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We introduce a theory of local kernels, which generalize the kernels used in the 
standard diffusion maps construction of nonparametric modeling. We prove that 
evaluating a local kernel on a data set gives a discrete representation of the 
generator of a continuous Markov process, which converges in the limit of large 
data. We explicitly connect the drift and diffusion coefficients of the process to 
the moments of the kernel. Moreover, when the kernel is symmetric, the generator 
is the Laplace–Beltrami operator with respect to a geometry which is influenced 
by the embedding geometry and the properties of the kernel. In particular, this 
allows us to generate any Riemannian geometry by an appropriate choice of local 
kernel. In this way, we continue a program of Belkin, Niyogi, Coifman and others 
to reinterpret the current diverse collection of kernel-based data analysis methods 
and place them in a geometric framework. We show how to use this framework to 
design local kernels invariant to various features of data. These data-driven local 
kernels can be used to construct conformally invariant embeddings and reconstruct 
global diffeomorphisms.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The need to analyze massive data sets in Euclidean space has led to a proliferation of research activity, 
including methods of dimension reduction and manifold learning. In general, understanding large data means 
identifying intrinsic characteristics of the data and developing techniques to isolate them.

Various attempts have been made to generalize principal component analysis (PCA) for this purpose. 
For example, the method of kernel PCA [10,17] has led to large classes of kernels, which specify the degree 
of affinity between pairs of points. For a data set consisting of N points, kernel PCA constructs a symmetric 
positive-definite N × N matrix K of inner products, and considers the eigenvectors as coordinates. The 
perspective taken by kernel PCA is that the distance defined by the inner product will be represented by 
Euclidean distance in RN , and taking only the first M < N eigenvectors as coordinates, will optimally ap-
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proximate these distances in RM . This will be successful for flat manifolds, but geodesic distances on general 
curved manifolds will not be preserved. For example, a sphere cannot be mapped onto a finite-dimensional 
Euclidean space in a way that translates geodesic distances into Euclidean distances.

While kernel PCA tries to understand the data by mapping it to another, usually high-dimensional feature 
space, an alternative approach attempts to encode structure through differential operators by assuming the 
data lies on a manifold. There has been a movement to reinterpret kernel PCA methods geometrically, 
as a form of manifold learning, for a particular class of kernels. Belkin and Niyogi [2] and Coifman and 
collaborators [5] focused on kernels that depend only on the distance between points in ambient space, and 
that have exponential decay with distance. They used these kernels to estimate the Laplacian on the manifold 
described by the data. The Laplacian encodes all of the geometric information contained in the data. This 
differs from the interpretation of kernel PCA in two important ways: (1) the matrix K is viewed as an 
approximation of a differential operator, and (2) the eigenvectors are approximations to the eigenfunctions 
of the operator, evaluated on the data set.

The goal of this article is to extend the geometric perspective to a wider class of kernels. In fact, we 
show that all kernels with exponential decay can be interpreted as defining a Laplacian with respect to 
some Riemannian geometry. We refer to this wider class as local kernels, because all information must 
flow through local interactions due to the strong decay. In particular, local kernels include any kernel with 
compact support. The kernels of [2,5] are local, but because they are radially symmetric and independent 
of location on the manifold, can only access the geometry inherited from the ambient space. Later work of 
Coifman and Singer et al. [21,19,9] considered kernels that were not radially-symmetric from a non-geometric 
standpoint, and these kernels are closely related to the prototypical local kernels introduced in Section 3. 
Local kernels extend the results of [21] to a much larger class of kernels and naturally give rise to an 
intrinsic geometry on the data. In particular, Theorems 4.7 and 4.8 show that every symmetric local kernel 
corresponds to a Riemannian geometry and conversely, any Riemannian geometry can be represented with 
an appropriate local kernel. This opens up all kernels with exponential decay to exploitation by the whole 
range of geometric tools.

Moreover, when the local kernel is not symmetric, we show the kernel approximates the generator of a 
Markov process on the manifold defined by the data. From this perspective we can view the local kernel 
as defining transition probabilities between points on the manifold. We will show that in the limit of large 
data, an appropriate local kernel can be used to recover the generator of an arbitrary Itô process. This 
generalizes the views of [15,7,19,6,22,26] which connected the diffusion maps construction to the generator 
of a Markov process in the case of a gradient flow. In Section 3, we connect this theory to the theory of 
nonlinear independent components of Itô processes, which was introduced in [21] and applied in [19,9].

One promising application of local kernels is geometric regularization. Properties of embedded data that 
are considered extrinsic for a particular purpose can be removed. Reducing to intrinsic properties allows 
comparison and classification of different data sets. In Section 5, we show how to construct local kernels 
that result in geometries that are invariant under conformal isometries. We then show how to reconstruct 
a global diffeomorphism using a correspondence between the data sets. One application of this technique is 
to the problem of merging multiple observations with different modalities.

In Section 2 we summarize the relevant developments and techniques related to diffusion maps as found 
in [2,5,18,11,20,4]. In Section 3 we generalize the diffusion maps construction to a large class of kernels called 
local kernels and in Section 4 we show that symmetric local kernels are equivalent to Riemannian metrics 
in the limit of large data. Section 5 contains applications of local kernels.

2. The geometric prior and diffusion maps

Our typical assumption is that we are presented with a finite set of points on or near a manifold embedded 
in a high-dimensional Euclidean space, but with no a priori knowledge of the underlying manifold. We will 
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assume the manifold to be a compact d-dimensional differentiable manifold M ⊂ R
n. This is a nonparametric 

model for our data, since we assume that the manifold exists but we do not assume any parametric form. We 
think of this assumption as a geometric prior. Given the geometric prior, our goal is to learn the geometric 
structure of the data and exploit this structure to simplify and understand the data.

A diffusion map to a lower-dimensional space is a method of representing the geometry of the data. In 
rough analogy to the principal components from a singular value decomposition, the components of a diffu-
sion map [5,7] are eigenvectors of a transition matrix for a random walk on the data set. Under appropriate 
normalizations, the transition matrix is a discrete approximation to the Laplace–Beltrami operator, which 
encodes all the geometric features of the manifold inherited from the embedding [14].

The transition matrix is constructed by evaluating a kernel K(x, y) on all pairs from a data set. This 
yields a square N ×N matrix, where N is the number of data points, which is a discrete representation of a 
continuous operator. The goals of these kernel based techniques are threefold: (1) to describe the operator 
limit based on the chosen kernel, (2) to give techniques to construct a desired operator in terms of the 
kernel, and (3) to describe the convergence of the discrete representation to the continuous operator in the 
limit of large data.

Assuming a kernel of the form Kε(x, y) = h(||x − y||2/ε), where h has exponential decay, the first two 
goals were achieved definitively in the work of Coifman and Lafon [5] and the final goal was achieved by 
Singer [18]. In particular, this theory can be used to approximate the Laplace–Beltrami operator for data 
sampled from a Riemannian manifold, with arbitrary sampling distribution. The remaining restriction of 
this theory is the special form of the kernel Kε and in Sections 3 and 4 we give a far-reaching generalization 
of the existing theory.

To begin, we briefly summarize the relevant results of [5,18]. Given a data set {xi}Ni=1 ⊂ R
n sampled 

from a d-dimensional Riemannian manifold M ⊂ R
n with sampling density q, the diffusion maps algorithm 

produces a N ×N matrix which approximates the Kolmogorov operator

Lf = Δf + (2 − 2α)∇f · ∇q

q

where α is a constant which can be chosen in the diffusion maps construction. Note that Δ is the Laplacian 
operator (with negative eigenvalues) and ∇ is the gradient operator, and each are taken with respect to 
the Riemannian metric inherited from the ambient space Rn. The key to understanding diffusion maps is 
that continuous notions such as functions and operators are made discrete by writing them in the basis of 
the data set itself. Thus, a function f is represented by a vector [f ] = (f(x1), f(x2), . . . , f(xN ))� and an 
operator A is represented by an N ×N matrix A such that (A[f ])i = A(f)(xi). With this intuition in mind, 
we construct a matrix Jε which represents a Markov chain on the data set with transition probabilities 
using the definitions

Jε(xi, xj) = exp
{
−||xi − xj ||2

4ε

}
qε(xi) =

N∑
j=1

Jε(xi, xj)

Jε,α(xi, xj) = Jε(xi, xj)
qε(xj)α

qε,α(xi) =
N∑
j=1

Jε,α(xi, xj)

Ĵε,α(xi, xj) = Jε,α(xi, xj)
qε,α(xi)

Lε,α = Ĵε,α − I

ε

The crucial theoretical result of diffusion maps [5] is that in the limit as N → ∞ and ε → 0 we have 
Lε,α → L and Ĵ t/ε

ε,α → etL, in the sense that for any sufficiently smooth function f at any point xk in the 
data set we have (Lε,α[f ])k → Lf(xk) and (Ĵ t/ε

ε,α [f ])k → etLf(xk). Moreover, when q = 1 is uniform, Singer 
[18] shows that
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Lε,0f(x) = Lf(x) + O
(
ε,

||∇f(x)||√
Nε1/2+d/4

)

with high probability.
Since the data points {xi} are sampled independently from the density q, qε(xi) ∝ q(xi) +O(ε), meaning 

that qε is a kernel density estimate of the invariant measure. In fact the diffusion maps theory is much more 
general, and allows any kernel Jε(x, y) = h(||x− y||2/ε) such that the shape function h : [0, ∞) → [0, ∞) has 
exponential decay at infinity and finite m ≡ 1

2
∫
Rd z

2
1h(||z||2)dz/ 

∫
Rd h(||z||2)dz. The constant m is related 

to the moments of the shape function, and the only modification required to the above construction is that 
1
mLε,α → L. Note that for the exponential kernel above we find m = 1 because the exponential was chosen 
to have variance 2.

The diffusion maps algorithm essentially evaluates the kernel Jε on all pairs from the data set and then 
applies two normalizations. The first normalization divides the columns of the Jε matrix by the column sums, 
qε(xj), to the power α. We will refer to this as a right-normalization since it is equivalent to multiplying 
the matrix Jε on the right with a diagonal matrix with diagonal entries qε(xj)−α. Note that in [5] both 
the rows and columns are divided by the column sums in this step, however this is a numerical trick which 
tends to obfuscate the theoretical function of the right-normalization. The second normalization takes the 
right-normalized matrix and divides the rows by the row sums, making Ĵε,α a row-stochastic matrix. We 
will refer to this normalization as a left-normalization.

Intuitively, the right-normalization should be understood as a de-biasing which accounts for the fact that 
the discrete operator will be applied to functions which are evaluated on a data set that is sampled accord-
ing to the density q. The parameter α controls the degree to which the sampling distribution is allowed to 
bias the operator, and a key result of [5] is that setting α = 1 removes the bias entirely and recovers the 
Laplace–Beltrami operator independent of the sampling density q. The left-normalization has a more deli-
cate theoretical explanation. From the discrete perspective, the left-normalization makes the matrix into a 
row-stochastic (or Markovian) matrix. In the continuous limit, the effect of the left-normalization is to elim-
inate a complicated curvature dependent term which appears in the expansion of Jε (see Lemma 3.8 below). 
We note the fascinating correspondence between the Markovian normalization from the discrete perspective, 
and the isolation of the generator of a reversible stochastic process from the continuous perspective.

The foundation of the data-driven manifold learning approach is the assumption that the data is given 
by sampling data points on a manifold. For this approach to be practical we must require the manifold to 
have non-vanishing sampling density. In this sense, the manifold of interest is by definition the set of points 
where the sampling density is strictly positive. For this set to be compact requires that the density function 
is bounded away from zero. Recently it was shown in [4] that the assumption of a compact manifold could 
be relaxed, allowing densities that decay to zero, by using a variable bandwidth kernel, analogous to those 
used in kernel density estimation.

