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Summary. Density estimation is a crucial component of many machine learning methods, and manifold

learning in particular, where geometry is to be constructed from data alone. A significant practical limi-

tation of the current density estimation literature is that methods have not been developed for manifolds

with boundary, except in simple cases of linear manifolds where the location of the boundary is assumed

to be known. We overcome this limitation by developing a density estimation method for manifolds with

boundary that does not require any prior knowledge of the location of the boundary. To accomplish this

we introduce statistics that provably estimate the distance and direction of the boundary, which allows us

to apply a cut-and-normalize boundary correction. By combining multiple cut-and-normalize estimators

we introduce a consistent kernel density estimator that has uniform bias, at interior and boundary points,

on manifolds with boundary.
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1. Introduction

Nonparametric density estimation has become an important tool in statistics with a wide range of

applications to machine learning, especially for high-dimensional data. The increasing size and com-

plexity of measured data creates the possibility of understanding increasingly complicated phenomena

for which there may not be sufficient ‘first principles’ understanding to enable effective parametric

modeling. The exponential relationship between model complexity (often quantified as dimension-

ality) and data requirements, colloquially known as the curse of dimensionality, demands that new

and innovative priors be developed. A particularly effective assumption is the geometric prior, which
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assumes that the data lies on a manifold that is embedded in the ambient Euclidean space where

the data is sampled. The geometric prior is nonparametric in that it does not assume a particular

manifold or parametric form, merely that the data is restricted to lying on some manifold. This

prior allows us to separate the intrinsic dimensionality of the manifold, which may be low, from the

extrinsic dimensionality of the ambient space, which is often high.

Recently the geometric prior has received some attention in the density estimation field [14, 25, 19,

23], although use of these methods remains restricted for several reasons. For example, the methods

of [14, 25] require the structure of the manifold to be known a priori. Recently, in the applied

harmonic analysis literature a method known as diffusion maps has been introduced which learns the

structure of the manifold from the data [1, 6]. These methods have also been extended to a large

class of noncompact manifolds [11, 12, 13] with natural assumptions on the geometry of the manifold.

The assumptions introduced in [11] include all compact manifolds, as well as many non-compact

manifolds, such as any linear manifold, which implies that standard kernel density estimation theory

on Euclidean spaces is included as a special case. While these manifold learning methods make

implicit assumptions on the geometry of the underlying manifold (such as bounded curvature), kernel

density estimation requires knowledge of the dimension of the manifold in order to obtain the correct

normalization factor. For ease of exposition, we will assume the dimension of the manifold is known,

although this is not necessary: In Appendix B we include a practical method of empirically tuning

the bandwidth parameter that also estimates the dimension.

The remaining significant limitation of applying existing manifold density estimators to real prob-

lems is the restriction to manifolds without boundary. One exception is the special case of subsets

of the real line where the location of the boundary is assumed to be known. This case has been

thoroughly studied, and consistent estimators have been developed [15, 16, 27, 5, 17, 22].

Here we introduce a consistent kernel density estimator for manifolds with (unknown) boundary

that has the same asymptotic bias in the interior as on the boundary. The first obstacle to such an

estimator is that a conventional kernel does not integrate to one near the boundary. Therefore the

normalization factor must be corrected in a way that is based on the distance to the boundary, which

is not known a priori.

To locate the boundary, we couple the standard kernel density estimator (KDE) with a second

calculation, a kernel weighted average of the vectors from every point in the data set to every other

point, which we call the boundary direction estimator (BDE). We present asymptotic analysis of the
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BDE that shows that if the base point is near a boundary, the negative of the resulting average vector

will point toward the nearest point on the boundary. We also use the asymptotic expansion of this

vector to find a lower bound on the distance to the boundary. Our new density estimate at this base

point does not include the data which lie beyond the lower bound in the direction of the boundary.

This creates a virtual boundary in the tangent space which is simply a hyperplane (dimension one

less than the manifold) at a known distance from the base point. Creating a known virtual boundary

allows us to bypass the above obstacle – we can now renormalize the kernel so that it integrates

exactly to one at each base point, similar to the cut-and-normalize kernels that are used when the

boundary is a priori known. For points in the interior (or for manifolds without boundary), the lower

bound on the distance to the boundary goes to infinity in the limit of large data, and we recover

the standard kernel density estimation formula. Moreover, using standard methods of constructing

higher order kernels, we find a formula for a kernel density estimate with the same asymptotic bias

for interior points and points on the boundary.

In Section 2 we briefly review nonparametric density estimation on embedded manifolds. The

boundary correction method using BDE is introduced in Section 3, and the results are demonstrated

on several illustrative examples. We conclude with a brief discussion in Section 4.

2. Background

Assume one is given N samples {Xi}Ni=1 (often assumed to be independent) of a probability distri-

bution on Rn with a density function f(x). The problem of nonparametric density estimation is to

find an estimator fN (x) that approximates the true density function. A kernel density estimator fN

is typically constructed [24, 21, 30] as

fN (x) =
1

NhnN

N∑
i=1

K

( ||x−Xi||
hN

)
(1)

where the kernel function is defined via a univariate shape function K and hN → 0 as N →∞. The

kernel function must be normalized to integrate to 1 for each N to have a consistent estimator.

The standard KDE formulation (1) assumes that the density is supported on the Euclidean space

from which the data is sampled. However, real data may be restricted to lie on a lower dimensional

submanifold of this Euclidean space. This assumption, which we call the geometric prior, is a potential

workaround to the curse of dimensionality for high dimensional data. Since the geometric prior

assumes that the density is supported on a submanifold of the ambient Euclidean space, we may
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assume that the intrinsic dimensionality is small even when the extrinsic dimensionality is large.

Nonparametric density estimation on manifolds essentially began with Hendriks [14], who mod-

ernized the Fourier approach of [30] using a generalized Fourier analysis on compact Riemannian

manifolds without boundary, based on the eigenfunctions of the Laplace-Beltrami operator. The

limitation of [14] in practice is that it requires the eigenfunctions of the Laplace-Beltrami operator

on the manifold to be known, which is equivalent to knowing the entire geometry. A kernel-based

method of density estimation was introduced in [25]. In this case the kernel was based on the geodesic

distance between points on the manifold, which is again equivalent to knowing the entire geometry.

More recently, a method which uses kernels defined on the tangent space of the manifold was in-

troduced [19]. However, evaluating the kernel of [19] requires lifting points on the manifold to the

tangent space via the exponential map, which yet again is equivalent to knowing the geometry of the

manifold. (See, for example, [26] which shows that the Riemannian metric can be recovered from

either the Laplace-Beltrami operator, the geodesic distance function, or the exponential map.) The

results of [14, 25, 19], in addition to being restricted to compact manifolds without boundary, are

limited to manifolds which are known a priori, and cannot be applied to data lying on an unknown

manifold embedded in Euclidean space.

