disease-free equilibrium, this means that a vaccination
rate below T1 implies that any disease-free equilibrium will be
unstable.

If we assume the behavioral dynamics are resilient, we
have immediately that F (1, 0) = 0 so that there is a disease-
free equilibrium with baseline activity, a = 1. Moreover,
resilience says that F (a, 0) > 0 whenever a < 1, so there is
only one disease-free equilibrium, and it has baseline activity.
To analyze the stability of this disease-free equilibrium, note
that F (1, 0) = 0 implies

λ3 = Fa(1, 0) = lim
δ→0+

F (1, 0) − F (1 − δ, 0)

δ

= lim
δ→0+

−F (1 − δ, 0)

δ
� 0,
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where the final inequality follows from the fact that F (1 −
δ, 0) > 0 by resilience. So when Fa(1, 0) < 0 and v > T1, all
the eigenvalues of the Jacobian are negative and the disease-
free equilibrium is asymptotically stable. The cases of v = T1

and Fa(1, 0) = 0 are special cases known as nonhyperbolic
equilibria, and stability in these cases has to be determined
separately from the general stability analysis. Since it is un-
likely that the vaccination rate would be exactly equal to T1,
we will leave that case aside (which is why we assume v is
strictly less than T1 in the statement of the result). However, to
avoid additional assumptions on F , we must also consider the
nonhyperbolic case when Fa(1, 0) = 0.

While the stability of nonhyperbolic equilibria is typically
difficult to analyze, in the case of a bounded behavioral model
we can prove that the disease-free equilibrium is still stable
even when Fa(1, 0) = 0 (as long as v > T1). To show this, we
will use a technical notion of stability known as Lyapunov
stability, which says that for any small region around the
equilibrium, we can find an even smaller region such that if
you start in the smaller region you will never leave the first
region. We will prove this by finding ε0 > 0 such that for
any ε ∈ (0, ε0) we can find an invariant open set inside the
ε-ball that contains the equilibrium. The basic intuition is that
because the system has two negative eigenvalues, when we get
close enough to the equilibrium, the first two components of
the vector field will be pointing into a cylinder surrounding the
equilibrium. Moreover, because of resilience, the vector field
must be pointing upwards on the bottom of the cylinder (as
long as the cylinder is taken sufficiently small), and assuming
boundedness the dynamics cannot leave the top of cylinder.
Thus, the cylinder will be invariant under the dynamics.

Fix ε > 0, then for each a ∈ (1 − ε, 1) we have
F (a, 0) > 0 by resilience, and since F is continuous there
must exist some δa such that F (a, c) > 0 for all c < δa

and we can choose δa to be a continuous function of
a. Let δ = maxa∈[1−ε,ε]{min{ε − (1 − a), δa}}, which exists
since it is a continuous function on a compact set, and
let ā be the largest value of a with δa = δ. We can now
define a cylindrical region O = {(s, i, a) : ||(s, i) − (ρ/(ρ +
v), 0)|| < δ/ max{1, B}, |a − 1| < 1 − ā}. To see that O is
invariant, note that the bottom of the cylinder is the set with
a = ā and δā = δ, so F (ā, c) > 0 for all c < δ and ||(sρ/(ρ +
v), i)|| < δ/B and we have c = aBsi � B||(s, i) − (, 0)| < δ

[since a, s, ρ/(ρ + v) � 1 and i < δ/B], so each point on the
bottom of the cylinder is within the radius where ȧ > 0, and
the vector field is pointing up into the cylinder. Note that a
similar argument can be made for the top of the cylinder using
the fact that resilience includes F (a, 0) < 0 when a > 1, or
simply using boundedness in which case the top of the cylin-
der is just a = 1.

