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Changes in Ugandan Climate 
Rainfall at the Village and Forest 
Level
Paddy Ssentongo1, Abraham J. B. Muwanguzi3, Uri Eden4, Timothy Sauer5, George Bwanga3, 
Geoffrey Kateregga6, Lawrence Aribo7, Moses Ojara7, Wilberforce Kisamba Mugerwa3 & 
Steven J. Schiff  1,2

In 2013, the US National Oceanographic and Atmospheric Administration (NOAA) refined the historical 
rainfall estimates over the African Continent and produced the African Rainfall Climate version 2.0 
(ARC2) estimator. ARC2 offers a nearly complete record of daily rainfall estimates since 1983 at 0.1° 
× 0.1° resolution. Despite short-term anomalies, we identify an overall decrease in average rainfall 
of about 12% during the past 34 years in Uganda. Spatiotemporally, these decreases are greatest in 
agricultural regions of central and western Uganda, but similar rainfall decreases are also reflected 
in the gorilla habitat within the Bwindi Forest in Southwest Uganda. The findings carry significant 
implications for agriculture production, food security, wildlife habitat, and economic impact at the 
community and societal level.

Africa is both the driest and hottest of continents, and its available water is essential for almost all human activities 
and to support ecological biodiversity1. The climate variability of rainfall over East Africa is complex and has been 
the subject of intense investigation2. In 2013, the US National Oceanographic and Atmospheric Administration 
(NOAA) refined the historical satellite-based rainfall estimates over the African Continent and produced the 
African Rainfall Climate version 2.0 (ARC2) estimator3. This estimator combines daily, geostationary rainfall 
estimation through infrared cloud reflectivity with ground based rainfall measurements at a fine grid scale at 0.1° 
x 0.1° resolution (approximately 11 × 11 km at the Equator). The record reaches back to 1983, and continues with 
real-time daily data production. This paper reports an analysis of the stationarity and climate patterns of rainfall 
affecting Uganda over the period 1983–2016.

There are many critical uses of such data at such fine temporal and spatial scales. From an economic planning 
perspective, major construction projects can be mapped to the mean and variability of rainfall for a given location 
or extent, and engineered to account for anticipated extreme events. Additionally, agricultural planning can be 
adapted to patterns and predicted changes in rainfall. Moreover, since in a country like Uganda over 70% of the 
population depends on rain-fed agriculture for food and income4, these data may be used to understand pop-
ulation growth and density in given regions and therefore facilitate planning for settlements and food security. 
From an ecological perspective, habitat limitations for endangered species may place their survival at greater risk.

Furthermore, many human infectious diseases have strong relationships to rainfall (e.g. cholera5, malaria6, 
leptospirosis7, melioidosis8, and the seasonal Neisseria meningitis within the African meningitis belt9). Infant 
infections leading to postinfectious hydrocephalus10,11 have been noted to have a significant relationship to rain-
fall12 as well.

Geographically, Uganda stretches from 1.43°S to 4.27°N and from 29.5°E to 35.03°E, within a landlocked 
region of East Africa. At 0.1° × 0.1° resolution Uganda is contained within a square 61 × 61 grid. In Fig. 1A we 
illustrate the country as a composite of the boundaries of the 44,034 villages that comprise the landmass, and 
superimpose the 3,721 satellite grids overlay.
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The entire data set for all 3,721 time series (plotted in sequential colors) is illustrated in Fig. 1B, demonstrating 
the complexity and range of such data. The cumulative rainfall over 34 years is mapped onto the satellite grid 
in Fig. 1C. Fusing the cumulative rainfall with the country map in Fig. 1D, there are several notable features. In 