The insight of [6] was that as the bandwidth hN decreases and the kernel function approaches a

delta function, the kernel is essentially zero outside a ball of radius hN . Inside this ball, the geodesic

distance on the embedded manifold and the Euclidean distance in the ambient space are equal up to

an error which is higher order in hN . This fact follows directly for compact manifolds. Although it

is not true for general manifolds, a weaker condition than compactness is sufficient, as first shown

by [11]. We summarize this weaker condition by saying that a point x on the manifold is tangible

if the injectivity radius is nonzero, and the ratio between the distance in the ambient space and the

geodesic distance to nearby points is bounded away from zero. Theorem 2.1 below shows that it is

possible to consistently estimate the density at any tangible point in the interior of a manifold. This

condition is explained in more detail in Appendix A.

The equivalence of the ambient and geodesic distances on small scales suggests that for kernels

with sufficiently fast decay at infinity, the approaches of [25, 19, 23, 11] are equivalent, with the

exception of an additional bias term appearing in methods based on the Euclidean distance which

depends on the extrinsic curvature of the embedding, as shown in [11]. This fact first came to light in

[6], although the focus was on estimating the Laplace-Beltrami operator on the unknown manifold, so
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the authors did not emphasize their density estimate result or analyze the variance of their estimate.

The fact was later pointed out in [23], where the bias and variance of the kernel density estimate

were computed. The results of [6, 11] apply to shape function kernels of the form K
(
||x−Xi||
hN

)
, where

K : [0,∞)→ [0,∞) is assumed to have exponential decay. We note that this includes all compactly

supported kernels, such as the Epanechnikov kernel [8] and other similar kernels that are often used

in density estimation.

Theorem 2.1, first shown in [11], shows that KDE is straightforward when Xi are random variables

sampled according to a density f(x) on an embedded manifold with no boundary.

Theorem 2.1 (KDE on Embedded Manifolds ). Let f̃ be a density supported on an m-dimensional

Riemannian manifold M⊂ Rn without boundary. Let f̃ = f dV where dV is the volume form on M
inherited from the embedding and f ∈ C4(M) is bounded above by a polynomial. Let K : [0,∞) →
[0,∞) have exponential decay and define m0 =

∫
Rm K (||z||) dz. If x ∈ M is a tangible point and Xi

are independent samples of f then

fh,N (x) ≡ 1

Nm0hm

N∑
i=1

K

( ||x−Xi||
h

)

is a consistent estimator of f(x) with bias E [fh,N (x)− f(x)] = O(h2) and variance var (fh,N (x)− f(x)) =

O
(
h−m

N f(x)
)

.

Theorem 2.1 follows directly from Theorem 3.1, which is proved in Appendix A. To find the

density f(x) written with respect to the volume form inherited from the embedding, Theorem 2.1

implies

fh(x) ≡ lim
N→∞

1

Nm0hm

N∑
i=1

K

( ||x−Xi||
h

)
= f(x) +O(h2). (2)

For example, one may use the Gaussian kernel

K(z) = π−m/2 exp
(
−||z||2

)
,

which has m0 = 1. Notice that (2) is simply a standard KDE formula in Rn, except that hm

appearing in the denominator would normally be hn. Intuitively, this is because the data lies on an

m-dimensional subspace of the n-dimensional ambient space.
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3. Boundary Correction

The topic of kernel density estimation near a boundary has been thoroughly explored in case the

distribution is supported on a subinterval [b,∞] of the real line, and with the assumption that b is

known. Using a naive kernel such as (2) results in an estimate that is not even consistent near b.

An early method that achieved consistency on the boundary was the cut-and-normalize method [9],

although the bias was only order h on the boundary, despite being order h2 in the interior. Various

alternatives were proposed to obtain bias uniform over the domain and boundary. These methods

include reflecting the data [29, 18], generalized jackknifing [15, 16, 27, 20], translation-based methods

[10], and the use of specially-designed asymmetric kernels from the beta and gamma distributions

[5, 17, 22]. The cut-and-normalize method was extended to order h2 on the boundary in [20].

The goal of this section is to generalize the cut-and-normalize approach to an order h2 method,

including boundary and interior, on embedded manifolds where the location of the boundary is not

known. The standard KDE formula (2) fails for manifolds with boundary because the domain of

integration is no longer symmetric near the boundary. For a point x on the boundary ∂M, the

integral over the local region Nh(x) approximates the integral over the half space TxM∼= Rm−1⊕R+.

The zeroth moment of local kernel m0(x) is defined to be the integral over Rm, so dividing by this

normalization constant will lead to a biased estimator even in the limit h→ 0. While technically the

estimator is still asymptotically unbiased for all interior points, for fixed h the additional bias from

using the incorrect normalization constant can be quite large for points within geodesic distance h of

the boundary.

To fix the bias, we will estimate the distance bx and direction ηx to ∂M for every point x in

M. Our motivation is that if they are known, Theorem 3.1 below gives a consistent estimate of

the density f(x) both in the interior and the boundary. Next, we compute three more variants of

the KDE computation (2) to estimate bx and ηx, and to extend the second-order estimate of f(x)

everywhere. Figure 1 shows the proposed workflow.

First, in section 3.1 we compute the boundary direction estimator (BDE) denoted

µh,N (x) ≡ 1

Nhm+1

N∑
i=1

K

( ||x−Xi||
h

)
(Xi − x). (3)

The BDE is sensitive to the presence of the boundary, and we will combine the KDE (2) with the

BDE (3) to derive estimates of bx and ηx.

Second, with bx and ηx known, in section 3.2 we approximate ∂M as a hyperplane in the tangent
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µh,N

b̂x

η̂x

f c
h,N

f c
2h,N

f c,2
h,N

Fig. 1. Workflow schematic. At each point x, the standard KDE (2) fh,N is combined with the boundary

direction estimator BDE (3) µh,N to estimate the distance bx to ∂M. The boundary direction ηx is estimated

by the unit vector η̂x in the direction of µh,N . Cut-and-normalize estimators f ch,N and f c2h,N are calculated and

combined to get the second-order estimate f c,2h,N .

space to more accurately normalize a cut-and-normalize kernel denoted f ch,N . Third, section 3.3

repeats the cut-and-normalize kernel with bandwidth 2h, so that Richardson extrapolation can be

used to decrease the order of the error of f(x) to O(h2) at points x up to and including the boundary.

3.1. Distance and Direction to the Boundary

Correcting the bias of the standard KDE (2) near the boundary requires computing the true zeroth

moment of the kernel. Equation (4) is an adjusted version of (2) with the correct normalization.