In order to allow the sampling density to be arbitrarily close to zero, the bandwidth function must be large 
in areas of small sampling and small in areas of large sampling. It was shown in [4] that the sampling density 
could be estimated from the data set with sufficient accuracy to form an appropriate bandwidth function 
assuming that the dimension of the manifold was known. While the theory developed here will apply to 
variable bandwidth kernels, many of the large class of kernels that will be studied in Sections 3 and 4 will 
not satisfy the constraints required to be applicable to non-compact manifolds. In fact, the expansions in 
Sections 3 and 4 do generalize to non-compact manifolds, simply by assuming the operators are only applied 
to functions that are square integrable with respect to the sampling measure. The difficulty comes in using 
a discrete data set to approximate the integral operators as Monte Carlo integrals. For many kernels the 
pointwise error bounds on these Monte Carlo integrals go to infinity as the sampling density goes to zero 
[4]. Since we are interested in operators which can be approximated by discrete sampling, throughout this 
paper we will restrict our attention to compact manifolds.
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3. Generalization of diffusion maps to local kernels

In this section we define local kernels and show that under the geometric prior, each local kernel defines a 
geometry on the embedded manifold in the limit of large data. Section 3.1 introduces the formal definition of 
a local kernel and develops a natural generalization of the results of diffusion maps in [5]. In Section 5 we give 
practical examples of how local kernels can be used to regularize the geometry on an embedded manifold. 
For convenience and clarity we restrict our construction in this section to manifolds without boundary; we 
conjecture that the results could be extended to manifolds with boundary following the technique of [5].

As we saw in Section 2, the standard diffusion maps construction starts with a kernel which can be 
written as a scalar function of the Euclidean distance, namely Jε(x, y) = h(||x − y||2/ε). Such a kernel is 
sometimes called a radial kernel. Our primary goal is to generalize the results of [5] to kernels of the form 
K(ε, x, y) that may be nonhomogeneous in x and y, and may depend on norms other than the Euclidean 
norm used in the radial kernels. A critical assumption will be that the kernel is bounded above by a radial 
kernel, so that intuitively as ε → 0 the kernel strongly localizes the interactions between points (since K is 
very close to zero when x and y are not close). However, local kernels will not have to be homogeneous in 
x and y and will not need to decay at the same rate in all directions.

The key property of K, that the kernel strongly localizes as ε → 0, motivates the name local kernels. 
It turns out that the decay rate does not need to be entirely independent of ε. If we think of K(ε, x, y) as 
defining a transition probability, a drift-free kernel would be centered so that the maximum is at y = x. In 
our definition, a local kernel does not have to be drift-free, so we will allow the maximum of the transition 
probability to be at y = x +

√
εb(x). While a local kernel does not have to be centered, the maximum must 

approach y = x at a rate no slower than 
√
ε. If the maximum approaches faster than 

√
ε then the kernel 

will have the same limit as the associated centered kernel, but when the rate is precisely 
√
ε, the limiting 

operator contains a drift based on the vector field b.

3.1. Local kernels and their associated Markov processes

We now define local kernels and show how they generalize the radial kernels of [5]. The key result will be 
that in the limit as ε → 0 the integral operator associated to a local kernel approximates the generator of a 
Markov process on the manifold M, a d-dimensional smooth manifold. The drift and diffusion coefficients 
of this Markov process depend on the moments of the local kernel computed on the tangent bundle of M.

Definition 3.1 (Local kernel). A nonzero function K : R ×R
n ×R

n → R is called a local kernel if there exist
constants c, σ > 0 and a smooth vector field b : Rn → R

n independent of ε such that

0 ≤ K(ε, x, x +
√
εz) ≤ ce−σ||z−√

εb(x)||2

for all x, z ∈ R
n and ε ≥ 0.

The limiting operator constructed via a local kernel, as ε → 0, is determined by the moments defined 
below. Throughout this section and Section 4 we fix a basis {∂i = ∂

∂xi }di=1 for the tangent space TxM
at an arbitrary point x ∈ M. For convenience and without loss of generality we assume that the tangent 
space is aligned in the ambient space so that z ∈ TxM ⊂ R

n has coordinates (z, 0)� ∈ R
n. Notice that 

local kernels include any function where K(ε, x, x +
√
εz) has compact support in z for all x. For example, 

K(ε, x, y) = max{1 − ||x − y||2/ε, 0} is a local kernel.

Definition 3.2 (Moments of a local kernel). For a local kernel K define the zeroth, first, and second moment 
functions
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m(x) ≡ lim
ε→0

∫
TxM

K(ε, x, x +
√
εẑ) dz

μi(x) ≡ lim
ε→0

1√
ε

∫
TxM

ziK(ε, x, x +
√
εẑ) dz

Cij(x) ≡ lim
ε→0

∫
TxM

zizjK(ε, x, x +
√
εẑ) dz (1)

respectively, where ẑ ∈ R
n is equal to z on TxM ⊂ R

n and zero in all orthogonal directions.

Note that μ(x) is a d-dimensional vector-valued function on M and C(x) is a d ×d matrix-valued function 
on M based on the coordinates dxi. While we work in the basis {∂i}, the vector μ and matrix C transform 
appropriately as tensors so we will sometimes neglect the indices. While the definition of the moments may 
seem impractical due to the need to integrate over each tangent space, we will see examples where these 
definitions simplify (such as the isotropic kernels defined below) and other examples where they are natural 
for data-driven algorithms. For example, if we define a norm || · ||C(x) where C(x) is the correlation matrix 
based on the nearest neighbors of x in the ambient space, in the limit of large data the correlation matrix 
will be rank d and will only be a norm on the tangent space TxM.

As we will see below, the standard radial kernel Jε has μ = 0, so we introduce the following definition 
for this special class of kernels.

Definition 3.3 (Drift-free kernel). A local kernel is called a drift-free kernel if the first moment μ is identically 
zero.

The second property of J in the diffusion maps construction is that the kernel is isotropic.

Definition 3.4 (Isotropic local kernel). A local kernel is called isotropic if the second moment is a multiple 
of an orthogonal transformation. Namely for some scalar function ρ : M → R, the second moment matrix 
C(x) satisfies C(x)TC(x) = ρ(x) Idd×d.

Finally, the kernel J is also homogeneous in the following sense.

Definition 3.5 (Homogeneous local kernel). A local kernel is called homogeneous with respect to a moment 
if the moment is independent of x.

We now show that any radial kernel is a local kernel which is drift-free, isotropic, and homogeneous in 
all moments.

Proposition 3.6. Assume a kernel J can be written in the form J(ε, x, y) = h(||x − y||2/ε) where |h(u)| <
ce−u/σ for some c, σ. Then J is a local kernel which is drift-free, isotropic and homogeneous in all moments.

Proof. Since h has fast decay J is a local kernel. Note that J(ε, x, x +
√
εẑ) = h(||ẑ||2) = h(||z||2), therefore 

μ = 0 and

Cij(x) =
∫

TxM

zizjh(||z||2) dz = δij

∫
TxM

z2
1h(||z||2) dz,

where the integral vanishes when i �= j since the integrand is odd. Thus for ρ(x) = ρ0 =
∫
TxM z2

1h(||z||2) dz
we have C(x) = ρ0 Idd×d, implying that J is isotropic and homogeneous. �
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While J is homogeneous and isotropic, the right-normalized diffusion maps kernel Jε,α has a very special 
type of non-homogeneous anisotropy that is determined by the α parameter. As noted in Section 2, this 
anisotropy allows the diffusion maps construction to access different geometries which are conformally 
equivalent to the geometry induced by the ambient space. However, this normalization is best understood 
as accounting for the sampling measure and we will return to this normalization in Section 4.1. Our goal is to 
allow any type of non-homogeneous and anisotropic kernel and find the operators which can be approximated 
in the limit of ε → 0 using local kernels. The following example is the prototype of a local kernel which can 
be used to define a geometry.

Example 3.7 (Prototypical local kernels). Let A(x) be a matrix valued function on the manifold M such 
that each A(x) is a symmetric positive definite n ×n matrix and let b(x) be a vector valued function. Define 
the prototypical kernel with covariance A and drift b by

K(ε, x, y) = exp
(
− (x− y − εb(x))TA(x)−1(x− y − εb(x))

2ε

)
.

We note that K can be rewritten as

K(ε, x, y) = exp
(
− (x− y)TA(x)−1(x− y)

2ε + (x− y)�A(x)−1b(x) − ε

2b(x)�A(x)−1b(x)
)
,

and that if we omit the term εb�A−1b, the moments will not be affected because this term is higher 
order. To define the moments we need to restrict the n × n matrix A to the tangent space TxM, thus we 
define I = I(x) : R

n → TxM to be the restriction of the ambient space to the tangent space (written 
in the basis {∂i}) so that I(x) is a d × n matrix. The lower moments of the prototypical kernel are, 
m(x) = (2π)d/2 det(I(x)A(x)I(x)�)1/2, μ(x) = m(x)I(x)b(x), and C(x) = m(x)I(x)A(x)I(x)�.

Notice that a prototypical kernel is simply an unnormalized multivariate Gaussian in the ambient space. 
While a normalized Gaussian would have some advantages which we will remark on below, the normalization 
factor m(x) is very difficult to determine. This is because finding m(x) requires computing the determinant 
of A(x) restricted to each tangent space TxM, and since we are trying to learn the structure of the manifold 
from the data we do not want to assume that I is known. Rather than explicitly estimating m(x) in the con-
struction of the kernel, we will instead show that a normalization trick, motivated by the left-normalization 
first introduced in [5], allows us to eliminate the influence of m(x). In fact, we will see that this approach 
uses the kernel to determine an estimate of m(x), and normalizing by this factor simultaneously removes 
the influence of m(x) as well as another unwanted term which is higher order.

In order to understand the limiting behavior of local kernels, we first need to generalize the following 
lemma from [5] which allows the approximation of the integral operator Gε for radial kernels.

Lemma 3.8 (Expansion of radial kernels). (See Coifman and Lafon [5].) Let f be a smooth real-valued 
function on an embedded d-dimensional manifold M ⊂ R

n and let h : R → R have fast decay, meaning that 
there exist constants c, σ such that h(a) ≤ ce−a/σ for all a. Then

Gεf(x) ≡ ε−d/2
∫
M

h

(
||x− y||2

ε

)
f(y) dy = m0f(x) + ε

m2

2 (ω(x)f(x) + Δf(x)) + O(ε2)

where m0 =
∫
Rd h(||x||2) dx and m2 =

∫
Rd x

2
1h(||x||2) dx are constants determined by h, and ω(x) depends 

on the induced geometry of M. The operator Δ is the Laplacian operator for M with the metric induced 
from the ambient space.
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The next lemma generalizes this result to local kernels. We introduce the standard notation div and ∇ to 
refer to the intrinsic divergence and gradient operators on the embedded manifold such that Δ = div ◦∇ is 
the (negative definite) Laplacian for M with the induced metric. Consider a stochastic process on M with 
drift μ and diffusion matrix 

√
C written in Itô form as

dx = μ(x)dt +
√

C(x)dWt, (2)

where Wt is d-dimensional Brownian motion on M. The generator L for (2), also known as the backward 
Kolmogorov operator, and its adjoint L∗, the Fokker–Planck operator, are given by

Lf = μ · ∇f + 1
2Cij∇i∇jf L∗f = − div(μf) + 1

2∇j∇i(Cijf), (3)

where ∇i is the covariant derivative in the ith direction. The Hessian matrix ∇i∇jf and the dot product 
of the vector fields μ and ∇f (where ∇ without subscripts refers to the gradient operator) are taken with 
respect to the Riemannian metric on M inherited from the ambient space.