Next we need to show that the vector field along the walls
of the cylinder is pointing into the cylinder, and this will
require taking ε > 0 sufficiently small. We first use Taylor’s
theorem to argue that sufficiently close the equilibrium the
vector field looks close to its linearization: namely, writing (8)
as ẋ = f (x) where x = (s, i, a)� and calling the equilibrium
x0 = (s, i, a)� = (ρ/(ρ + v), 0, 1)� we have f (x0) = 0, so
Taylor’s theorem says

f (x) = D f (x0)(x − x0) + R(x)||x − x0||,

where R(x) → 0 as x → x0. Now take the vector x − x0,
which points away from the equilibrium, and orthogonally
decompose it as x − x0 = v + va, where va is the component
in the a direction and v is the projection of x − x0 into the
(s, i) plane. Taking the inner product v we have

v · f (x) = v�D f (x0)(x − x0) + v · R(x)||x − x0||
and in the nonhyperbolic case

D f (x0)(x − x0) = D f (x0)v + D f (x0)va = D f (x0)v,

so writing v̂ = v/||v|| we have∣∣∣∣ v̂ · f (x)

||x − x0|| − v̂�D f (x0)v̂
||v||

||x − x0||
∣∣∣∣ � ||R(x)||.

Now note that along the walls of the cylinder O we have
||v||/||x − x0|| < δ

εB < 1
B (since δ < ε), so choose ε0 > 0 suf-

ficiently small so that for all ||x − x0|| < ε we have ||R(x)|| <

− max{λ1, λ2}. Then ||R(x)|| � |v̂�D f (x0)v̂| [since the latter
is the Raleigh quotient for D f (x0) orthogonal to (0, 0, 1)�
and λ1, λ2 < 0 are its eigenvalues in that subspace], and it
follows that v̂· f (x)

||x−x0|| < 0 [since ||R(x)|| is sufficiently small that

it must have the same sign as v̂�D f (x0)v̂]. Notice that v̂ is
the orthogonal projection into the (s, i) plane of the vector
pointing away from the equilibrium (and is thus normal to the
cylinder wall pointing outwards). Thus the vector field f (x)
must be pointing into the cylinder O, since its inner product
with v̂ is negative.

So we conclude that for resilient behavior with
Fa(1, 0) < 0 the disease-free equilibrium is asymptotically
stable, and even when Fa(1, 0) = 0 the disease-free
equilibrium is Lyapunov stable. �

Thus we have seen that the disease-free equilibrium re-
quires stabilizing baseline activity (a = 1), and for resilient
behavioral dynamics a sufficient condition is a high enough
vaccination rate, v > T1.

Next we turn to equilibria that have nonzero disease levels.
Assume there is an equilibrium (s, i, a) of (8) with i > 0.
Solving for the equilibrium yields

s = γ

aB
, i = (a − 1)Bρ + γ [(R0 − 1)ρ − v]

aB(γ + ρ)
. (A3)

Notice that since a � 1, having a vaccination rate
v > ρ(R0 − 1) implies that i < 0, so no endemic equilibrium
exists. Recall that this parameter range is exactly where the
disease-free equilibrium is stable (Theorem A1).

On the other hand, if v < ρ(R0 − 1), then for every value
of a satisfying F (a, c) = 0 an endemic equilibrium (s, i, a)
exists. In other words, these endemic equilibria are created
as the vaccination rate v drops through the stability threshold
T1 = ρ(R0 − 1).

Theorem A3 (Baseline Endemic Equilibrium). For any F
the model (8) has at most two equilibria with baseline activ-
ity (a = 1) in �, namely, the disease-free equilibrium from
Theorem A2, and an endemic equilibrium with s = R−1

0 and
i = ρ(R0−1)−v

R0(ρ+γ ) . This second equilibrium is called the baseline
endemic equilibrium; it exists when F (1, γ i) = 0, and it is
only in � when v < ρ(R0 − 1) (meaning the disease-free
equilibrium is unstable). When F is bounded [satisfies (6)],
this endemic equilibrium is stable if and only if Fa(1, γ i) � 0.
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Moreover, there exists c ∈ (0, γ i) such that the stability con-
dition is

v � ρ(R0 − 1) + Fa(1, 0)

Fac(1, c)
(ρ/γ + 1)R0,

and the equilibrium is locally asymptotically stable if the
inequality is strict.