Theorem 3.1 (KDE near the Boundary). Assume the hypotheses of Theorem 2.1 except with

M a manifold with boundary ∂M of bounded curvature. Let x ∈M be tangible, let bx be the geodesic

distance to the boundary, and let ηx ∈ TxM be a unit vector in the direction of the boundary. Then

for h sufficiently small, ηx is well defined and

f∂h,N (x) ≡ 1

Nm∂
0(x)hm

N∑
i=1

K

( ||x−Xi||
h

)
(4)

is a consistent estimator of f(x). Here

m∂
0(x) =

∫
Rm−1

∫ bx/h

−∞
K(||z⊥||+ |z‖|) dz‖dz⊥

where z⊥ ⊥ ηx and z‖ is a scalar. Moreover, f∂h,N (x) has bias

E
[
f∂h,N (x)− f(x)

]
= hm∂

1(x)ηx · ∇f(x) +O(h2) (5)



8 Berry and Sauer

and variance

var
(
f∂h,N (x)− f(x)

)
=
h−m

N

m2,∂
0 (x)

m∂
0(x)

f(x) +O(1/N),

where

m∂
1(x) = −

∫
Rm−1

∫ bx/h

−∞
K(||z⊥||+ |z‖|)z‖ dz‖dz⊥

and

m2,∂
0 (x) =

∫
Rm−1

∫ bx/h

−∞
K
(
||z⊥||+ |z‖|

)2
dz‖dz⊥.

The proof of Theorem 3.1 is in Appendix A. Intuitively, Theorem 3.1 says that finding a consistent

estimator of f(x) for points near the boundary requires correcting the zeroth moment m0. For interior

points, the zeroth moment is the integral of the kernel over the entire tangent space, but for boundary

points, the integral only extends to the boundary. Since we choose an orientation with ηx pointing

towards the boundary (for boundary points ηx is the unit normal vector), the integral over z‖ extends

infinitely in the negative direction (into the interior of the manifold) but only up to bx/h in the

positive direction (toward the boundary). One should think of hz‖ηx being a tangent vector that

extends up to bx, which explains why z‖ extends to bx/h. Finally, notice that for dM(x) � h, the

zeroth moment m∂
0(x) reduces to the zeroth moment m0(x) for manifolds without boundary up to an

error of higher order in h due to the decay of the kernel. This shows that the estimator of Corollary

2.1 is consistent for all interior points. However, for a fixed h the bias will be significantly larger

using the estimator of Corollary 2.1 than for the estimator of Theorem 3.1 for points with bx ≤ h.

The applicability of (4) depends on an efficient calculation of m∂
0(x). For general local kernels,

the formula for m∂
0(x) can be very difficult to evaluate near the boundary. A possible solution is to

apply an asymptotic expansion in bx/h, for example,

m∂
0(x) =

∫
Rm−1

∫ 0

−∞
K(||z⊥||+ |z‖|) dz‖dz⊥ +

bx
h

∫
Rm−1

K(||z⊥||) dz⊥ +O
((

bx
h

)2
)
.

However, working with these asymptotic expansions is very complicated. Moreover, the asymptotic

expansion suggests a fundamental connection between m∂
0(x) and the standard zeroth moment m0(x)

for an (m− 1)-dimensional manifold. Exploiting this connection requires a kernel which can convert

the sum h||z⊥|| + h|z‖| into a product. Of course, the only kernel which can make this separation

exactly is the exponential kernel,

K(z) = π−m/2 exp
(
−||z||2

)
(6)
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where we have,

K(z⊥ + z‖ηx) = π−(m−1)/2 exp
(
−||z⊥||2

)
π−1/2 exp

(
−z2‖

)
.

This property dramatically simplifies KDE for manifolds with boundary, as shown by the following

explicit computation,

m∂
0(x) = π−(m−1)/2

∫
Rm−1

exp
(
−||z⊥||2

)
dz⊥π

−1/2
∫ bx/h

−∞
exp

(
−z2‖

)
dz‖

= π−1/2
∫ 0

−∞
exp

(
−z2‖

)
dz‖ + π−1/2

∫ bx/h

0
exp

(
−z2‖

)
dz‖

=
1

2
(1 + erf(bx/h)) (7)

Due to this simplification, we advocate the exponential kernel for KDE on manifolds with boundary.

Making use of Theorem 3.1 with m∂
0(x) from (7) reduces the problem to estimating the distance

bx to the boundary. The next theorem calculates the expectation of the BDE estimator (3)

µh,N (x) ≡ 1

Nhm+1

N∑
i=1

K

( ||x−Xi||
h

)
(Xi − x).

Together with Theorem 3.1, the BDE estimator will be used to estimate the distance bx.

Theorem 3.2 (Boundary Direction Estimation). Under the same hypotheses as Theorem

3.1, µh,N (x) has expectation

E[µh,N (x)] = −ηxf(x)m∂
1(x) +O(h∇f(x), hf(x))

where ηx ∈ TxM is a unit vector pointing towards the closest boundary point (for x ∈ ∂M, ηx is the

outward pointing normal).

The proof of Theorem 3.2 is in Appendix A. Notice that the minus sign in the definition of m∂
1(x)

implies that for most kernels, m∂
1(x) > 0 (since the integral is heavily weighted toward the negative

z‖ direction). This choice of minus sign gives the correct impression that µh,N (x) points into the

interior (the opposite direction of ηx).

Intuitively, Theorem 3.2 follows from the fact that the integrand K(||z||)z of the BDE estimator is

odd, and the domain of integration is symmetric in every direction z ⊥ ηx. The only non-symmetric

direction is parallel to ηx due to the boundary. Thus, the integral is zero in every direction except

−ηx, where the minus sign follows from the fact that there are more points in the interior direction

than in the boundary direction (since the boundary cuts off the data). Of course, it is possible for



10 Berry and Sauer

a large density gradient to force µ to point in a different direction, which explains the bias term of

order h∇f(x), but this is a higher order error.

For the Gaussian kernel (6), we again have an exact expression for the integral

E[µh,N (x)] = ηxf(x)π−1/2
∫ bx/h

−∞
exp

(
−z2‖

)
z‖ dz‖ = −ηx

f(x)

2
√
π

exp

(
− b

2
x

h2

)
(8)

and we will now use this expression combined with (7) to find bx. Since f(x) is unknown, and appears

in both fh,N (x) and ||µh,N (x)||, the natural quantity to consider is

fh,N (x)√
π||µh,N (x)|| = (1 + erf (bx/h)) eb

2
x/h

2

.

In order to find bx we will solve the above expression numerically by setting c = fh,N (x)√
π||µh,N (x)|| and

defining

F (bx) = (1 + erf (bx/h)) eb
2
x/h

2 − c,

where we note that

F ′(bx) =
2√
πh

+ 2 (1 + erf (bx/h)) eb
2
x/h

2 bx
h2
,

Newton’s method can be used to solve F (bx) = 0 for bx. In fact, using the fact that 1 ≤ 1+erf(bx/h) <

2, a very simple lower bound for bx is

bx ≥ h
√

max{0,− log(c/2)}

and this can be a useful initial guess for Newton’s method.