Later we will be applying local kernels to analyze data sets. We will not assume that the data are sampled 
from the system (2). In fact, there is no requirement that the data are generated by a dynamical system at 
all. The system (2) is a Markov process which is implicit to the local kernel construction in the sense that 
any local kernel with moments μ and C can be used to construct the operators L and L∗ that correspond to 
(2). If the data set were generated by the system (2) and the moments μ and C could be estimated from the 
data set, then a local kernel could be constructed with these moments to approximate the generator of the 
data set. Such an approach was developed recently in [25] where the moments are estimated from the data 
assuming a slow evolution on the manifold. One application of the theory of local kernels is to show that 
a large class of kernels can be used to construct the desired operator instead of the standard exponential 
kernel for which the theory was developed in [21]. This generalization also applies to related work such as 
[13,24,19]. The real power of the local kernel construction is the ability to construct the operators L and L∗

for any system of the form (2) on the manifold defined by the data regardless of how the data is generated, 
by choosing an appropriate local kernel.

The following lemma connects the asymptotic expansion of the integral operator associated to a local 
kernel with the generator L.

Lemma 3.9 (Expansion of local kernels). Let f be a smooth real-valued function on an embedded 
d-dimensional manifold M ⊂ R

n and let K(ε, x, y) be a local kernel. Let m denote the zeroth moment 
of K from (1), and let L be defined using the first and second moments of K as in (3). Then the expansion

Gεf(x) ≡ ε−d/2
∫
M

K(ε, x, y)f(y) dy

= m(x)f(x) + ε (ω(x)f(x) + Lf(x)) + Ω(x)ε3/2 + O(ε2) (4)

holds, where ω(x) and Ω(x) depend on the kernel and the induced metric g.

Proof. Let x ∈ M, for 0 < γ < 1/2 and ε sufficiently small, the neighborhood Nεγ (x) of radius εγ about 
x is diffeomorphic to a neighborhood of zero in the tangent space TxM. Thus, for any y ∈ Nεγ (x) we can 
write y − x = (u, g(u)) where u ∈ TxM is the orthogonal projection of y − x into TxM. Note that setting 
u = 0 we have 0 = (0, g(0)) and so g(0) = 0, and moreover Dg(0) = 0 since g is tangent to M at u = 0. 
Thus we have the Taylor expansion g(u) = px,2(u) + px,3(u) + O(||u||4). Since K is a local kernel, we can 
expand the kernel about û = (u, 0) as
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K(ε, x, y) = K(ε, x, x + û + (0, g(u)))

= K(ε, x, x + û) + DyK(ε, x, x + û)�(0, g(u))� + |HsK(ε, x, x + û)| O(||g(u)||2)

= K(ε, x, x + û) + DyK(ε, x, x + û)�(0, px,2(u) + px,3(u))� + |HsK(ε, x, x + û)| O(||u||4)

= K(ε, x, x + û) + (Πu⊥DyK(ε, x, x + û))�(px,2(u) + px,3(u))

+ |HsK(ε, x, x + û)| O(||u||4). (5)

Following [5] we can expand f(y) = f(expx(s)) = f̃(s) when y ∈ Nεγ (x) as

f(y) = f̃(0) + u�Dsf̃(0) + 1
2u

�Hsf̃(0)u + px,3(u) + O(||u||4). (6)

Combining (5) and (6) we have the following expansion for the product:

K(ε, x, y)f(y) = f̃(0)
(
K(ε, x, x + û) + Πu⊥DyK(ε, x, x + û)�px,2,3(u)

)
+ K(ε, x, x + û)

[
u�Dsf̃(0) + 1

2u
�Hsf̃(0)u + px,3(u)

]

+ (K(ε, x, x + û) + |HsK(ε, x, x + û)|)O(||u||4) (7)

where all homogeneous polynomials of degree 2 and 3 in the variable u are combined into the single term 
px,2,3(u). We want to use this expansion inside the integral operator Gεf(x) = ε−d/2 ∫

M K(ε, x, y)f(y) dy, 
so we localize this integral to y ∈ Nεγ (x). The residual integral is therefore

∣∣∣∣∣∣∣ε
−d/2

∫
||y−x||>εγ

K(ε, x, y)f(y) dy

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫

||ỹ−x||>εγ−1/2

K(ε, x,
√
ε(ỹ − x) + x)f(

√
ε(ỹ − x) + x)dỹ

∣∣∣∣∣∣∣
≤ ||f ||∞O(ε2),

where we have changed variables to y =
√
ε(ỹ − x) + x and used the exponential decay in the tails of 

K(ε, x, 
√
ε(ỹ − x) + x). Note that γ < 1/2 meaning that εγ−1/2 → ∞ as ε → 0 and therefore the integral is 

only over the tail of the kernel. In fact, the integral of the exponential tail shrinks faster than any polynomial 
in ε, so in particular it is less than O(ε2).

Thus we have the following expansion for the integral operator:

Gεf(x) = ε−d/2
∫
M

K(ε, x, y)f(y) dy = ε−d/2
∫

||y−x||<εγ

K(ε, x, y)f(y) dy

= ε−d/2
∫

||u||<εγ

f̃(0)
(
K(ε, x, x + û) + Πu⊥DyK(ε, x, x + û)�px,2,3(u)

)
(1 + px,2,3(u) + O(ε2))du

+ ε−d/2
∫

||u||<εγ

K(ε, x, x + û)
[
u�Dsf̃(0) + 1

2u
�Hsf̃(0)u + px,3(u)

]
(1 + px,2,3(u) + O(ε2))du

+ ε−d/2
∫

||u||<εγ

(K(ε, x, x + û) + |HsK(ε, x, x + û)|)O(||u||4)(1 + px,2,3(u) + O(ε2))du
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=
∫

||z||<εγ−1/2

f̃(0)
(
K(ε, x, x +

√
εẑ) + Πu⊥DyK(ε, x, x +

√
εẑ)�(εpx,2(z) + ε3/2px,3(z))

)

× (1 + εpx,2(z) + ε3/2px,3(z) + O(ε2))dz

+
∫

||u||<εγ

K(ε, x, x +
√
εz)

[√
εz�Dsf̃(0) + ε

2z
�Hsf̃(0)z + ε3/2px,3(z)

]

× (1 + εpx,2(z) + ε3/2px,3(z) + O(ε2))dz

+ ε2
∫

||z||<εγ−1/2

(
K(ε, x, x +

√
εẑ) +

∣∣HsK(ε, x,
√
εẑ)

∣∣)O(||z||4)

× (1 + εpx,2(z) + ε3/2px,3(z) + O(ε2))dz

where we use the fact [5] that det
(

dy
du

)
= 1 + px,2,3(u) + O(ε2) to change variables from y to u; and then 

we change to z = ε−1/2u so that det
(
du
dz

)
= εd/2 and we set ẑ = (0, z)�. We now use the exponential decay 

of the kernel and its first two derivatives to extend the integrals to the entire tangent space. Note that any 
polynomial integrated against the kernels will be a constant, yielding

Gεf(x) =
∫

TxM

f̃(0)
(
K(ε, x, x +

√
εẑ)(1 + εpx,2(z) + ε3/2px,3(z))

+ Πu⊥DyK(ε, x, x +
√
εẑ)�(εpx,2(z) + ε3/2px,3(z))

)
dz

+
∫

TxM

K(ε, x, x +
√
εẑ)

[√
εz�Dsf̃(0) + ε

2z
�Hsf̃(0)z + ε3/2px,3(z)

]
(1 + εpx,2(z))dz + O(ε2)

= f(x)
∫

TxM

K(ε, x, x +
√
εẑ)dz +

√
ε

⎛
⎝ d∑

i=1

∂f̃

∂si
(0)

∫
TxM

ziK(ε, x, x +
√
εẑ)dz

⎞
⎠

+ ε

(
d∑

i,j=1

∂2f̃

∂sj∂si
(0)

∫
TxM

1
2zizjK(ε, x, x +

√
εẑ)dz + f(x)

∫
TxM

K(ε, x, x +
√
εẑ)px,2(z)

+ Πu⊥DyK(ε, x, x +
√
εẑ)�px,2(z)dz

)

+ ε3/2

⎛
⎝ ∫

TxM

K(ε, x, x +
√
εẑ)px,3(z) + Πu⊥DyK(ε, x, x +

√
εẑ)�px,3(z)dz

⎞
⎠ + O(ε2).

We now define the terms

ω(x) ≡ lim
ε→0

∫
TxM

K(ε, x, x +
√
εẑ)px,2(z) + Πu⊥DyK(ε, x, x +

√
εẑ)�px,2(z) dz,

Ω(x) ≡ lim
ε→0

∫
K(ε, x, x +

√
εẑ)px,3(z) + Πu⊥DyK(ε, x, x +

√
εẑ)�px,3(z) dz. (8)
TxM
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Combining the definitions of (1) and (8) with the expansion of Gε yields

∫
M

K(ε, x, y)f(y) dy = m(x)f(x) + ε

⎛
⎝ω(x)f(x) +

∑
i

μi(x) ∂f̃
∂si

(0) + 1
2
∑
ij

Cij(x) ∂2f̃

∂si∂sj
(0)

⎞
⎠

+ Ω(x)ε3/2 + O(ε2). (9)

Note that writing f in geodesic coordinates based at the point x, the gradient operator at x becomes 
∇f(x) = gjl ∂f̃

∂sl
(0)dxj so that the inner product becomes

μ · ∇f =
∑
ij

gijμi(∇f)j =
∑
ij

gijμig
jl ∂f̃

∂sl
(0) =

∑
i

μi
∂f̃

∂si
(0),

since 
∑

j gijg
jl = δil. Since L is written in local coordinates as Lf(x) =

∑
i μi(x) ∂f̃

∂si
(0) + 1

2
∑

ij Cij(x)×
∂2f̃

∂si∂sj
(0), we have shown

ε−d/2
∫
M

K(ε, x, y)f(y) dy = m(x)f(x) + ε (ω(x)f(x) + Lf(x)) + Ω(x)ε3/2 + O(ε2),

as desired. Notice that neglecting the Ω term, the expansion is of order ε3/2. However, if the kernel and its 
derivative have zero skewness then Ω = 0 and the expansion is of order ε2. �

The polynomials in the definition of Ω in (8) involve f and mixed third derivatives of f , so in general 
these terms will be difficult to cancel with any type of normalization. We therefore introduce the following 
definition.

Definition 3.10 (Skew-free local kernel). A local kernel is called skew-free if for any homogeneous polynomial 
of order-3 in the variable z (with coefficients depending on x), we have limε→0

∫
TxM px,3(z)K(ε, x, x +√

εz)dz = 0 and limε→0
∫
TxM px,3(z)DyK(ε, x, x +

√
εz)dz = 0.

For the remainder of the paper we will restrict our attention to skew-free local kernels so that Ω = 0 and 
the expansion in Lemma 3.9 is order ε2. The results which follow will still apply for local kernels which are 
not skew-free, however the expansions will only be valid up to order ε3/2 rather than order ε2. Notice that 
any operator which can be recovered with a local kernel can be recovered with a prototypical local kernel, 
which is skew-free. Thus, in the limit of large data, there is no reason to use a local kernel which is not 
skew-free.

From Lemma 3.9 we can easily derive the expansion for the adjoint of the kernel which we define by 
K∗(ε, x, y) = K(ε, y, x) with associated operator G∗

εf(x) = ε−d/2 ∫
M K(ε, y, x)f(y)dy.