Proof. Setting a = 1 the equation i̇ = 0 immediately re-
veals that either i = 0 (the disease-free equilibrium) or s =
γ /B = R−1

0 . Setting ṡ = 0 we find i = ρ(R0−1)−v

R0(ρ+γ ) and the in-
stantaneous case rate is C/N = Bsi = γ i. Now, by (6), for
any δ > 0 we have F (1, γ i + δ) � 0 and F (1, γ i − δ) � 0,
and since we are at equilibrium we have F (1, γ i) = 0, which
implies

Fc(1, γ i) = lim
δ→0+

F (1, γ i + δ) − F (1, γ i)

δ

= lim
δ→0+

F (1, γ i + δ)

δ
� 0,

Fc(1, γ i) = lim
δ→0+

F (1, γ i) − F (1, γ i − δ)

δ

= lim
δ→0+

−F (1, γ i − δ)

δ
� 0,

so we have Fc(1, γ i) = 0. This fact simplifies the Jacobian at
the equilibrium, which becomes⎛

⎝−Bi − v − ρ −γ − ρ γ i
Bi 0 −γ i
0 0 Fa(1, γ i)

⎞
⎠

with characteristic equation

0 = [Fa(1, γ i) − λ][λ2 + λ(v + ρ + Bi) + Bi(γ + ρ)]

= [Fa(1, γ i) − λ]

×
[
λ2 + λ

(
v + ρ + ρB − ργ − γ v

ρ + γ

)

+ ρB − ργ − γ v

]
.

Thus, λ = Fa(1, γ i) is an eigenvalue and the remaining two
eigenvalues are

λ = −(v + ρ + Bi)/2 ±
√

(v + ρ + Bi)2/4 − Bi(γ + ρ)

= −1

2

(
v + ρ + ρB − ργ − γ v

ρ + γ

)

±
√

1

4

(
v + ρ + ρB − ργ − γ v

ρ + γ

)2

− (ρB − ργ − γ v).

(A4)

Since all these variables and parameters are positive, from the
first expression for λ we have

Re(
√

(v + ρ + Bi)2/4 − Bi(γ + ρ)) < (v + ρ + Bi)/2

so that the real part of both of these eigenvalues are neg-
ative. Thus when Fa(1, γ i) > 0 this equilibrium is unstable
and when Fa(1, γ i) < 0 it is stable. Now by the mean value
theorem, there exists c ∈ (0, γ i) such that

Fa(1, γ i) = Fa(1, 0) + Fac(1, c)γ i < 0,

and plugging in for i and solving for the vaccination rate we
find v > ρ(R0 − 1) + Fa(1,0)

Fac (1,c) (ρ/γ + 1)R0. �
Recall that Fa(1, 0) � 0, so assuming Fac(1, c) > 0, The-

orem A3 establishes the existence of a lower vaccination
threshold for stabilizing the baseline endemic equilibrium.
Now we turn to the existence of a new normal (a �= 1) en-
demic (i �= 0) equilibrium.

Notice that in the proof of Theorem A3 there is the possi-
bility of complex eigenvalues meaning that the dynamics near
the baseline endemic equilibrium would behave like a damped
harmonic oscillator. However, this oscillatory behavior is en-
tirely due to the SIR dynamics and does not arise from the
behavioral dynamics. Behavioral oscillations are also possi-
ble, but will depend on the specific form of the F function
that defines the behavioral dynamics. Moreover, behavioral
oscillations will only arise from the new normal endemic
equilibria addressed in Theorem A4 below. Before consider-
ing new normal endemic equilibria, we first characterize the
possible oscillations of the baseline endemic equilibrium.

Corollary A1. The dynamics near the baseline endemic
equilibrium from Theorem A3 will be oscillatory when B is
in the range

2

(
1 −

√
γ

ρ + γ

)
(ρ + γ )2

ρ
− ρ < B

< 2

(
1 +

√
γ

ρ + γ

)
(ρ + γ )2

ρ
− ρ,

and the vaccination rate is sufficiently low, namely,

v � −
(

B + ρ + 2γ
(ρ + γ )2

ρ2

)

+ 2
(ρ + γ )2

ρ2

√
Bρ2/(ρ + γ ) + γ 2.