Finally, using the estimated value for bx we can evaluate m0(x) = 1
2 (1 + erf (bx/h)) and use the

KDE formula in Theorem 3.1 with this m0(x), which yields a consistent estimator of fh,N (x) on

manifolds with boundary.

Example 3.3 (KDE on a Disc). In this example we verify the above expansions for data sam-

pled on the disk D2 = {(r cos θ, r sin θ) ∈ R2 : r ≤ 1} according to the density f(r, θ) = 2
3π (2− r2). In

order to generate samples xi = (ri, θi) from the density f , we use the rejection sampling method. We

first generate points on the disc sampled according to the uniform density f0(r, θ) = vol(D2)−1 = π−1

by generating 12500 uniformly random points in [−1, 1]2 and then eliminating points with distance

to the origin greater than 1. Next we set M = maxr,θ{f(r, θ)/f0(r, θ)} = 4/3 and for each uniformly

sampled point x̃i on D2, we draw a uniformly random variable ξi ∈ [0, 1] and we reject the i-th point

if ξi ≥ f(x̃i)
Mf0(x̃i)

= 1− r2/2 and otherwise we accept the point as a sample xi of f . In this experiment

there were N = 7316 points remaining after restricting to the unit disc and rejection sampling.
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Fig. 2. Verifying the estimation of the distance to the boundary with h = 0.2 on the disk data set. Left: The

true distance to the boundary (black, solid curve) is compared to the recovered distance (blue) is shown for

each point as a function of the radius, we also show the value of erf(bx/h) for both the true distance (black,

dashed curve) and the recovered distance (red). Right: The true density f is compared to the standard KDE

fh,N and the boundary correction f∂h,N as well as the theoretical standard KDE result m∂
0f .

Using the data xi, we first evaluate the standard KDE formula (without boundary correction)

fh,N (xi) =
1

Nh2

N∑
j=1

K

( ||xi − xj ||
h

)
and

µh,N (xi) =
1

Nh3

N∑
j=1

K

( ||xi − xj ||
h

)
(xj − xi)

on each data point. In this example we use the standard Gaussian kernel described above. In order to

correct the KDE on the boundary, we first estimate the distance to the boundary using the strategy

outlined above, and the results of this estimate are shown in Figure 2 (top, left). We then compute

m∂
0(x) which allows us to compute the boundary correction f∂h,N (x) and in Figure 2 (top, right) we

compare this to the standard KDE fh,N (x) as well as the true density f and the theoretically derived

large data limit m∂
0(x)f(x) of the standard KDE. These quantities are also compared qualitatively on

the disc in Figure 2, which clearly shows the underestimation of the standard KDE on the boundary,

which also agrees with the theoretically derived standard KDE result which is m∂
0(x)f(x). In contrast,

the boundary correction f∂h,N slightly overestimates the true density on the boundary, due to h = 0.2

being quite large in this example.
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3.2. The Cut and Normalize Method

The weakness of the previous approach is that the estimate of bx may not be very accurate, especially

for points far from the boundary. Of course, since the function erf(bx/h) saturates for bx sufficiently

large, this somewhat ameliorates the problem of underestimating bx. However, it would be preferable

in terms of bias to have an exact value for bx. In fact, the kernel weighted average µh,N (x) makes

this possible. Notice that the unit vector in the direction of −µh,N (x) is an estimate of ηx, namely

η̂x ≡
−µh,N (x)

||µh,N (x)|| = ηx +O(h).

Since µh,N (x) tells us the direction of the boundary, we can protect against underestimation of bx by

actually cutting of the kernel at the estimated distance to the boundary.

Given an estimate b̂x of bx, the cut-and-normalize method only includes samples Xi such that

Xi · η̂x ≤ b̂x, which gives us the following estimator,

f ch,N (x) ≡ 1

N(1 + erf(b̂x/h))hm

∑
Xi·η̂x≤b̂x

K

( ||x−Xi||
h

)
(9)

which is a consistent estimator for any 0 < b̂x < bx. Of course, this cut-and-normalize method has

several potential downsides. The first is that by not including the maximum possible number of

points, we have increased the variance of our estimator. The second is that for points in the interior,

the cut-and-normalize method may eliminate the symmetry of the region of integration, leading to

increased bias for interior points. However, as long as the estimate bx is larger than h for points

that are far from the boundary, the effect of cutting the domain outside of h will be negligible (see

Lemma A.3 for details). In our empirical investigations, we have found that the error introduced by

the cut-and-normalize method is very small compared to the error of using an incorrect estimate of

bx direction in m∂
0(x). In Figure 3 we apply the cut-and-normalize method to Example 3.3 and show

that for interior points, the method produces results that are comparable to the standard KDE. This

should be compared with Figure 2 which simply renormalizes using the estimated distance to the

boundary without cutting, and does not match the standard KDE for interior points.

3.3. Higher-Order Boundary Correction

The above method obtains an asymptotically unbiased estimate of the sampling density at all points

of the manifold, including the boundary. However, the bias in the interior of the manifold is O(h2),

which is significantly smaller than for points very near the boundary, where the bias is O(h). In
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Fig. 3. Comparison of the boundary correction, cut-and-normalize method, and higher order cut-and-

normalize method on the disk of Example 3.3. Left: Average value of each density estimation method as

a function of radius after repeating the experiment of Example 3.3 10 times with independent data sets which

shows the bias (variance error is averaged out). Notice that the higher order cut-and-normalize method f c,2h,N

has similar bias on the boundary and the interior, which is order h2 = 0.04 in each case. Right: A single

realization of the experiment in Example 3.3 showing the true density and all three density estimates (note

that the color scale is different than in Figure 2 to better show the differences in these estimates).

order to obtain a uniform rate of convergence at all points, we need to eliminate the order-h term

hm∂
1(x)ηx · ∇f(x) appearing in the bias of Theorem 3.1.

To construct a higher-order kernel we will use Richardson extrapolation, which is a general method

of combining estimates from multiple values of h to form a higher order method. Its use is common

in the kernel density estimation literature [28, 16, 20]. Our goal is to cancel the bias term (5)

hm∂
1(x)ηx · ∇f(x) = h(1 + erf(bx/h))e−b

2
x/h

2

ηx · ∇f(x)

using a linear combination of two KDE formulas with different values of h. Consider the bias for

bandwidths h and 2h:

E[f ch,N (x)] = f(x) + h(1 + erf(bx/h))e−b
2
x/h

2

ηx · ∇f(x) +O(h2) (10)

E[f c2h,N (x)] = f(x) + 2h(1 + erf(bx/(2h)))e−b
2
x/(4h

2)ηx · ∇f(x) +O(h2). (11)

Set C =
(1 + erf(bx/(2h)))e−b

2
x/(4h

2)

(1 + erf(bx/h))e−b2x/(h2)
and define the second-order cut-and-normalize density estimator



14 Berry and Sauer

as

f c,2h,N (x) ≡
2Cf ch,N (x)− f c2h,N (x)

2C − 1
. (12)

The order-h term of the bias cancels, so that

E[f c,2h,N (x)] = f(x) +O(h2),

which is the same asymptotic bias as the standard KDE in Corollary 2.1 for embedded manifolds

without boundary. It is also interesting to note that as bx becomes larger than h, the higher-order

formula reduces to f c2h,N . This shows that this kernel is only “higher-order” on the boundary, and

in fact is the same order as the standard KDE on the interior, so in fact f c,2h,N (x) has a bias which is

order-h2 on the boundary and the interior.