Lemma 3.11 (Expansion of adjoint of skew-free local kernel). Let K be a skew-free local kernel. Under the 
same assumptions as Lemma 3.9,

G∗
εf(x) ≡ ε−d/2

∫
M

K(ε, y, x)f(y)dy = m(x)f(x) + ε (ω(x)f(x) + L∗f(x)) + O(ε2). (10)

Proof. We describe the operator G∗
εf(x) in the weak formulation by letting h be an arbitrary smooth test 

function so that
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〈h,G∗
εf〉L2(M) =

∫
M

∫
M

h(x)K(ε, y, x)f(y) dydx.

We will expand this inner product by changing the order of integration, and noting that 
∫
M K(ε, y, x)×

h(x) dx = Gεh(y),

〈h,G∗
εf〉L2(M) =

∫
M

f(y)Gεh(y)dy

=
∫
M

f(y) (m(y)h(y) + ε(ω(y)h(y) + Lh(y))) dy + O(ε2)

=
∫
M

m(y)h(y)f(y) + ε(ω(y)h(y)f(y) + f(y)Lh(y))dy + O(ε2)

= 〈h, f + ε(ωf + L∗f)〉 + O(ε2), (11)

where we have used the fact that 〈f,Lh〉 = 〈L∗f, h〉 in order to factor out g(y) from each term in the last 
equality. The above computation shows that in the weak sense we have G∗

εf = f + ε(ωf +L∗f) +O(ε2). �
Since we are typically interested in the operator L, we note that L1 = 0, which means that if we apply 

the kernel operator to the constant function, we find (Gε1)(x) = m(x) + εω(x) + O(ε2). So Gε1 isolates 
all the unwanted terms in the expansion of Gε, including the aforementioned zeroth moment m(x), which 
is now estimated by the kernel operator Gε1, so that it does not need to be known in order to define the 
kernel. The following theorem normalizes the operator by dividing by Gε1 in order to isolate L.

Theorem 3.12. Let K(ε, x, y) be a local kernel and set

Lεf = (Gε1)−1Gεf − Id(f)
ε

, L∗
εf = (Gε1)−1G∗

εf − Id(f)
ε

. (12)

Then limε→0 Lε = 1
mL and limε→0 L

∗
ε = 1

mL∗, where L and L∗ are defined in (3).

It is crucial in Theorem 3.12 that both the kernel and the adjoint are normalized by Gε1. This is because 
− div(μf) = −f div(μ) − μ · ∇f implies that G∗

ε1(x) = 1 + ε(ω(x) − div(μ)). Dividing by this term would 
introduce an unwanted term to the operator.

The normalization (12) was first introduced in [5], and it has the significant advantage that the zeroth 
moment m(x) of the kernel does not need to be known when the kernel is defined. For the prototypical 
kernel in Definition 3.7, for example, since we did not normalize the Gaussian, we have μ(x) = m(x)b(x)
and C(x) = m(x)A(x) and therefore

1
m
Lf = 1

m
(mb · ∇f + mAij∇i∇jf) = b · ∇f + Aij∇i∇jf.

Since the norm in the prototypical kernel is defined in terms of A and b, we typically do not wish the 
normalization factor (which is difficult to estimate before the kernel is defined, since the determinant must be 
computed on the tangent space) to affect the operator. The normalization (12) lets us avoid the normalization 
factor altogether. However, for the prototypical kernel the formula for L∗

ε becomes more complicated. In 
this case it is more natural to define

L̂∗
ε = (G∗

ε ((Gε1)−1f) − Id
,

ε
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which is equivalent to first normalizing the kernel matrix and then computing the transpose. It is easy to 
verify that for a prototypical kernel we have

L̂∗
εf = − div(bf) + ∇i∇j(Aijf) + O(ε),

and we will use this fact in Section 3.2.
We note that another normalization option is to subtract the unwanted terms so that

1
ε

(Gεf − fGε1) = Lf + O(ε). (13)

The normalization (13) was used in [2] and has the advantage of discretizing as a weighted graph Laplacian, 
which is an unbiased estimator of the limiting operator. When the kernel is symmetric the estimator will also 
be a symmetric matrix. However, this approach would require the kernel to be normalized by dividing the 
kernel by the zeroth moment m(x). In most applications this is not known a priori and the normalization 
by the empirical estimate Gε1 as in (12) is a more practical approach.

3.2. Numerical example

Due to the complexity of the previous derivations, and their importance in the subsequent sections, we 
will give a numerical example demonstrating and validating the theory developed so far. Consider a flat torus 
isometrically embedded in R4. This example allows easy computation of the covariant derivatives and adher-
ence to the uniform sampling assumptions. Start with a uniform grid of 10,000 points (θi, φi) in the flat torus 
[0, 2π]2, and map these points into R4 via the isometric embedding xi = (sin(θi), cos(θi), sin(φi), cos(φi))�. 
In order to verify the theory for a non-homogeneous, anisotropic kernel, we will design a prototypical local 
kernel with the moments

μ(θ, φ) = (2 + sin(θ), 0)� C(θ, φ) =
[

3 + sin(φ) 1
1 1

]
.

To build a kernel on the embedded torus, we must lift these two dimensional tensors into R4. Let Dι be the 
matrix with rows given by the tangent vectors

Dι(θ, φ) =
[

cos(θ) − sin(θ) 0 0
0 0 cos(φ) − sin(φ)

]
.

Abbreviating Dιi = Dι(θi, φi), μi = μ(θi, φi), and Ci = C(θi, φi), we can define the prototypical local kernel

K(ε, xi, xj) = exp
(
− (xj − xi − εDιiμi)�DιiCiDι�i (xj − xi − εDιiμi)

2ε

)
.

While this construction is quite artificial, it is only for the purposes of numerical verification. Indeed, as we 
will show in Section 5, the real power of local kernels is the ability to build a data-driven kernel where the 
moments are naturally constructed from the data itself.

We will validate Theorem 3.12 by constructing Lε and L̂∗
ε and applying them to the function f(θ, φ) =

sin θ sin 2φ. We first compute the analytic result Lf and L∗f . Note that because the torus is flat and x1 = θ

and x2 = φ give global coordinates, we can perform all operations with respect to these coordinates. In 
particular, the covariant derivatives are simply those with respect to θ and φ respectively. Using these facts 
we compute
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Fig. 1. (a) The analytic Lf shown as a contour plot as a function of θ and φ. (b) Numerical estimate Lεf using the local kernel 
evaluated on 10,000 points on a uniform grid on the flat torus in R4 with ε = 0.001 (right). (c) Analytic L∗f and (d) L̂∗

εf . Note 
that the color indicates the functional value and the left and right plots are drawn in the same scale. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Lf = μ · ∇f +
∑
l,r

Clr
d2f

dxldxr

= (2 + sin(θ), 0)
(
∂f

∂θ
,
∂f

∂φ

)�
+ (3 + sin(φ))∂

2f

∂θ2 + 2 ∂2f

∂θ∂φ
+ ∂2f

∂φ2

= (2 + sin(θ)) cos(θ) sin(2φ) − (3 + sin(φ)) sin(θ) sin(2φ) + 4 cos(θ) cos(2φ) − 4 sin(θ) sin(2φ),

and

L∗f = − div(μf) +
∑
l,r

d2

dxldxr
(Clrf) = − ∂

∂θ
((2 + sin(θ))f) + ∂2

∂θ2 ((3 + sin(φ))f) + 2 ∂2f

∂θ∂φ
+ ∂2f

∂φ2

= −(2 + sin(θ)) cos(θ) sin(2φ) − cos(θ) sin(θ) sin(2φ) − (3 + sin(φ)) sin(θ) sin(2φ)

+ 4 cos(θ) cos(2φ) − 4 sin(θ) sin(2φ).

In Fig. 1 we show that these analytic formulas compare closely to the discrete estimates Lεf and L̂∗
εf .
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3.3. Connection to nonlinear independent component analysis

Nonlinear independent component analysis was studied for Itô processes in [21]. The central assumption 
is that a stochastic process x(t) is generated in an n-dimensional latent space, which is then observed by 
a nonlinear mapping y(t) = F (x(t)) into an m-dimensional observation space with m ≥ n. In the latent 
space, the process is assumed to have isotropic homogeneous stochastic forcing and drift determined by 
an arbitrary vector field μ(x). Such a process can be described by the Itô stochastic differential equa-
tion

dx = μ(x) dt + Id dWt,

where dWt is a Brownian process on the latent space and Id is the identity matrix. The Itô Lemma implies 
that in the observation space, the process y(t) is given by

dy =
(
DF (x)μ(x) + 1

2 trace(H(F ))
)

dt + DF (x) dWt,

and the key insight of [21] is that for m ≥ n, there is a complete set of observables E[dydy�] =
DF (x)DF (x)�dt which allows determination of DF (x) up to an orthogonal transformation. Defining the 
correlation matrix Cyi

= E[dydy�](yi), they construct the kernel

Ky(ε, yi, yj) ≡ exp
(
−

(yj − yi)�(C−1
yi

+ C−1
yj

)(yj − yi)
4ε

)
.

Note that Ky is a local kernel which is closely related to a prototypical local kernel defined in Example 3.7, 
and it is easy to check the first moment is zero and the second moment is given by C(y) = Cy. Theo-
rem 3.12 reproves the result of [21] that Lε recovers the generator Lf = 1

2
∑

i,j Cij∇i∇jf . Noting that 
∂

∂yi
=

∑
l(DF−1)il ∂

∂xl
, we have

Lf = 1
2
∑
ij

Cij∇i∇jf = 1
2
∑
ij

Cij
∂2f

∂yi∂yj
= 1

2
∑
i,j,l,s

Cij(DF−1)il
∂

∂xl

(
(DF−1)js

∂f̃

∂xs

)

= 1
2
∑
i

∂2f̃

∂x2
i

+ 1
2

∑
i,j,l,s

Cij(DF−1)il
∂(DF−1)js

∂xl

∂f̃

∂xs

= 1
2
∑
i

∂2f̃

∂x2
i

+ 1
2
∑
j,l,s

DFjl
∂(DF−1)js

∂xl

∂f̃

∂xs
(14)

where f̃(x) = f(F−1(y)) and 
∑

i Cij(DF−1)il = DFjl. Ignoring the second term of (14), which is an addi-
tional drift term, the kernel Ky recovers a homogeneous isotropic diffusion as first shown in [21]. We can now 
extend this result to use the observables E[dy] =

(
DF (x)μ(x) − 1

2 trace(H(f))
)
dt. Setting b(yi) = E[dy](yi)

and using the prototypical kernel

K(ε, yi, yj) = exp
(
−(yj − yi − εb(yi))TC−1

yi
(yj − yi − εb(yi))

2ε

)
,

we find that Lε converges to the operator
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Lf =
∑
j

bj∇jf + 1
2
∑
ij

Cij∇i∇jf =
∑
j,l

bj(x)(DF−1)jl
∂f̃

∂xl
+ 1

2
∑
ij

Cij∇i∇jf

=
∑
j,l,s

(
DFjlμl(x) + 1

2
∂2F j

∂x2
l

)
(DF−1)js

∂f̃

∂xs
+ 1

2
∑
ij

Cij∇i∇jf

= μ · ∇f̃ + 1
2
∑
j,l,s

∂DFjl

∂xl
(DF−1)js

∂f̃

∂xs
+ 1

2
∑
ij

Cij∇i∇jf. (15)

Since 
∑

jl
∂DFjl

∂xl
(DF−1)js = −

∑
jl DFjl

∂(DF−1)js
∂xl

, these terms cancel, yielding

Lf = μ · ∇f̃ + 1
2Δf̃ , (16)

which is the generator of the Itô diffusion process x(t) in the latent space. In the next section we will 
reinterpret this change of variables as a change in the Riemannian metric on the manifold.