The damping rate and frequency of the oscillation near the
equilibrium are given by

Re(λ) = −1

2

(
ρ

ρ + γ

)
(B + v + ρ),

Im(λ) =
√

ρB − ργ − γ v − 1

4

(
ρ

ρ + γ

)2

(B + v + ρ)2

(where λ is the complex eigenvalue from the proof of The-
orem A3) and the damping ratio of the oscillation near the
equilibrium is

ζ ≡ |Re(λ)|√
Re(λ)2 + Im(λ)2

=
(

ρ

ρ + γ

)
(B + v + ρ)

2
√

ρB − ργ − γ v
.

The proof of Corollary A1 follows directly from the formu-
las for the eigenvalues in Theorem A3 by elementary (albeit
cumbersome) algebra and is omitted.

Theorem A4 (“New Normal” Endemic Equilibria).
Assume that v < ρ(R0 − 1) (which implies that the
disease-free equilibrium is unstable) and that the baseline
endemic equilibrium is unstable. For any F that is resilient
and bounded (meaning F satisfies (5) and (6)) the dynamics
of (8) have at least one new normal endemic equilibrium in �

with a �= 1 and i �= 0. Conversely, when v � ρ(R0 − 1) there
are no new normal endemic equilibria in �.
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Proof. Since we are assuming i �= 0 and a �= 1, setting
i̇ = 0 we find s = γ

aB , and plugging this into 0 = ṡ we find
i = ρ(aR0−1)−v

(ρ+γ )aR0
. Thus, at any equilibrium we can write

0 = ȧ = F (a, aBsi) = F (a, γ i)

= F

(
a, γ

ρ(aR0 − 1) − v

(ρ + γ )aR0

)
,

so we define a curve � : [0, 1] → R2 given by
�(a) = (a, γ

ρ(aR0−1)−v

(ρ+γ )aR0
)�. The endpoints of the curve are

(1, γ
ρ(R0−1)−v

(ρ+γ )R0
)� and (0,−∞)�, so as a → 0 the curve

leaves [0, 1]2 and hits the boundary when a = R−1
0 (v/ρ + 1).

Thus, the interval of a values for which the curve is in � is
a ∈ [R−1

0 (v/ρ + 1), 1]. Note that if ρ(R0 − 1) < v then the
left-hand endpoint is greater than 1, so the curve never enters
[0, 1]2 and there are no new normal equilibria. Otherwise,
at the left endpoint, we have s = ρ

v+ρ
and i = 0, so we have

ȧ = F (R−1
0 (v/ρ + 1), 0) > 0 by resilience. At the other

endpoint, we have the baseline endemic equilibrium with
a = 1 and i = ρ(R0−1)−v

(ρ+γ )R0
and ȧ = F (a, γ i) = 0. Moreover,

d

da
F ◦ �(a) = d

da
F

(
a, γ

ρ(aR0 − 1) − v

(ρ + γ )aR0

)

= Fa(a, γ i) + Fc(a, γ i)γ
di

da
,

and, since F is bounded, at the baseline equilibrium we have

d

da
F ◦ �(1) = Fa(1, γ i)

since Fc(1, γ i) = 0 as shown in Theorem A3. Recall from
Theorem A3 that the baseline equilibrium is stable when
Fa(1, γ i) < 0 and unstable when Fa(1, γ i) > 0. Thus, when
the baseline equilibrium is unstable, we have Fa(1, γ i) > 0, so
d

da F ◦ �(1) > 0, so for all â < 1 sufficiently close to 1 we will
have F ◦ �(â) < 0. Now by the intermediate value theorem,
there must be an a∗ between R−1

0 (v/ρ + 1) and â such that
F ◦ �(a∗) = 0 and this is a new normal equilibrium. �

2. Analysis of examples

In this section we show how to apply the theorems above to
analyze reactivity functions using the examples from Sec. III.

Example A1: Linear response The first reactivity function
we consider is the linear model (10) given by

Flinear (a, c) = w0 − w1a − w2c.