The higher order cut-and-normalize method KDE is implemented in the examples below and

show bias that is significantly reduced compared to the naive cut-and-normalize method. Figure 1

summarizes the complete algorithm. At a given point x and for a given bandwidth h and number

of data points N , we compute the KDE (2) and BDE (3) to estimate fh,N and µh,N , respectively.

These estimators combine to produce the estimates b̂x and η̂x for the distance and direction to the

boundary, respectively. Finally, we compute the cut-and-normalize estimator (9) for h and 2h and

extrapolate the estimates using (12) to arrive at the final second-order estimate f c,2h,N (x) throughout

the manifold with boundary.

We first consider an example on a noncompact manifold with boundary, namely a Gaussian distri-

bution restricted to a half-plane. The manifold in this case is the entire half-plane, which is a simple

linear manifold with infinite injectivity radius (see note in Appendix A) and R(x, y) = 1 for all pairs

of points. This means that the half-plane is a uniformly tangible manifold and so we can estimate

the density effectively at each point of a sample set.

Example 3.4 (Gaussian in the Half-Plane). We generated 20000 points from a standard 2-

dimensional Gaussian and then rejected all the points with first coordinate less than zero. Setting

h =
√

0.06, the standard KDE formula fh,N and the BDE µh,N were computed. Then the cut-and-

normalize estimator f ch,N and the second-order cut-and-normalize estimator f c,2h,N were calculated as

in the flowchart of Figure 1. These estimates are compared in Figure 4. Notice that the standard

KDE moves the mode of the distribution into the right half-plane, whereas both cut-and-normalize

methods yield a mode very close to zero. Of course, the input to the algorithm are the data points

only; no information about the manifold is assumed known.
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Fig. 4. Comparison of the standard KDE, cut-and-normalize method, and higher order cut-and-normalize

method on the Gaussian restricted to the half-plane. Left: Average value of each density estimation method

as a function of radius after repeating the experiment 10 times with independent data sets which shows the

bias (variance error is averaged out). Right: A single realization of the experiment showing the true density

and all three density estimates.

The next example demonstrates the benefits of the higher-order boundary correction on a portion

of a hemisphere with an oscillating boundary (see Figure 5). This manifold is particularly difficult

for density estimation due to the large curvature of the boundary. For a point in the middle of one of

the arms, there are two boundaries which are equidistant apart. Of course, in the limit of very small

h, these points will not be able to see either boundary, but for large h this can lead to significant

bias.

Example 3.5 (Hemisphere with Oscillating Boundary). To generate this data set, we be-

gan by sampling 50000 points uniformly from [−1, 1]2 in the plane, and keep only the points with

r ≤ sin(6(θ − π

12
))/8 +

3

4
,

which gives a subset of the disk of radius 7/8 with an oscillating boundary. A z-coordinate on the

unit sphere is assigned to each point by setting z =
√

1− x2 + y2. The volume form is given by

dV = det(DH>DH)1/2 where H : (x, y) 7→ (x, y,
√

1− x2 − y2) which is dV = (1 − x2 − y2)−1/2.
Thus, by mapping uniformly sampled points from the disk onto the hemisphere, the sampling measure

of the data at this point is proportional to dV −1 =
√

1− x2 − y2.
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To normalize the distribution, this function dV −1 is integrated against the volume form dV , and

in polar coordinates r =
√
x2 + y2 the integral is∫ 2π

0

∫ sin(6θ−π/2)/8+3/4

0
rdrdθ =

73π

128
.

The initial density is q(r) = 128
73π

√
1− r2. This density is largest in the interior, and the density

gradient helps to insure that µh,N points in the correct direction (into the interior of the manifold).

x
0 0.1 0.2 0.3 0.4 0.5 0.6

D
e

n
s
it
y

0.25

0.3

0.35

0.4

0.45

0.5

True Density, f

Standard KDE, fh,N
Cut-and-Normalize, f c

h,N

Higher Order Cut-and-Normalize, f
c,2
h,N

y
0 0.2 0.4 0.6 0.8

D
e

n
s
it
y

0.2

0.3

0.4

0.5

0.6

0.7
True Density, f

Standard KDE, fh,N
Cut-and-Normalize, f c

h,N

Higher Order Cut-and-Normalize, f
c,2
h,N

1

0

-1-1

0

0.4

1

1
1

0

-1-1

0

0.4

1

1
1

0

-1-1

0

0.4

1

1
1

0

-1-1

0

1

0.4
1

0.2

0.3

0.4

0.5

0.6

0.7
f fh,Nf

c,2
h,N

f c
h,N

-1 0 1
-1

0

1

-1 0 1
-1

0

1

-1 0 1
-1

0

1

-1 0 1
-1

0

1

0.2

0.3

0.4

0.5

0.6

0.7f f c
h,N f

c,2
h,N

fh,N

Fig. 5. Comparison of the standard KDE, cut-and-normalize method, and higher order cut-and-normalize

method on the hemisphere with oscillating boundary. Top, Left: True density compared to estimates on the

positive x-axis. Top, Right: True density compared to estimates on the positive y-axis. Below we visualize the

various estimates in 3-dimensions and 2-dimensions.
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In order to make the problem more challenging we will change the sampling density to be propor-

tional to f(r) = (1 − r2)−1/2 which concentrates more density at the boundary. We will create this

sampling density by rejection sampling the initial density. We first compute the normalization factor

of the new density by integrating it against the volume form

α =

∫ 2π

0

∫ sin(6θ−π/2)/8+3/4

0

r

1− r2 drdθ.

The new density will be f(r) = (1 − r2)−1/2/α, where α ≈ 2.81893. In order to perform rejection

sampling, note that the ratio

f(r)/q(r) =
73π

128α(1− r2)
has maximum value M = f(7/8)/q(7/8) since r = 7/8 is the maximum radius on the oscillating

boundary. For each point sampled from q a uniform random number ξ is drawn; the point is accepted

as a sample of f if and only if Mξ < f/q. After implementing this process in the realization shown in

Figure 5, the remaining 10422 points were independent samples of the density f on the hemisphere

with oscillating boundary. Using this data set with h =
√

0.02, we computed the standard KDE for

each data point, estimated the distance to the boundary, and computed the cut-and-normalize and

higher-order cut-and-normalize estimates of the density.