4. The intrinsic geometry of symmetric local kernels

In this section we consider local kernels that are symmetric in x and y. We will show that the operator Gε

associated to a symmetric local kernel is always a Laplacian with respect to a certain Riemannian metric, 
which depends on the second moment C of the kernel and the metric g inherited from the ambient space.

Definition 4.1 (Symmetric kernel). A kernel function K(ε, x, y) is called symmetric if it is equal to its adjoint, 
K(ε, x, y) = K∗(ε, x, y) = K(ε, y, x).

Notice that K = K +K∗ is always symmetric, and any symmetric kernel can be trivially written in this 
form. The results in this section will not assume that K is symmetric but they will focus on the expansion 
of K. In order to connect symmetric kernels to the Laplacian operator, we first connect the operators 
Cij∇i∇jf and ∇j∇i(Cijf) to the Laplacian with respect to a new Riemannian metric.

Lemma 4.2 (Change of metric). Let (M, g) be a Riemannian manifold and let μ(x) be a vector field and 
C(x) a (1, 1)-tensor on M. Define the new metric ĝ(u, v) = g(C−1/2u, C−1/2v) which we denote ĝ =
C−1/2gC−1/2. Then

∑
i,j

Cij∇i∇jf = Δĝf + κ · ∇f
∑
i,j

∇j∇i(Cijf) = ρ−1Δĝ(ρf) − div(κf)

where Δĝ is the Laplacian with respect to ĝ and all other operators and inner products are with respect to g, 
where κ is a vector field which depends on g and C, and where ρ =

√
|g|/|ĝ| =

√
|C| is a scalar function.

Proof. Let C = C(x) be the matrix with entries Cij(x) and define new coordinates ŝ = C−1/2s so that 
dŝl
dsj

= C
−1/2
lj and df

dsj
(0) =

∑
l
dŝl
dsj

df
dŝl

(0) =
∑

l C
−1/2
lj

df
dŝl

(0) and therefore

∂2f̃

∂si∂sj
=

∑
k,l

C
−1/2
ki

∂

∂ŝk

(
C

−1/2
lj

∂f̃

∂ŝl

)
=

∑
k,l

C
−1/2
ki C

−1/2
lj

∂2f̃

∂ŝk∂ŝl
+ C

−1/2
ki

∂C̃
−1/2
lj

∂ŝk

∂f̃

∂ŝl
.

Substituting the above expression into the summation 
∑

Cij
∂2f̃ (0) we find
ij ∂si∂sj
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∑
i,j

Cij
∂2f̃

∂si∂sj
(0) =

∑
i,j,k,l

(
CijC

−1/2
ki C

−1/2
lj

∂2f̃

∂ŝk∂ŝl
+ CijC

−1/2
ki

∂C̃
−1/2
lj

∂ŝk

∂f̃

∂ŝl

)

=
∑
k,l

⎡
⎣
⎛
⎝∑

i,j

CijC
−1/2
ki C

−1/2
lj

⎞
⎠ ∂2f̃

∂ŝk∂ŝl
+

⎛
⎝∑

i,j

CijC
−1/2
ki

∂C̃
−1/2
lj

∂ŝk

⎞
⎠ ∂f̃

∂ŝl

⎤
⎦

=
∑
k,l

⎡
⎣δik ∂2f̃

∂ŝk∂ŝl
+

⎛
⎝∑

j

C
1/2
jk

∂C̃
−1/2
lj

∂ŝk

⎞
⎠ ∂f̃

∂ŝl

⎤
⎦

=
∑
k

∂2f̃

∂ŝ2
k

+
∑
k,l,j

C
1/2
jk

∂C̃
−1/2
lj

∂ŝk

∂f̃

∂ŝl
,

where all the derivatives are evaluated at s = 0. Notice that the first term corresponds to the Laplacian 
Δĝf(x) =

∑
k

∂2f̃
∂ŝ2k

(0) and we can rewrite the second term as

∑
k,l,j

C
1/2
jk

∂C̃
−1/2
lj

∂ŝk

∂f̃

∂ŝl
=

∑
i,k,l,j,r

C
1/2
jk C

1/2
kr

∂C̃
−1/2
lj

∂sr
C

1/2
li

∂f̃

∂si
=

∑
i,l,j,r

Cjr

∂C̃
−1/2
lj

∂sr
C

1/2
li

∂f̃

∂si
.

We now define the vector field κi =
∑

l

(∑
j,r Cjr

∂C̃
−1/2
lj

∂sr

)
C

1/2
li so the previous expression can be simplified 

as

∑
i,j

Cij
∂2f̃

∂si∂sj
(0) = Δĝf(x) + κ(x) · ∇f(x)

as desired. To find ∇j∇i(Cijf) note that with respect to the inner product 〈·, ·〉 on L2(M, g) we have

〈∇j∇i(Cijf), h〉 = 〈f, Cij∇i∇jh〉 = 〈f,Δĝh〉 + 〈f, κ · ∇h〉

=
∫

fΔĝh
√
|g| dx + 〈− div(fκ), h〉 =

∫
fρΔĝh

√
|ĝ| dx + 〈− div(fκ), h〉

=
∫

Δĝ(fρ)h
√

|ĝ| dx + 〈− div(fκ), h〉 =
〈
ρ−1Δĝ(ρf) − div(κf), h

〉
, (17)

for an arbitrary smooth test function h, therefore 
∑

i,j ∇j∇i(Cijf) = ρ−1Δĝ(ρf) − div(κf). �
Applying Lemma 4.2 to the sum L + L∗ we have the following lemma.

Lemma 4.3. Let L and L∗ denote the operators in (3). Under the assumptions of Lemma 4.2,

Lf + L∗f = Δĝf + ∇ĝf · ∇ĝρ

ρ
+ fω̃,

where ∇ĝ is the gradient with respect to ĝ, ρ =
√

|C| and ω̃ is a scalar function which depends on μ, C, 
and g.

Proof. From the previous lemma we have
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L∗f = − div(fμ) + 1
2ρ

−1Δĝ(ρf) − 1
2 div(κf)

= 1
2ρ

−1 (ρΔĝf + fΔĝρ + 2∇ĝf∇ĝρ) − μ · ∇f − 1
2κ · ∇f + f div(μ− κ/2)

= 1
2Δĝf + ∇ĝf∇ĝρ− Lf + 1

2Δĝf + f
(
ρ−1Δĝρ + div(μ− κ/2)

)
. (18)

Letting ω̃ = ρ−1Δĝρ + div(μ − κ/2) and moving Lf to the left side yields the desired result. �
Combining the previous lemma with the expansion of the local kernel K and its adjoint K∗ from Section 3, 

we define the symmetric kernel K = K + K∗.

Theorem 4.4 (Expansion of symmetric kernel). Let K be a local kernel and define K ≡ K + K∗. Then

Gεf(x) ≡ ε−d/2
∫
M

K(ε, x, y)f(y)dy = 2m(x)f(x) + ε

(
(2ω(x) + ω̃(x))f(x) + Δĝf + ∇ĝf · ∇ĝρ

ρ

)
+ O(ε2)

and

Lε = 1
ε

(
(Gε1)−1Gεf − Id(f)

)
= Δĝf + ∇ĝf · ∇ĝρ

ρ
+ O(ε2)

where ĝ = C−1/2gC−1/2 and ρ =
√

|C|.

If C(x) is the identity map, then ĝ = g and we recover Lemma 3.8 extended to all local isotropic kernels, 
so we no longer need to assume to specific form h(||x − y||2/ε). Moreover, for the prototypical kernel, the 
following corollary holds.

Corollary 4.5 (Expansion of prototypical kernel). Let K be a local kernel with zeroth moment m(x) =
m0

√
|A(x)| and second moment C(x) = m(x)A(x) (such as the prototypical kernel). Then

Gεf(x) ≡ ε−d/2
∫
M

K(ε, x, y)f(y)dy

= 2m(x)f(x) + ε ((2ω(x) + ω̃(x))f(x) + m0qΔg̃f + 2m0∇g̃f · ∇g̃q) + O(ε2)

where g̃ = A−1/2gA−1/2 and q =
√
|A|.

Proof. We have C(x) = m(x)A(x) = m0
√
|A(x)|A(x) = m0q(x)A(x), which means that

ĝ = C−1/2gC−1/2 = m−1
0 |A|−1/2A−1/2gA−1/2 = m−1

0 q−1g̃.

Thus ĝ is conformal to g̃ and we have the following standard relationship for Δĝ and Δg̃:

Δĝf = m0qΔg̃f + (1 − d/2)m0∇g̃f · ∇g̃q.

Moreover, since ρ =
√

|C| = |A| d+2
4 = m

d/2
0 qd/2+1 and ĝij = m0qg̃

ij we have

∇ĝf · ∇ĝρ

ρ
= ρ−1

∑
ij

ĝij∂if∂jρ = m0q
−d/2−1

∑
ij

qg̃ij∂if(d/2 + 1)qd/2∂jq = (d/2 + 1)m0∇g̃f · ∇g̃q,

and combining this with the above formula yields
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Δĝf + ∇ĝf · ∇ĝρ

ρ
= m0qΔg̃f + 2m0∇g̃f · ∇g̃q.

The result then follows from Theorem 4.4. �
Notice that we do not consider the standard normalization for the prototypical kernel. This is because 

the prototypical kernels have the following unique interpretation. Let H : N → M ⊂ R
n be an embedding 

where (N , gN ) is an abstract Riemannian manifold and M is the embedded manifold that our data lies on. 
Assume that the data xi = H(x̃i) was originally sampled uniformly on N and then mapped into Rn by H. 
Set q(x) = |DH(H−1(x))|, where the determinant is computed on TxM. The sampling measure on M will 
be q(x)−1. This is crucial because we estimate the integral operator Gεf(x) as a Monte Carlo integral,

lim
N→∞

N∑
j=1

K(ε, xi, xj)f(xj) =
∫
M

K(ε, xi, y)f(y)q(y)−1dy = εd/2Gε(fq−1)(xi).

The fact that the data xi have sampling density q−1 will bias our estimate of Gε and we will use this to our 
advantage.

Theorem 4.6 (Intrinsic geometry of local kernels). Let (N , gN ) be an abstract Riemannian manifold and 
let {x̃i}Ni=1 ⊂ N be sampled uniformly according to the volume form defined by gN . Let H : N ↪→ R

n be 
an embedding with image M = H(N ) and let xi = H(x̃i). Define A(xi) = DH(x̃i)DH(x̃i)�. For any local 
kernel K with m(x) =

√
|A(x)| and covariance C(x) =

√
|A(x)|A(x) (such as a prototypical kernel), and 

any smooth function f on M,

lim
N→∞

2
ε

(∑
j K(ε, xi, xj)f(xj)∑

j K(ε, xi, xj)
− f(xi)

)
= Δg̃f(xi) + O(ε) = ΔgN (f ◦ H)(x̃i) + O(ε)

where K(ε, x, y) = K(ε, x, y) + K(ε, y, x) and g̃(u, v) = gN (DH−1u, DH−1v).

Proof. Note that since x̃i are uniformly sampled, the data {xi} have density q(xi)−1 where q(x) =
|DH(H−1(x))| =

√
|A|. This biases the Monte Carlo integral so that

lim
N→∞

ε−d/2
∑
j

K(ε, xi, xj)f(xj) = Gε(fq−1),

and applying the previous corollary we have

Gε(fq−1) = 2m0mfq−1 + ε
(
(2ω + ω̃)fq−1 + qm0Δg̃(fq−1) + 2m0∇g̃(fq−1) · ∇g̃q

)
+ O(ε2).

Note that when f = 1,

Gε(q−1) = 2m0mq−1 + ε
(
(2ω + ω̃)q−1 + qm0Δg̃q

−1 + 2m0∇g̃q
−1 · ∇g̃q

)
+ O(ε2).