Note that 0 = F (1, 0) = w0 − w1, so w0 = w1 and we can
rewrite this model as

Flinear (a, c) = w1(1 − a) − w2c,

where w1,w2 > 0 so that when a < 1 we have Flinear (a, 0) =
w1(1 − a) > 0 so Flinear satisfies resilience, and Flinear (1, c) =
−w2c � 0 so Flinear satisfies boundedness. At any endemic
equilibrium we have aBs = γ so the incidence is given by

c = aBsi = γ i = γ

(
(aR0 − 1)ρ − v

aR0(γ + ρ)

)
,

where we used an alternate form of (A1) for i at equilibrium.
Substituting this into Flinear and setting equal to zero to find

the equilibrium we have

0 = w1(1 − a) − w2

[
γ

(
(aR0 − 1)ρ − v

aR0(γ + ρ)

)]
so

v = (aR0 − 1)ρ − (a − a2)
w1

w2
R0(ρ/γ + 1).

Notice that for Flinear there is a quadratic relationship be-
tween vaccination and activity at equilibrium, as illustrated in
Fig. 3(a). However, Flinear does not necessarily have a baseline
endemic equilibrium since setting Flinear (1, c) = −w2c = 0
implies the only solution is c = 0, which is the disease-free
equilibrium. Note that if we set w2 = 0 then every c solves
Flinear (1, c) = 0, so there are many baseline endemic equilib-
ria, and the stability condition is Fa(1, γ i) = −w1

Example A2: Quadratic response The second reactivity
function we consider is the quadratic model (11), given by

Fquadratic(a, c) = (1 − a)(w1 − w2c),

where w1,w2 > 0. If we substitute c = aBsi, we see that
this model is quadratic in activity, a. Notice that when a <

1 we have Fquadratic(a, 0) = w1(1 − a) > 0 so Fquadratic satis-
fies resilience, and Fquadratic(1, c) = 0 � 0 so Fquadratic satisfies
boundedness. At any endemic equilibrium we have aBs = γ ,
so the incidence is given by

c = aBsi = γ i = γ

(
(aR0 − 1)ρ − v

aR0(γ + ρ)

)
,

where we used an alternate form of (A1) for i at equilibrium.
Substituting this into Fquadratic and setting equal to zero to find
the equilibrium we have

0 = (1 − a)

[
w1 − w2γ

(
(aR0 − 1)ρ − v

aR0(γ + ρ)

)]
,

so either a = 1 (the baseline activity) or we have a new normal
endemic equilibrium at

v = (aR0 − 1)ρ − aR0(ρ/γ + 1)
w1

w2
.

Notice that for Fquadratic there is a linear relationship between
vaccination and activity as illustrated in Fig. 3(a). To solve for
the second vaccination threshold, T2, we set, Fa(1, γ i) = 0,
and solve for the vaccination rate, v. For Fquadratic we have

∂

∂a
Fquadratic(a, c) = w2c − w1,

so that ∂
∂a Fquadratic = 0 implies

w1

w2
= c = γ i = γ

(
(R0 − 1)ρ − v

R0(γ + ρ)

)
,

and solving for v gives the second vaccination threshold,

T2 = ρ(R0 − 1) − w1

w2
R0(ρ/γ + 1).

Example A3: Bilinear response The third reactivity func-
tion we consider is the bilinear function (12), given by

Fbilinear (a, c) = (1 − a)(w1 − w2c/a),
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(a) (b)

(c) (d)

FIG. 6. (a, b) Time series of infectious population size with var-
ious levels of avoidance strength (w2/w1) colored in a gradient from
weak (yellow) to strong (purple). Infectious population size is shown
in terms of percentage of population (a) and in terms of percentage
of the peak infections over the time window (b), mirroring Fig. 1.
(c, d) In the bilinear response, peak infections decay quickly with
increasing avoidance strength (c), while the height of the second
increases as a percentage of the first peak height until it eventually
exceeds the first peak (d), which is not observed in the classical SIRS
model.

where w1 > 0 and w2 > 0. It is easy to see that Fbilinear sat-
isfies resilience and boundedness. If we rewrite this model in
terms of activity and infection rate we have

Fbilinear (a, aBsi) = (1 − a)(w1 − w2Bsi),

so that this model is bilinear in activity and infection rate
(rather than incidence). To solve for the equilibrium, we
compute

0 = Fbilinear (a, γ i)

= (1 − a)

[
w1 − w2γ

(
(aR0 − 1)ρ − v

a2R0(γ + ρ)

)]
,

so we have an baseline solution, a = 1, and a new normal
solution,

v = (aR0 − 1)ρ − a2R0(ρ/γ + 1)
w1

w2
.