The density estimates are compared visually in Figure 5. We also repeated this experiment 10

times and computed the average of each of the estimates on the positive x-axis and the positive y-axis

(which correspond to the shortest and longest radii, respectively) and these curves are compared to

the true density in Figure 5. Despite the gradient of the density increasing in the direction of the

boundary, the µh,N computation still appears to have pointed into the interior as evidenced by the

significant improvement of the cut-and-normalize method over the standard KDE. This example also

showed the largest difference between the cut-and-normalize method and the higher order cut-and-

normalize method, possibly due to the large gradient at the boundary making the order h term quite

large. The complexity of the boundary in this example illustrates the advantage of our method, which

does not require any prior knowledge of the boundary.

4. Discussion

The main endeavor of this article is the generalization of the ‘cut-and-normalize’ strategy for bound-

ary correction [9, 20] to manifolds, especially when we cannot assume we know the location of the

boundary. In Section 3 we showed that the key to extending the cut-and-normalize strategy was
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estimating the distance and direction of the boundary and then deriving the correct normalization

factor. Another practical consequence of this theory is that the exponential kernel has a significant

advantage over other kernels, which is that the boundary normalization factor has a very simple form

independent of the dimension of the manifold. Although we illustrate a straightforward application

of this strategy, it should be noted that using the distance and direction information derived here,

the various boundary correction methods of [29, 18, 15, 16, 27, 20, 10, 5, 17, 22] can now be extended

to manifolds and to the case where the boundary is unknown.

The new algorithm that we have described is advantageous when information about the geometric

structure of the data is scarce, as is common in machine learning contexts. Blindly assuming that

the manifold has no boundary can lead to serious errors near the boundary for conventional kernel

density estimators. Our approach yields an algorithm that is equally accurate in the interior and

the boundary, and has performance equivalent to the conventional approach if there is no boundary.

Therefore, the only consideration when replacing standard KDE with the new approach is additional

computational complexity.

For simplicity, we have strongly used the “geometric prior” that the data lies on a manifold with

unknown boundary. However, one could think of other, less constrictive, problems where the ideas

could be useful. There is a range of intermediate cases where the data has “edges”, areas where the

density rolls off to zero via an outlier regime that acts as a pro forma boundary. The new algorithm

may increase the estimation accuracy in these difficult regions.
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A. Proofs for Manifolds with Boundary

Before proving the theorems in Section 3, we briefly review the assumptions we must make on the

manifold M. Similar conditions were first introduced in [11]; here we summarize the assumptions

with the term tangible which is defined for points and manifolds below.

Recall that the exponential map expx : TxM→M maps a tangent vector ~s to γ(||~s||) where γ is

the arclength-parametrized geodesic starting at x with initial velocity γ′(0) = ~s/||~s||. The injectivity

radius inj(x) of a point x is the maximum radius for which a ball in TxM is mapped diffeomorphically

intoM by expx. In order to convert integrals over the entire manifold into integrals over the tangent

space, we will use the exponential decay of the kernel to localize the integral and then change variables

using the exponential map. This requires that for a sufficiently small localization region (meaning

h sufficiently small) the exponential map is a diffeomorphism. Therefore, the first requirement for

kernel density estimation will be that the injectivity radius is non-zero.

The second requirement is that the ratio

R(x, y) =
||x− y||
dI(x, y)

is bounded away from zero for y sufficiently close to x, where ||x− y|| is the Euclidean distance and

dI(x, y) is the intrinsic distance, which is defined as the infimum of of the lengths of all differentiable

paths connecting x and y. When some path attains this infimum it is called a geodesic path and

the distance is called the geodesic distance dg(x, y). We use the intrinsic distance since it is defined

for all pairs of points, whereas the geodesic distance may technically be undefined when there is no

path that attains the infimum. The reason we will require R(x, y) to be bounded away from zero is

that the local kernel is defined in the ambient space, which makes it practical to implement. But the

theory requires that the kernel decays exponentially in the geodesic distance, meaning that the kernel

is localized on the manifold, not just the ambient space. (The kernels of [25, 19] explicitly depend on

the geodesic distance in order to obtain this decay.)

In order to estimate the density f at a point x ∈M we require the injectivity radius inj(x) to be

non-zero and the ratio R(x, y) to be bounded away from zero near x, which motivates the following

definition.

Definition A.1. We say that a point x ∈ M ⊂ Rn is tangible if inj(x) > 0 and within a

sufficiently small neighborhood N of x, infy∈N R(x, y) > 0.

We are mainly interested in manifolds for which every point is tangible.



22 Berry and Sauer

Definition A.2. An embedded manifold M ⊂ Rn is tangible if every x ∈ M is tangible. If

there exist lower bounds for inj(x) and infy∈MR(x, y) that are independent of x, then M is called

uniformly tangible.

For example, every compact manifold as well as linear manifolds such as Rn are uniformly tangible.

This implies that standard KDE theory on Euclidean spaces as well as existing density estimation

on manifolds are included in this theory, as well as a large class of noncompact uniformly tangible

manifolds. An example where uniform tangibility fails is the 1-dimensional manifold in R2 given by

(r(θ) cos θ, r(θ) sin θ) where r(θ) = 1− 1/θ and θ ∈ [1,∞). Then for any θ ∈ [1,∞), set θn = θ+ 2πn.

The distances dg(θn, θn+1) approach 2π as n→∞, whereas ||θn− θn+1|| goes to zero. Thus the ratio

R(θn, θn+1) is not uniformly bounded below on the manifold. However, even in this example, every

point on the manifold is tangible.

The key to KDE on embedded manifolds is computing the expectation,

E

[
1

Nhm

N∑
i=1

K

( ||x−Xi||
h

)]
=

1

hm

∫
M
K

( ||x− y||
h

)
f(y) dV (y)

by splitting the integral overM into two disjoint regions. Assume that h < inj(x) which implies that

for some γ ∈ (0, 1) we have hγ < inj(x) (we will explain the need for hγ below). Since hγ is less

than the injectivity radius, for any s ∈ TxM with ||s|| < hγ we can map s to M diffeomorphically

via expx(s) ∈ M. For each x, we can split the manifold into the image of this ball expx(Bhγ (x))

and the complementM∩ expx(Bhγ (x))c. In the following Lemma we show that the integral over the

complement is small.

Lemma A.3. Let K : [0,∞) → [0,∞) have exponential decay (meaning there exists constants

a1, a2 > 0 such that K(z) < a1e
−a2z) and let x ∈M ⊂ Rn be tangible, then

1

hm

∣∣∣∣∣
∫
M∩expx(Bhγ (x))c

K

( ||x− y||
h

)
f(y) dV (y)

∣∣∣∣∣ < O(hk)

for any k ∈ N.