Expanding the ratio using the general fact that a+εb
c+εd = a

c + ε bc−ad
c2 + O(ε2), noting that mq−1 = 1 yields

Gε(fq−1)
Gε(q−1)

= f + ε

2
(
qΔg̃(fq−1) + 2∇g̃(fq−1) · ∇g̃q − qfΔg̃q

−1 − 2f∇g̃q
−1 · ∇g̃q

)
+ O(ε2),

and applying the product rule Δg̃(fq−1) = q−1Δg̃f + fΔg̃(q−1) + 2∇g̃f · ∇g̃(q−1), we have
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2
ε

(
Gε(fq−1)
Gε(q−1)

− f

)
= Δg̃f + O(ε),

and the limit as N → ∞ follows. Note that H is an isometry from (N , gN ) to (M, ̃g) since g̃(DHu, DHv) =
gN (u, v) and therefore H∗(f) = f ◦ H commutes with the Laplacian. It follows that

Δg̃f(x) = (Δg̃f)(H(x̃)) = H∗(Δg̃f)(x̃) = ΔgN (H∗f)(x̃) = ΔgN (f ◦ H)(x̃))

which completes the proof. �
We will call (N , gN ) the intrinsic geometry of the manifold M with respect to the local kernel K. The 

previous theorem shows that, in direct analogy to the results of [2] and [5], a symmetric local kernel defines 
a Laplacian operator on the intrinsic geometry. In fact, the Laplacian ΔgN is equivalent to the Riemannian 
metric gN in the sense that one can be uniquely recovered from the other [12]. Unless the embedding H is 
isometric, the Riemannian metric g̃ will not agree with the metric g that M inherits from Rn. When the 
embedding is isometric, the second moment of the local kernel will be the identity matrix and therefore 
g̃ = g, recovering the result of standard diffusion maps [5] for uniform sampling.

Theorem 4.6 is restricted by the assumption of uniform sampling in the intrinsic geometry. In the next 
section we generalize this result to allow any smooth sampling density on N .

4.1. Nonuniform sampling in the intrinsic geometry

Theorem 4.6 assumes that the data points xi = H(x̃i) are generated by sampling x̃i uniformly on the 
intrinsic geometry (N , gN ). This means that the data are sampled according to the volume form defined by 
gN . As was first noted in [5], this is a restrictive assumption for applications that do not have control over 
the sampling. The solution introduced in [5] is the right-normalization discussed in Section 2, and here we 
replicate this technique for local kernels.

Theorem 4.7 (Intrinsic geometry of local kernels, with nonuniform sampling). Let (N , gN ) be an abstract 
Riemannian manifold and let {x̃i}Ni=1 ⊂ N be sampled according to any smooth density on N . Let H : N ↪→
R

n be an embedding with image M = H(N ) ⊂ R
n and let xi = H(x̃i) and define A(xi) = DH(x̃i)DH(x̃i)�. 

For any local kernel K with m(x) =
√
|A(x)| and covariance C(x) =

√
|A(x)|A(x) (such as a prototypical 

kernel), and any smooth function f on M,

lim
N→∞

2
ε

(∑N
j=1K(ε, xi, xj)f(xj)/

∑
l K(ε, xj , xl)∑N

j=1K(ε, xi, xj)/
∑

l K(ε, xj , xl)
− f(xi)

)
= Δg̃f(xi) + O(ε) = ΔgN (f ◦ H)(x̃i) + O(ε)

where K(ε, x, y) = K(ε, x, y) + K(ε, y, x) and g̃(u, v) = gN (DH−1u, DH−1v).

Proof. Assume that x̃i are sampled from N with density qN written with respect to the volume form defined 
by gN . This density biases the data xi so that their density is now qN q−1, which biases the Monte Carlo 
integral so that

lim
N→∞

ε−d/2
∑
j

K(ε, xi, xj)f(xj) = Gε(fqN q−1).

Applying Corollary 4.5 and recalling that m = q−1, we have

Gε(fqN q−1) = 2m0fqN + ε
(
(2ω + ω̃)fqN q−1 + qm0Δg̃(fqN q−1) + 2m0∇g̃(fqN q−1) · ∇g̃q

)
+ O(ε2)



T. Berry, T. Sauer / Appl. Comput. Harmon. Anal. 40 (2016) 439–469 459
and setting f = 1 yields

Gε(qN q−1) = 2m0qN + ε
(
(2ω + ω̃)qN q−1 + qm0Δg̃(qN q−1) + 2m0∇g̃(qN q−1) · ∇g̃q

)
+ O(ε2).

We now introduce the right-normalization

Gε

(
fqN q−1

GεqN q−1

)
= 2m0fqN

2m0qN + ε ((2ω + ω̃)qN q−1 + qm0Δg̃(qN q−1) + 2m0∇g̃(qN q−1) · ∇g̃q)

+ ε

(
(2ω + ω̃) f

2m0qN
qN q−1 + qm0Δg̃

(
f

2m0qN
qN q−1

)

+ 2m0∇g̃

(
f

2m0qN
qN q−1

)
· ∇g̃q

)
+ O(ε2)

= f

1 + ε
2
(
(2ω + ω̃)m−1

0 q−1 + qq−1
N Δg̃(qN q−1) + 2q−1

N ∇g̃(qN q−1) · ∇g̃q
)

+ ε

2
(
(2ω + ω̃)m−1

0 fq−1 + qΔg̃

(
fq−1) + 2∇g̃

(
fq−1) · ∇g̃q

)
+ O(ε2)

= f + ε

2
(
qΔg̃

(
fq−1) + 2∇g̃

(
fq−1) · ∇g̃q − fqq−1

N Δg̃(qN q−1)

− 2fq−1
N ∇g̃(qN q−1) · ∇g̃q

)
+ O(ε2)

= f + ε

2
(
qΔg̃

(
fq−1) + 2∇g̃

(
fq−1) · ∇g̃q + fω̂

)
+ O(ε2)

where ω̂ = −qq−1
N Δg̃(qN q−1) − 2q−1

N ∇g̃(qN q−1) · ∇g̃q. We note that by linearity of Δ and ∇ we can neglect 
the order ε term in the denominator when plugging into these operators since they are already order ε. We 
now apply left-normalization to Ĝε(f) ≡ Gε

(
fqN q−1

GεqN q−1

)
so that

Ĝε(f)
Ĝε(1)

= f + ε

2
(
qΔg̃

(
fq−1) + 2∇g̃

(
fq−1) · ∇g̃q − fqΔg̃

(
q−1)− 2f∇g̃

(
q−1) · ∇g̃q

)
+ O(ε2)

= f + ε

2Δg̃f + O(ε2).

The conclusion follows from noting that limN→∞
2
ε

(∑N
j=1K(ε,xi,xj)f(xj)/

∑
l K(ε,xj ,xl)∑N

j=1K(ε,xi,xj)/
∑

l K(ε,xj ,xl)
− f(xi)

)
converges to 

2
ε

(
Ĝε(f)(xi)
Ĝε(1)(xi)

− f(xi)
)

as N → ∞. �
Theorem 4.7 allows us to recover the intrinsic geometry independent of the sampling on (N , gN ) by 

using the right-normalization. The right-normalization is equivalent to the diffusion maps normalization 
with α = 1 in [5]. This establishes our key result, which is that every local kernel defines a geometry in the 
limit of large data. Of course, many local kernels could define the same intrinsic geometry, and the previous 
theorem reveals that it is the second moment of the kernel which determines the intrinsic geometry. The 
next theorem establishes the converse: that every Riemannian geometry on a manifold can be represented 
by a local kernel.

Theorem 4.8. Let M ⊂ R
n be an embedded Riemannian manifold with g the induced metric and let (N , gN )

be any manifold diffeomorphic to M. There exists a local kernel K such that (N , gN ) is the intrinsic 
geometry of (M, g) with respect to K.
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Proof. Since M and N are diffeomorphic and since gN and g are positive definite we can always find a 
diffeomorphism H : N → M such that gN (u, v) = g(DHu, DHv). Let K be the prototypical local kernel 
with A = DHDH�, then (N , gN ) is the intrinsic geometry of M with respect to K. �

Together, Theorems 4.7 and 4.8 show that Riemannian metrics are in one-to-one correspondence with 
equivalence classes of local kernels that have the same second moment tensor C(x). Of course, it is also 
possible to use diffusion maps to find the Laplacian with respect to any Riemannian metric. By Nash’s 
theorem [14], every Riemannian manifold admits an isometric embedding into RM for M large enough. To 
recover the intrinsic geometry gN with diffusion maps we would have to find a global isometric embedding 
of (N , gN ) into an Euclidean space. Of course, in practice, finding such a global isometric embedding would 
be quite difficult.

Theorem 4.7 provides an alternative which is valuable in two respects. First, a local kernel allows one 
to easily change the metric using only local information without having to construct a globally consistent 
embedding. This is a significant advantage when trying to form data driven techniques to modify the 
metric as we will see in Section 5. Second, the theory of local kernels gives a geometric interpretation 
to many existing techniques which use local kernels such as K(x, y) = e−||y−x||2A(x) where A(x) defines a 
special distance measure on the embedded data. The theory of local kernels shows that these techniques 
are changing the geometry of the embedded data. Understanding the geometric content of kernel based 
methods provides novel avenues for analyzing the data.

Next we demonstrate the numerical application of a local kernel to modify the geometry of a data set, 
and in Section 5 we will demonstrate new techniques for data driven geometric regularization using local 
kernels.

4.2. Numerical example: recovering the flat metric on a torus with a local kernel

In this section we show that a local kernel can recover the flat metric on a torus embedded in R3 with 
nonzero Riemannian curvature. Let θ, φ ∈ [0, 2π) be the intrinsic coordinates of the torus. The flat metric 
is given simply by gθ,φ = Id2×2, the product metric induced by the structure T 2 = S1 × S1. Now consider 
the embedding ι : T 2 → R

3 given by

ι((θ, φ)) =

⎡
⎢⎣ (2 + sin θ) cosφ

(2 + sin θ) sinφ

cos θ

⎤
⎥⎦ Dι((θ, φ)) =

⎡
⎢⎣ cos θ cosφ −(2 + sin θ) sinφ)

cos θ sinφ (2 + sin θ) cosφ
− sin θ 0

⎤
⎥⎦

which induces a curved metric on the torus. Our goal is to use a local kernel to undo the curvature induced 
by the embedding and recover the flat metric.

We generated 8100 points on a uniform grid in [0, 2π]2 to represent the intrinsic variables and then mapped 
these points into R3 via ι to generate the observed variables. We first applied the standard diffusion map 
algorithm to the observed data set with α = 1 (since the points are not uniformly distributed on the 
embedded manifold) in order to approximate the first four eigenvectors of the Laplacian with respect to the 
curved metric from the embedding space. In Fig. 2 we show these eigenfunctions plotted against the intrinsic 
variables along with the diffusion map embedding with coordinates given by the first three eigenfunctions. 
As in Section 2, the diffusion maps algorithm estimates the Laplacian with respect to the Riemannian metric 
induced by the embedding.