To find the second vaccination threshold we set

0 = Fa(1, iγ ) = w2γ i − w1

= w2γ

(
(R0 − 1)ρ − v

R0(γ + ρ)

)
− w1

and solve for v to find

T2 = ρ(R0 − 1) − w1

w2
R0(ρ/γ + 1).

The connection of w1
w2

with the threshold T2 suggests that
this ratio (and its reciprocal w2

w1
) determines the strength of the

response. In Fig. 6 we show that when w2
w1

is small (top row,
yellow curves) the behavioral response is weak and dynamics

approaches that of a classical SIRS model. Moreover, when w2
w1

is large, the behavioral response is more robust and can even
lead to an increasing series of waves. We should note while the
bilinear response can create an arbitrarily long series waves
with almost equal peaks (as shown in the next section) this
particular response function requires v > 0 to obtain increas-
ing waves. It may be worth considering that a small v > 0
could be used to model a subset of the population that become
infected and recover without ever becoming infectious, and
thus never entering the i class. Such a small percentage of
cases could potentially arise from very mild infections or
through extremely rigid isolation that removes the possibility
of infecting others entirely. Of course, if one is interested in
capturing the increasing waves observed in Fig. 1, one could
also consider other response functions, and we have empir-
ically observed increasing waves without vaccination using
more complicated response functions.

3. Connection to predator-prey models

If we combine the reactivity function Fbilinear from (12)
with the framework (8) we have the example model:

ṡ = −aBsi + ρ(1 − s − i) − vs,

i̇ = aBsi − γ i,

ȧ = (1 − a)(w1 − w2Bsi). (A5)

In order to understand the early epidemic dynamics of this
model, consider s ≈ 1 as approximately constant and set d =
1 − a so that (A5) can be approximately reduced to

i̇ = [(Bs − γ ) − Bsd]i,

ḋ = (w2Bsi − w1)d, (A6)

which is exactly the Lotka-Volterra predator-prey model. Per-
haps counterintuitively, in this analogy the infections play the
role of prey and "distancing," d , plays the role of the predator.

Regardless of the analogy, the interesting feature of
this model is that it produces oscillations with frequency√

w1γ (R0s − 1). This approximation is valid when these
activity-driven oscillations are fast enough that s is approx-
imately constant over the course of an oscillation. Each
oscillation reduces s slightly, and over time the frequency
decreases. Eventually, when s < R−1

0 , we have R0s − 1 < 0,
which changes the stability of the equilibrium inside the

(a) (b)

FIG. 7. Increased reactivity leads to oscillations even with high
and moderate vaccination. Repeating the simulations from the top
row of Fig. 4 but increasing the value of the w1 parameter to w1 =
0.035.
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periodic orbit of (A6) from a center to a source. Thus, s = R−1
0

represents a phase transition threshold for this model.
In Fig. 4 we illustrate the range of dynamics that this

simple reactivity function can exhibit. In this example the
infectiousness period is 6 days, loss of immunity is 300 days,
the infectiousness parameter is B = 0.5, and the reactivity
function parameters are w1 = 0.01 and w2 = 100. In the high
vaccination case [Fig. 4(a)], the system passes through the
phase transition quickly and the dynamics resemble a classical
epidemic. Similarly, when the vaccination rate is moderate

[Fig. 4(b)] the system quickly relaxes to the baseline endemic
equilibrium. In the low vaccination case [Fig. 4(c)] the oscilla-
tions continue for an extremely long time (in fact they are very
slowly decreasing in amplitude but would still be visible after
100 years). In Fig. 7 we show that by increasing the reactivity
to w1 = 0.035, the high and moderate vaccination dynam-
ics can initially exhibit predator-prey type oscillations until
the susceptible population is reduced to the phase transition
level, 1/R0, at which point the oscillations become classically
damped.
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