Proof. By exponential decay, K(z)p(z) is integrable for any polynomial p, and taking p to be

z`+κ where κ is the degree of the polynomial upper bound of f we have K(z) < ||z||−`−κ and therefore

|K(z)f(x+hz)| < a||z||−` for some constant a, where ` was arbitrary. Making the change of variables

y = x + hz we find that z ∈ M̃ ∩ exp0(Bhγ−1(0))c where M̃ is translated so that z = 0 corresponds
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to the point x ∈M, and dV (y) = hmdV (z) so we have

1

hm

∣∣∣∣∣
∫
M∩expx(Bhγ (x))c

K

( ||x− y||
h

)
f(y) dV (y)

∣∣∣∣∣ ≤
∫
M̃∩expx(Bhγ−1 (0))c

a||z||−` dV (z).

Notice that the decay of the kernel is in the ambient space distance ||z||, whereas the region expx(Bhγ (0))c

only guarantees that the geodesic distance from 0 to z is large. In order for this integral to be small,

we now need the guarantee that large geodesic distance implies large Euclidean distance, which

is exactly our assumption that R(x, y) > 0. Since x is tangible, let R(x, y) > c, we then have,

||z|| > cdg(0, z) > hγ−1, so∫
M̃∩expx(Bhγ−1 (0))c

a||z||−` dV (z) ≤ ac−`
∫
M̃∩||z||>hγ−1

||z||−` dV (z).

We can bound the previous integral by the integral over all ||z|| > hγ−1 in Rn, and switching to polar

coordinates we find

ac−`
∫
M̃∩||z||>hγ−1

||z||−` dV (z) = aVnc
−`c−`

∫ ∞
hγ−1

r−`rn dr

≤ aVn
`− n− 1

c−`h(γ−1)(−`+n+1)

for ` > n+ 2 where Vn is the volume of the unit n-ball. Since ` was arbitrary and γ − 1 < 0, we can

bound this integral by O(hk) for any k.

In order to extend the definition of a tangible manifold to include manifolds with boundary,

we consider the tangent space for points on the boundary to be the half space. In particular, the

injectivity radius is the radius of the largest ball such that the exponential map is well defined on the

intersection of the ball and the half space. Similarly for points near the boundary, we consider the

tangent space to be a cut space which is cut at bx in the direction ηx. These definitions allow points

on or near the boundary to still have large injectivity radii.

Proof (Theorem 3.1). Lemma A.3 shows that the integral outside the image of the ball Bhγ (x)

is small to an arbitrarily high order in h. We next consider the integral inside the ball

1

hm

∫
expx(Bhγ (x))

K

( ||x− y||
h

)
f(y) dV (y).

Since hγ is less than the injectivity radius, we can write the integral in terms of geodesic normal

coordinates s = exp−1x (y) based at x. In these coordinates we have an expansion of the volume form
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[11]

dV (y) =
√
|g(s)| ds =

1− 1

6

∑
i,j

Rijsisj +O(s3)

 ds

where Rij =
∑

k Rikjk is the Ricci curvature. Let y = expx(s) and let γ be geodesic curve with

γ(0) = x and γ(||s||) = y parametrized by arclength so that ||γ′(t)|| = 1 for all t. We can expand γ

in s as

y = γ(||s||) = x+ s+ II(s, s)/2 +O(s3)

where II(s, s) is the second fundamental form which is bilinear in s and perpendicular to s. We also

expand the kernel K(||x− expx(s)||/h) centered around s as

K

( ||x− expx(s)||
h

)
= K

( ||s||+ ||II(s, s)/2||+O(s3)

h

)
= K

( ||s||
h

)
+K ′

( ||s||
h

)
II(s, s)

2
+O(s3).

Finally, we expand the density f̃(s) = f(expx(s)) around s = 0 as

f(expx(s)) = f(x) +

m∑
i=1

si
∂f̃

∂si
(0) +O(s2).

We can now derive the new normalization factor

m∂
0(x) =

∫
Rm−1

∫ bx/h

−∞
K(||z⊥||+ |z‖|) dz‖dz⊥.

To understand this formula, let x∗ be a point on the boundary which minimizes the geodesic distance,

d(x, x∗) = bx (since a boundary is a closed set, such a point exists although it may not be unique).

If ||x − x∗|| > h then the boundary is far enough away that it will have a negligible effect on m0 as

shown in Lemma A.3. Thus, we restrict our attention to points with bx < h and we assume the h is

sufficiently small that x∗ is unique (notice that this will depend on the curvature of the boundary).

We define ηx ∈ TxM to be the unit vector which points towards x∗, meaning that expx(bxηx) = x∗

and if x lies exactly on the boundary we define ηx to be the outward pointing unit normal vector.

Next, we decompose the exponential coordinates in the tangent space Bhγ (x) ⊂ TxM into vectors

s‖ηx (where s‖ is a scalar) which are parallel to ηx and vectors s⊥ which are perpendicular to ηx. All

vectors perpendicular to ηx can extend up to length hγ , whereas vectors parallel to ηx can extend up

to length hγ in the direction −ηx (away from the boundary), but only up to length bx in the direction

ηx (towards the boundary). With this decomposition, and the coefficient of f(x) in the expansion is

m∂
0(x) = h−m

∫
[−hγ ,hγ ]m−1

∫ bx

−hγ
K

( ||s⊥||+ |s‖|
h

)
ds‖ds⊥
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z⊥

z∥
dM(x)ηx

∂M expx(dM(x)ηx)

b x

h

b
x∗

TxM Nh(x) ⊂ M
expx

b

Fig. 6. Visualizing the tangent space near the boundary.

and this is the leading order term. Making the change of variables s = hz, and recalling from

Lemma A.3 that the integral is negligible beyond hγ−1, we can extend the integral over z⊥ to all of

Rm−1 ⊂ TxM. On the other hand, the integral over z‖ cannot be extended to all of R ⊂ TxM, but

only to the half-line (−∞, bx/h] so that the zeroth moment becomes

m∂
0(x) =

∫
Rm−1

∫ bx/h

−∞
K(||z⊥||+ |z‖|) dz‖dz⊥.

Since m∂
0(x) is the coefficient of f(x) in the expansion of the standard KDE formula, replacing m0(x)

with m∂
0(x) in the standard KDE formula yields f∂h,N (x) which is a consistent estimator of f(x).