Figure 1. Fusion of satellite rainfall data with map of Uganda at the village level. Shown are the pattern of 
cumulative rainfall over the 34-year dataset, and the frequency content of the rainfall demonstrating twice-
yearly rainy seasons. (A) Satellite grid overlay over Uganda showing the 44,034 villages as polygons, overlain 
with the 61 × 61, 0.1° × 0.1°, satellite grid (map created using ArcGIS 10.4.1, http://support.esri.com/Products/
Desktop/ArcGIS-desktop/arcmap/10-4-1). Darker grey regions represent water bodies (Lake Albert upper 
left, and Lake Victoria lower right). (B) Rainfall per day from each of 3,721 grid locations for 12,340 days. 
Abscissa labeled in years. (C) Cumulative rainfall (in mm in colorbar) on 61 × 61 grid for all 12,419 days 
over 34 years from 1983–2016. Map created using ArcGIS 10.4.1, http://support.esri.com/Products/Desktop/
ArcGIS-desktop/arcmap/10-4-1. (D) Fusion of cumulative rainfall with village and country map. Note that 
the heaviest rains are over the rainforest within the Congo River Basin to the west of Uganda, and where the 
northeast corner of Lake Victoria abuts the Ugandan land mass. The driest region is in northeast Uganda, where 
the Karamoja district abuts northwest Kenya and South Sudan. (E) Spectral density using Welch’s method in 
decibels (dB) estimated from each of 3,721 grid locations over 12,419 days, with mean and ± 1 SD. Hamming 
window of 3 × 365 with 95% overlap. Points plotted as decibels (10log10). (F) Spectrogram with mean removed 
from signal. Note the dominant rainy cycles at 1× and 2× per year.

http://support.esri.com/Products/Desktop/ArcGIS-desktop/arcmap/10-4-1
http://support.esri.com/Products/Desktop/ArcGIS-desktop/arcmap/10-4-1
http://support.esri.com/Products/Desktop/ArcGIS-desktop/arcmap/10-4-1
http://support.esri.com/Products/Desktop/ArcGIS-desktop/arcmap/10-4-1
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the northeast, the semi-arid region of Karamoja is shown with low cumulative rainfall (dark blue). The heaviest 
rainfall is in the northwest over the Congo River basin rainforest (dark red). The other region with high rainfall 
is where the northeast edge of Lake Victoria meets the Ugandan landmass in the lower central region of the plot.

The averaged power spectral density of all 3,721 time series with error bounds is shown in Fig. 1E, which 
reflects the dominant 1- and 2-cycle per year frequencies, and the spectrogram in Fig. 1F demonstrates the con-
sistency of these two fundamental frequencies throughout the 34-year record. The 2-cycle per year rainfalls in the 
East African Highlands are of unequal size, augmenting the 1-cycle per year frequency amplitude.

Statistically, rainfall distributions are often non-Gaussian due to non-negativity and pronounced skewness. 
For such data, the normal distribution will inadequately account for the rainfall variability. This renders ordinary 
least squares, with the assumed normal distribution of errors, a problematic choice for model fitting. Indeed, the 
rainfall distribution for all 46,211,099 daily measurements is highly skewed (Fig. 2A), and it is well known that 
such rainfall data may follow a gamma distribution13. By averaging across the 3,721 spatial locations for each day 
in time, and then filtering between frequencies of 1/20 to 6 cycles per year to eliminate outliers for visualization, 
the biannual wet season cycles are now readily visualized (Fig. 2B). Furthermore, the distribution of the averaged 
12,419 days of data becomes much less skewed (Fig. 2C). These data can all be appropriately fit using the gener-
alized exponential family of distributions modeled within the Generalized Linear Model (GLM) framework that 
embraces such distributions ranging from gamma to normal14.

In Fig. 2D, we demonstrate a GLM fit to the 34 years of data, spatially averaged for each day across the spatial 
grid but not filtered over time. We show both a log-linked linear fit with time, log(μ) = A + BT, where μ is the 
expected rainfall, T is time, and A and B are model parameters, as well as a fit of both time and a linear combi-
nation of frequencies (using 4, 2, 1, 0.5, and 0.25 cycles per year). There is a statistically significant downward 
slope of the GLM dependency on time of the spatially averaged rainfall by 12% over the 34-year interval (slope of 
−0.0038 corresponding to an exp(−0.0038) = 0.38% reduction in rainfall per year, p < 1.6 × 10−5, slope standard 
error SE = 0.00088), and the quality of the fit of time and frequencies is also highly statistically significant (F vs 
constant model 146, p < 7 × 10−317).