To show that a local kernel could recover the Laplacian with respect to the flat metric, we defined the 
local kernel

K(ε, x, y) = exp
(
− (y − x)TA(x)(y − x)

)
A(x) =

(
Dι(ι−1(x))†

)T
Dι(ι−1(x))†.
ε
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Fig. 2. Comparison of standard diffusion maps (a–c) with local kernel approach (d–f). (a) First (blue) and second (green) eigenfunc-
tions of the Laplacian with respect to the induced metric approximated by the diffusion maps construction; the red curves are sine 
functions with the same phase as the eigenfunctions. (b) Eigenfunctions five (blue) and six (green); note that all the plots contain 
the same number of points and the vertical spread in this plot indicates the θ dependence. (c) The diffusion maps embedding 
of the torus using eigenfunctions one, two, and five. (d) Same as (a) but using eigenfunctions from the local kernel construction 
described in the text, eigenfunctions one (blue) and two (green); (e) Eigenfunctions three (blue) and four (green). (f) Embedding 
using eigenfunctions one, two, and three. Note that the surface shown is flat (zero Riemannian curvature) as expected but is not an 
embedding of the torus; this is because a smooth isometric embedding of the flat torus requires four dimensions. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

With this definition, K is a prototypical kernel with K(ε, x, x +
√
εz) = e−zTA(x)z which implies that 

C(x)−1/2 = Dι(ι−1(x))† on TxM. Since the metric induced by the embedding is g = (Dι(x))TDι(x), 
Theorem 4.7 implies that using the local kernel K approximates the Laplacian with respect to the metric

ĝ = C−1/2gC−1/2 = I

which is the flat metric on the torus. In order to validate Theorem 4.7 numerically we constructed the 
discrete Laplacian matrix Lij defined by,

Lij ≡
2
ε

⎛
⎝ K(ε, xi, xj)∑

l K(ε, xj , xl)
∑

s
K(ε,xi,xs)∑
l K(ε,xs,xl)

− IdN×N

⎞
⎠ .

Since Theorem 4.7 says that in the limit of large data and small ε this matrix converges to the Laplacian with 
respect to ĝ, which is the flat metric, the eigenvectors of this matrix should approximate the eigenfunctions 
of Δĝ. In Fig. 2 we confirm this result numerically using the data set described above. For both the diffusion 
maps algorithm and for the matrix L, we chose ε = 1

N

∑N
i=1 ||xi − xnn(i)||2 where nn(i) is the index of the 

nearest neighbor of xi.
Of course, this kernel is not purely data driven since we have used knowledge of the embedding ι to 

define the local kernel. The point of this example is simply to demonstrate numerically that a local kernel 
can achieve a desired change of metric without having to re-embed the data. Note that the first four 
eigenfunctions of Lε with respect to the local kernel K(ε, x, y), as shown in Fig. 2, approximate [sin(θ +
θ0), cos(θ+θ0), sin(φ +φ0), cos(φ +φ0)] up to phase shifts θ0 and φ0, and these are precisely the eigenfunctions 
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of the Laplacian on the flat torus. We note that these coordinates give an isometric embedding of the flat 
torus into R4.

The example in this section illustrates the power of local kernels to modify the geometry of data. However, 
this example made use of the embedding function which is not typically known. In the next section we will 
examine a data-driven approach to regularizing the geometry of data using local kernels.

5. Data driven geometry regularization via local kernels

An important observation of [5] was that in many applications the sampling distribution is an extrinsic 
factor which we do not wish to influence the geometry. However, as we have shown in Section 2, unless 
we know the embedding to be an isometry, not only the sampling distribution but the entire embedding 
geometry could be considered extrinsic. In this section we apply a data-driven anisotropic local kernel to 
regularize the geometry.

5.1. Conformally invariant embedding

The perspective of diffusion maps is that we would like to study the metric g inherited from the ambient 
space, and thus if the data is not sampled according to the volume form of g, then we must remove the 
sampling bias. In this section we consider an alternative explanation for the disagreement between the 
sampling measure and the volume form. Using this new framework we show that it is possible to construct 
a kernel which is invariant to any conformal transformation of a data set.

Our new assumption will be that the data set {x̃i} was sampled uniformly on a manifold (N , gN ) but 
the observed data {xi} is given by a conformal isometry H : N → H(N ) ⊂ R

n. Let M = H(N ) ⊂ R
n be 

the observed manifold and let g be the Riemannian metric that M inherits from the ambient space. Since 
H is assumed to be a conformal isometry, the observed metric is given by g = ρgN for some positive scalar 
valued function ρ. Moreover, considering gN (x) and g(x) as matrices, we have gN (x) = DH(x)g(x)DH(x)
which implies

√
det(g) =

√
det(ρgN ) = ρd/2

√
det(gN ) = ρd/2

√
det(DHgDH) = ρd/2|DH|

√
det(g).

We conclude that |DH| = ρ−d/2. Since we assume that the original data set was uniformly sampled on N
with respect to gN , the {x̃i} are distributed according to the volume form d volgN (x). This implies that the 
observed data {xi} are distributed according to

q(x) = det
(
DH(H−1(x))−1) = ρ(H−1(x))d/2.

Using this fact, we can recover the factor ρ, from the conformal change of metric, as ρ(x̃) = q(H(x̃))2/d. 
Finally, we can recover the original metric gN with a local kernel K such that the mean and skewness 
are zero and the covariance is given by Kij(y) = ρ(H−1(x))−1 = q(x)−2/d. For example, we can use the 
prototypical kernel

K(x, y) = exp
(

(x− y)�ρ(x) Idd×d(x− y)
4ε

)
= exp

(
||x− y||2

4εq(x)−2/d

)
(19)

to construct the Laplacian with respect to the metric q2/dg = ρ−1g = ρ−1ρgN = gN , which is the original 
Riemannian metric on the unobserved manifold N .

Example 5.1 (Conformal isometry of the unit circle). We first demonstrate the difference between the 
conformally invariant construction and that of standard diffusion maps. The data is originally generated 
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uniformly on the unit circle parameterized by θ ∈ [0, 2π), in this example we choose 4000 points {θj =
2πj/4000}4000

j=1 . However, the observed data lies on an ellipse xj = H(θj) = (cos θj , a sin θj)�. The volume 
form on the ellipse is given by

d vol(x) =
√

det(DH(θ)DH(θ)�) =
√

sin2 θ + a2 cos2 θ =
√

1 + (a2 − 1) cos2 θ,

whereas the sampling measure q(x) on the ellipse is given by

q(x) = |DH(θ)|−1 = 1√
1 + (a2 − 1) cos2 θ

.

For a �= 1, the sampling density does not agree with the volume form, and the data {xj} is not uniformly 
sampled on the ellipse. We first applied the standard diffusion map with normalization α = 1 to the data 
set {xj} to construct the Laplacian operator ΔM with respect to the Riemannian metric that the ellipse 
inherits from R2. Analytically, ΔM can be written in θ-coordinates as

ΔMf(θ) = 1√
g(θ)

∂

∂θ

(
1√
g(θ)

∂

∂θ
f(θ)

)
= 1

g(θ)
∂2f

∂θ2 − 1
2g(θ)2

∂g

∂θ

∂f

∂θ
,

where g(θ) = 1 + (a2 − 1) cos2 θ. The first two nontrivial eigenfunctions are given by φ1(θ) = sin(z(θ))
and φ2(θ) = cos(z(θ)) where z′(θ) =

√
g(θ). By numerically integrating, we find z(θ) and plot the first 

two eigenfunctions of the ellipse in Fig. 3, where we set a = 1/6. These eigenfunctions are shown to agree 
with the eigenfunctions produced by the diffusion maps algorithm. By plotting these eigenfunctions as 
(φ1(θj), φ2(θj)) in R2 for j = 80l, l = 1, . . . , 50, we see that the diffusion maps algorithm represents the 
geometry by a non-uniformly sampled circle, which is isometric to the ellipse with uniform sampling.

Next, we use the local kernel (19), where q(x) is taken from the initial kernel density estimate produced 
by the standard diffusion map (see Section 2). In Fig. 3 we show that the eigenfunctions of this kernel agree 
with those of the standard Laplacian on the unit circle Δf = ∂2f/∂θ2, which are simply φ̃1 = sin θ and 
φ̃2 = cos θ. Moreover, the embedding (φ̃1(θj), φ̃2(θj)) reveals that this local kernel recovers the uniformly 
sampled circle. The key difference is that the local kernel modifies the geometry in order to make it agree 
with the sampling measure, whereas the diffusion map ignores the sampling measure and preserves the 
observed geometry. Which of these results is preferable will depend on the application. If the sampling 
of the data is purely incidental then the diffusion map embedding is preferable because it preserves the 
geometry. If the sampling of the data should inform the analysis, then it may be advantageous to distort 
the geometry in order to have a uniformly sampled manifold.

The previous example shows that the local kernel (19) can recover a uniformly-sampled intrinsic manifold 
that has been mapped by a conformal isometry before being observed. Thus, the kernel will recover the 
same geometry from any two different data sets generated by conformal isometries applied to an initial data 
set that is uniformly sampled. This leads to an interesting application: We can use this kernel to detect 
when two embeddings of a data set are conformally equivalent.

Assume that we are given two copies of a data set, {yj} ⊂ M1 ⊂ R
m1 and {zj} ⊂ M2 ⊂ R

m2 where yj
are sampled according to an arbitrary density q1(y). Assume further that the second data set is actually 
given by a conformal isometry of the first data set, so that zj = F(yj). In this case, applying the local 
kernel (19) to {yj} we will find the Riemannian metric g = q−2/dg1 where g1 is the metric M1 inherits from 
the ambient space, and the sampling of M1 is uniform with respect to g. Moreover, since {zj} is given by 
a conformal isometry applied to {yj}, the metric g2 which M2 inherits from the ambient space is given by 
g2 = ρg1 for some scalar function ρ. This implies that g2 = ρg1 = ρq2/dg so that g2 is conformally equivalent 
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Fig. 3. (a) The standard diffusion map algorithm recovers the eigenfunctions of the ellipse (given by the embedding geometry), 
whereas the conformal map removes the latent distribution and recovers the geometry of the circle, as shown by the eigenfunc-
tions. The circle and ellipse eigenfunctions shown with dashed curves were computed analytically. (b) The eigenfunctions for any 
topological circle lie on a circle, however the conformal eigenfunctions are uniformly distributed (diameters of both embeddings 
were adjusted for clarity). Plots were generated by applying the diffusion maps and conformal maps algorithms to 4000 points 
sampled from the ellipse with major axis length of 1 and minor axis length of 1/6 shown in black, where every 80th point is shown 
to illustrate the densities.

to g, and {zj} have sampling density q2 = ρd/2q1. Applying the local kernel (19) to {zj} we find the metric 
q
−2/d
2 g2 = ρ−1q

−2/d
1 g2 = g, which is the same metric as the local kernel (19) found on {yj}. This shows that 

the local kernel (19) is invariant under any conformal isometry of a given data set. In the next example we 
demonstrate this algorithm for two conformally equivalent tori in R3.

Example 5.2 (Conformally equivalent tori). In this example we consider the torus of Section 4.2 and a 
conformally equivalent torus given by

ι̃((θ, φ)) =
(
(
√

2 + sin θ) cosφ, (
√

2 + sin θ) sinφ, cos θ
)�

.