In order to establish the bias of this estimator, notice that the next term of the expansion is
m∑
i=1

∂f̃

∂si
h−m

∫
||s||<hγ

K

( ||s||
h

)
si ds

which integrates to zero for x sufficiently far from the boundary due to the symmetry of the domain

of integration. However, for points near the boundary, this integral will not be zero. Instead, this

term integrates to zero for every s ⊥ ηx since the domain is symmetric in those directions, so we have

s = s‖ηx and the integral becomes

ηx · ∇f(x)h−m
∫
−[hγ ,hγ ]m−1

∫ bx

−hγ
K

( ||s⊥||+ |s‖|
h

)
s‖ ds‖ds⊥.

Notice that we have rewritten the partial derivatives with respect to the geodesic normal coordinates

in terms of the gradient operator by inserting the metric gij (which becomes the dot product) and the

inverse metric gjk (which joins with the partial derivatives to become the gradient operator), namely

m∑
i=1

(ηx)i
∂f̃(0)

∂si
=
∑
i,j,k

(ηx)igijg
jk ∂f̃(0)

∂sk
=
∑
i,j

(ηx)igij(∇f(x))j = ηx · ∇f(x).
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Changing variables to s = hz as above, we find the bias to be m∂
1(x)ηx · ∇f(x) where

m∂
1(x) =

∫
Rm−1

∫ bx/h

−∞
K(||z⊥||+ |z‖|)z‖ dz‖dz⊥

Finally, by independence of Xi we have

E

( 1

Nhm

N∑
i=1

K

( ||x−Xi||
h

)
− f(x)

)2
 =

1

N2h2m
E

( N∑
i=1

(K

( ||x−Xi||
h

)
− hmf(x))

)2


=
1

Nh2m
E
[
(K

( ||x−Xi||
h

)
− hmf(x))2

]
=

1

N
E

[
h−2mK

( ||x−Xi||
h

)2

− 2h−mK

( ||x−Xi||
h

)
f(x) + f(x)2

]

=
h−m

N
E

[
h−mK

( ||x−Xi||
h

)2
]
− f(x)2/N +O(h2/N)

which verifies the variance formula

m2,∂
0 (x) =

∫
Rm−1

∫ bx/h

−∞
K
(
||z⊥||+ |z‖|

)2
dz‖dz⊥.

Next, using the asymptotic expansions of the previous proof we can easily prove Theorem 3.2.

Proof (Theorem 3.2). The definition

µh,N (x) ≡ 1

Nhm+1

N∑
i=1

K

( ||x−Xi||
h

)
(Xi − x)

implies a formula for the expectation:

E[µh,N (x)] =
1

hm+1

∫
M
K

( ||x− y||
h

)
(y − x)f(y) dV (y).

Following Lemma A.3 we can restrict this integral to the image of the ball ||s|| < hγ under the

exponential map, and then change variables to the geodesic normal coordinates s ∈ TxM with

y = expx(s), which yields

E[µh,N (x)] =
1

hm+1

∫
||s||<hγ

K

( ||x− expx(s)||
h

)
(expx(s)− x)f(expx(s)) dV (expx(s)).

Applying the asymptotic expansions from the proof of Theorem 3.1, we find

E[µh,N (x)] =
1

hm+1

∫
||s||<hγ

K

( ||s||
h

)
f(x)s

+K

( ||s||
h

)
s · ∇f(x)s+K ′

( ||s||
h

)
f(x)II(s, s)/2 +O

(
s3iK

( ||s||
h

))
ds.
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Following the proof of Theorem 3.1 we decompose s = s⊥ ⊕ s‖ηx and note that the first term of the

integral is zero in every direction except s = s‖ηx which leads to

E[µh,N (x)] =
1

hm+1

∫
[−hγ ,hγ ]m−1

∫ bx

−hγ
K

( ||s⊥||+ |s‖|
h

)
f(x)s‖ηx

+K

( ||s||
h

)
s · ∇f(x)s+ f(x)K ′

( ||s||
h

)
II(s, s)/2 +O

(
s3iK

( ||s||
h

))
ds‖ds⊥.

Changing variables to s = hz we have

E[µh,N (x)] =

∫
[−hγ−1,hγ−1]m−1

∫ bx/h

−hγ−1

K(||z⊥||+ |z‖|)f(x)z‖ηx

+ hK(||z||)z · ∇f(x)z + f(x)K ′ (||z||) II(z, z)/2) +O
(
h2z3iK(||z||)

)
dz‖dz⊥

and extending the integrals to Rm−1 and (−∞, bx/h) respectively (following Theorem 3.1) yields

E[µh,N (x)] = ηxf(x)

∫
Rm−1

∫ bx/h

−∞
K(||z⊥||+ |z‖|)z‖ dz‖dz⊥ +O(h∇f(x), hf(x))

= −ηxf(x)m∂
1(x) +O(h,∇f(x), hf(x))

where we recall that the definition of the integral m∂
1(x) incorporates a minus sign.

B. Dimension estimation

Notice that the definition of KA requires the intrinsic dimension m of the manifold. Interestingly, the

dimension is not required in [4] to find the Laplace-Beltrami operator of the intrinsic geometry, and

in [4] the factor π−m/2 is not included in the definition of a prototypical kernel. However, in order

to find a properly normalized density one must know the intrinsic dimension, and so in this paper

we include the normalization factor π−m/2 in the definition of the kernel for convenience. There

are many methods of identifying the dimension from the data, we advocate a method which was

introduced in [7] and further refined in [3, 2] which simultaneously determines the dimension and

tunes the bandwidth parameter h. The method of [3] uses the fact that when h is well tuned, the

unnormalized kernel sum 1
N

∑N
i=1K

(
||x−xi||

h

)
is proportional to hm as in Theorem 2.1. By varying

h one can estimate the scaling law m = d logD(h)
d log h , and when h is well tuned this scaling law will be

stable under small changes in h.

In order to simultaneously estimate the dimension m and tune the bandwidth h, we first generate

a grid of h values, hj (typically a logarithmic scale is used, such as hj = 1.1j for j = −20, ..., 0, ..., 20).
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We then evaluate the sum

S(x, hj) =
1

N

N∑
i=1

K

( ||x− xi||
hj

)
which should be proportional to hm when h = hj is well tuned. Motivated by this, we compute the

scaling law at each hj by

dim(x, hj) =
log(S(x, hj+1))− log(S(x, hj)

log(hj+1)− log(hj)
≈ d logS

d log h
(hj)

which gives us an approximate dimension for each value of hj . In [3] they advocated taking value of

hj which maximizes the dimension, however in [2] they showed that the extrinsic curvature can lead

to overestimation. Instead, [2] advocates looking for persistent values of dimension, which intuitively

means one should look for values of the dimension such that the curve dim(x, hj) is flat for a large

range of values of hj . One method is to approximate derivatives of dim(x, hj) with respect to hj and

attempt maximize dim while minimizing the derivatives.

Notice that the above method finds a dimension at a single point x. To estimate a single dimension

for an entire data set, one can define S(hj) to be the average value of S over the entire data set and

apply the same procedure.