We note that the choice of the radii 2 and 
√

2 is necessary to insure the tori are conformally equivalent. To 
test the conformally invariant embedding, we generated 10,000 points on a uniform grid (θi, φi) ∈ [0, 2π)2
and mapped them into R3 via xi = ι(θi, φi) and x̃i = ι̃(θi, φi), as shown in Fig. 4(a). We first applied 
the conformally invariant embedding developed above to each data set, and found the first 10 eigenvectors 
of Lε constructed from the local kernel K in (19). We used these eigenvectors to form a conformally 
invariant embedding with coordinates, Φ(xi) = (ϕ1(xi), . . . , ϕ10(xi))� and Φ̃(x̃i) = (ϕ̃1(x̃i), . . . , ϕ̃10(x̃i))�. 
Ordinary least squares finds the optimal linear map between these coordinate systems, which maps the 
coordinates Φ̃(x̃i) into the conformally invariant embedding space for {xi}. We then applied diffusion maps 
(with α = 1) to both data sets, and using the first 10 diffusion coordinates, built a linear map from the 
diffusion coordinates of x̃i to those of xi. Fig. 4 shows pictorially that the conformally invariant embedding 
coordinates are the same for the two conformally equivalent data sets. Because the tori are conformal, the 
conformally invariant geometries are isometric, which implies that the eigenfunctions are identical up to an 
orthogonal linear transformation, as shown by the agreement in Fig. 4(b). On the other hand, the standard 
diffusion map represents the geometry that each data set inherits from the embedding shown in (a), and 
since these are not isometric, there is no linear map between their respective eigenfunctions, as shown by 
the disagreement in Fig. 4(c).
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Fig. 4. (a) Original data sets {xi} (left, black) and {x̃i} (right, blue in the web version) lying on conformally equivalent tori. 
(b) Conformally invariant embedding of {xi} (left, black) and the linearly mapped coordinates of the conformally invariant embed-
ding of {x̃i} (right, blue in the web version). (c) Diffusion map embedding of {xi} (left, black) and the linearly mapped diffusion 
coordinates of {x̃i} (right, blue in the web version).

5.2. Global diffeomorphism reconstruction

In this section we assume that we are given two datasets that are related by a global diffeomorphism, and 
show how to use a local kernel to reconstruct the diffeomorphism. In particular, assume that x̃i ∈ N ⊂ R

m

and xi = H(x̃i), where H : N ↪→ R
n is an unknown diffeomorphism, so that xi lie on M = H(N ). The 

key will be that we have a correspondence between individual points in the data sets. This is often the 
case when we have multiple time series observations of some intrinsic state, such as assorted simultaneous 
observations of a dynamical system.

To reconstruct the global diffeomorphism, we will use a local kernel to push-forward the Riemannian 
metric from N onto M via the correspondence between the data sets. With this metric on M, the two 
manifolds are isometric, which implies that their Laplacians have the same eigenvalues, and that the associ-
ated eigenfunctions of any eigenvalue are related by an orthogonal transformation [14]. We can then easily 
estimate this orthogonal transformation using linear least squares. A related technique was introduced in 
[8] for mapping between diffusion maps embeddings; the difference here is that such a linear map provably 
exists since we use local kernels to change the geometry so that the manifolds are isometric.

In order to push the metric forward from N onto M, we need to estimate DH and then apply Theorem 4.7
to xi on M with the prototypical kernel

K(ε, x, y) = exp
(
− (y − x)�DH(x)�DH(x)(y − x)

2ε

)
.

To estimate the matrix DH(xi), we take the nearest neighbors {xj} of xi and use the correspondence to 
find x̃i = H−1(xi) and the neighbors x̃j = H−1(xj). Note that x̃j may not be the nearest neighbors of x̃i
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due to the diffeomorphism. We then construct the weighted vectors

vj = exp
(
−||xj − xi||2/ε

)
(xj − xi) ṽj = exp

(
−||xj − xi||2/ε

)
(x̃j − x̃i),

and define DHi to be the m × n matrix which minimizes 
∑

j ||ṽi −DHivj ||2. We note that the exponential 
weight is used to localize the vectors; otherwise the linear least squares problem would try to preserve the 
longest vectors xj − xi, which do not represent the tangent space well. Notice that the same exponential 
factor is used on both the vj and the ṽj so that all the distortion of distances is represented linearly. We 
can now approximate DH(xi)�DH(xi) ≈ DH�

i DHi, so that numerically we evaluate the local kernel

K(ε, xi, xj) = exp
(
−||DHi(xj − xi)||2

2ε

)
. (20)

Using Theorem 4.7 we approximate the Laplacian Δg̃ = H∗ΔgN on M and use the standard diffusion maps 
algorithm (with α = 1) to approximate the Laplacian ΔgN on N . Since (M, ̃g) and (N , gN ) are isometric, 
the eigenvalues will be the same (up to the precision of the discrete approximation) and the eigenfunctions 
will be related by orthogonal transformations. Thus, we can build a linear map H between the eigenfunctions 
by ordinary least squares.

Using this linear map between the eigenfunctions we can represent the global diffeomorphism. By taking 
sufficiently many eigenfunctions ϕl and ϕ̃l on the respective manifolds, the eigenfunctions can be considered 
coordinates of an embeddings Φ(x) = (ϕ1(x), . . . , ϕn̂(x))� and Φ̃(x̃) = (ϕ̃1(x̃), . . . , ϕ̃m̂(x̃))�. We thus have 
the commutative diagram

N H−−−−−−−−→ M
⏐⏐⏐& Φ̃

⏐⏐⏐&Φ

L2(N , gN ) ≈ R
n̂ H−−−−−−−−→ L2(M, g̃) ≈ R

m̂

where H = Φ ◦ H ◦ Φ̃−1 is linear. Using various standard techniques we can extend the maps Φ̃ and Φ
and their inverses to new data points and so the map H represents the global diffeomorphism H in the 
eigenfunction coordinates. In the following example we demonstrate this technique on a torus in R3 and 
compare to constructing a linear map in diffusion coordinates.

Example 5.3 (Reconstructing a global diffeomorphism of the torus). In this example we let N be the torus 
of Section 4.2 with Euclidean coordinates (x, y, z) = ι((θ, φ)) in R3, and we let

H(x, y, z) = [x, y, (2 + sin(3 tan−1(y/x))/2)z]�

be the unknown diffeomorphism. The two tori are shown in Fig. 5(a) and (b), respectively, where 10,000 
points were generated on a uniform grid (θi, φi) ∈ [0, 2π]2 and where x̃i = ι(θi, φi), xi = H(x̃i).

We applied the standard diffusion map to x̃i to estimate ΔgN and the first 10 eigenfunctions, Φ̃(x̃i), 
which represent the geometry which the data set x̃i inherits from the ambient space shown in Fig. 5(a). We 
then applied the above algorithm to xi = H(x̃i) (note that the algorithm also requires x̃i) to estimate Δg̃

and the first 10 eigenfunctions, Φ(xi), which represents the geometry g̃ on the data set shown in Fig. 5(b). 
The geometry g̃ is not the same as the geometry which {xi} inherits from the ambient space. Instead, 
we have used the local kernel (20) to push the geometry of the data set {x̃i} onto the data set {xi} which 
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Fig. 5. (a) Original data set {x̃i} on N and (b) the diffeomorphic images {xi = H(x̃i)} on M. (c) Diffusion map coordinates for {x̃i}
(center, black) compared to the linearly mapped diffusion coordinates for {xi} (red, left) and the linearly mapped eigenfunction 
coordinates HΦ(xi) (blue, right). Since the geometries which (a) and (b) inherit from their embeddings are only diffeomorphic and 
not isometric, the eigenfunctions produced by the diffusion map cannot be linearly mapped as shown by the disagreement between 
the red and black embeddings in (c). By using the local kernel (20) we push the geometry of (a) onto the data set (b) using the 
known correspondence between the points as shown by the agreement of the diffusion map embedding of (a), shown in (c, black), 
with the linearly mapped eigenfunctions of the local kernel applied to (b), shown in (c, blue). (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

means that (M, ̃g) and (N , gN ) are isometric as shown above. Since the manifolds with these geometries are 
isometric, the eigenfunctions of their respective Laplacians are identical up to an orthogonal transformation. 
To verify this numerically, we used least squares optimization to estimate the linear transformation H from 
the eigenfunctions Φ(xi) to the eigenfunctions Φ̃(x̃i). We then use H to map the eigenfunction coordinates 
Φ(xi) into the diffusion map coordinate space for N . In Fig. 5(c), we compare the diffusion maps coordinates 
Φ̃i(x̃) (black, middle of figure) with HΦ(xi) (blue, right side of figure). We also attempted to linearly map 
the diffusion map coordinates for {xi} into those for {x̃i}, and we show the result in Fig. 5(c) (right side) for 
comparison. Because the local kernel puts an isometric geometry onto M, the eigenfunctions of Δg̃ can be 
linearly mapped onto the diffusion map eigenfunctions for N . However, because M and N are not isometric 
with respect to the geometries inherited from their respective embeddings (shown in Figs. 5(a) and 5(b)
respectively), there is no linear map between the diffusion eigenfunctions of these data sets.

6. Conclusion

In this article, we have extended the geometric perspective of the original diffusion map construction to 
a class of kernels that is large as feasible. In fact, we show that any kernel with exponential decay leads 
naturally to a Laplacian with respect to some Riemannian geometry. The exponential decay is crucial, to 
constrict all information to flow through local interactions.

Theorems 4.7 and 4.8 show that every symmetric local kernel corresponds to a Riemannian geometry and 
conversely, any Riemannian geometry can be represented with an appropriate local kernel. This opens up 
all kernels with exponential decay to exploitation by the whole range of geometric tools. On the other hand, 
local kernels can be classified by their intrinsic geometry, and every intrinsic geometry will be accessible 
by a prototypical kernel. Therefore, in the limit of large data, one can always use a prototypical kernel; 
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indeed this will typically be advantageous since the prototypical kernels are skew-free, which leads to fast 
convergence to the limiting operators.

In Section 5 we showed how to construct an embedding which is invariant under conformal transfor-
mations. We then showed how to use a local kernel to reconstruct a global diffeomorphism between two 
data sets. One potential application of this result is to dynamical systems, since there are often various 
observable physical aspects of the system. A theorem of Takens [23,16] states that the method of time-delay 
coordinates can be used to reconstruct a state space which is equivalent to the full dynamical system up 
to a diffeomorphism. This means that each observed time series can be used to create a diffeomorphic copy 
of the dynamical system. In the case where the dynamical system lies on an attractor, we can use this 
method to map each data set into any other coordinates, or given new data in some observation, this data 
can be mapped into other observations spaces. We should caution that the method of Section 5.2 relies on 
approximating a sufficient number of eigenfunctions of the Laplacian to represent the entire manifold, and 
for a high-dimensional manifold (such as the attractor of a complex dynamical system) this would require 
such a large amount of data that it would typically be computationally infeasible. However, even in this 
case, the technique in Section 5.2 may still be valuable as a coarse map between observation spaces.

Several further applications of this generalization are apparent. In [3], it was found that the traditional 
attractor reconstruction methods using delay coordinates biases the manifold toward stable components. 
A natural candidate for intrinsic geometry on a dynamical system is the Lyapunov geometry [1], because 
it is invariant to diffeomorphic observations, such as delay-coordinates. If the Lyapunov geometry is the 
goal, then the embedding geometry is largely extrinsic, and needs to be removed. Using an appropriate 
local kernel, it should be possible to recover this intrinsic geometry. Beyond building diffeomorphisms 
between data sets, it may also be desirable to isolate differences in data sets. One possibility would be 
identifying subsets of each data set which are diffeomorphic, however it is unclear how to identify these 
subsets. Alternatively, if the difference is represented in certain components of the data it may be possible 
to identify these components as those which are not captured in the global diffeomorphism reconstruction 
(which in this case would only be an approximate diffeomorphism). Moreover, in many applications certain 
‘features’ of interest have already been identified and this should inform the geometry in the local kernel. 
In this paper we have shown how to design a local kernel which recovers a conformally invariant geometry; 
if this approach could be generalized to recover geometries invariant to the known features, this geometry 
could be used to find the most important aspects of the data beyond those already represented.

Image and video analysis provide another example. Each image, or video frame, can be considered a 
vector of pixels in a high-dimensional data space. Such an embedding treats pixels on the opposite side 
of a frame the same as nearby pixels, which is often a poor assumption. There is a need to apply a more 
informative geometric prior. In fact, this idea is crucial for any data of interest that is accompanied by 
metadata. By allowing the metric to depend on the metadata, local kernels enable a large array of options 
to make use of a priori connections.
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