To examine the spatial distribution of this overall decrease in rainfall, we fit 3,721 GLM models to each of the 
spatially-mapped grid’s time series datasets (without averaging or filtering). The origin of the average negative 
slope, B, for the linear model fit, log(μ) = A + BT in Fig. 2D, is based upon a distribution of slopes with a mean 
of −0.0031 (0.31% reduction per year), where the probability (fraction) of negative slopes is 0.78 (2,902/3,721). 
We now plot these individual slopes in their spatial location on the satellite grid in Fig. 2E. The color map for 
the spatial distribution of these slopes uses the intensity of brown and green to represent the magnitude of the 
decrease or increase in slope, respectively. There is a broad region in central and western Uganda that appears to 
be responsible for the overall decrease in rainfall shown in Fig. 2D.

These 3,721 slopes (Fig. 2E) represent a massive multiple testing problem. To explore this spatial distribution 
further, we turn to the control of false discovery rate (FDR) using the method of Benjamini and Hochberg15. 
We plot the curve representing the GLM goodness of fit as p-values (in blue) in Fig. 2F against a family of FDRs 
ranging from 0.02 to 0.2, along with the standard FDR for a single test (0.05) and the Bonferroni corrected false 
positive rate of 1.3 × 10−5. The distributions corresponding to these FDRs are shown in Fig. 3A, and their corre-
sponding spatial maps in Fig. 3B. As the false discovery rates vary from 0.1 to the Bonferroni rate, identification 
of the region of central and western Uganda with decreasing rainfall over these 34 years remains robust.

We can independently assess these decreases in rainfall by taking difference maps of cumulative rainfall for 
different periods of time. In Fig. 3C, we illustrate the difference of cumulative rainfall in the first (oldest) vs last 
(most recent) 15, 10 and 5 years of the data, along with the second 5 vs next to last 5 year segments of data. The 
spatial maps visualizing increases or decreases in rainfall depict a broad region of decreased rainfall within central 
Uganda that remains consistent with the GLM regression slopes in Fig. 3A and B.

Next, we examine the Bwindi Impenetrable Forest within Uganda. This forest reserve constitutes one of the 
last remaining habitats of the Mountain Gorilla, and is considered crucial for species survival. Ground based 
rainfall data are understandably incomplete because of remoteness and inaccessibility4. The coordinates of the 
331 square km Bwindi Forest lies within 0.85°S and 1.15°S, and 29.55°E and 29.85°E on the satellite map, the 
southwest tip of Uganda. These coordinates correspond to 16 squares of our grid (Fig. 4A). The cumulative rain-
fall from ARC2 is projected on the Bwindi Forest region and shown in Fig. 4B. We again find that there is a sta-
tistically significant downward slope of the GLM dependency on time of the spatially averaged rainfall by 13% 
over all years (slope of −0.004 corresponding to a 0.4% decrease in rainfall per year, p < 0.012  slope SE = 0.0015), 
consistent with our findings in the entire national grid.

Lastly, both the El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole16 (IOD) are known to 
influence rainfall in East Africa17. We turn to the technique of wavelet coherency18, and seek a statistical bootstrap 
that preserves more of the properties of the data than the white19 or colored20 noise employed in previous work on 
geophysical systems. Following the recommendation for a non-parametric bootstrap constructed from surrogate 
data from the original time series18, we used a randomization scheme previously employed by swapping binary 
partitions at random locations in a time series21, to ensure that local correlations are effectively destroyed across 
an ensemble of such resampled time series, and that the relevant frequencies and distribution of values remain the 
same. Applying this bootstrapped statistical method, our results showed there are regions at the 99% confidence 
limit in the latter half of our time series where ENSO (Fig. 5A, 2006–2014, 1–2 year periods) and IOD (Fig. 5B, 
2004–2015, 1–4 year periods) coherency with rainfall remains significant.

The relatively short length of the instrumented ARC2 limits our analysis to 34 years. Proxy and model simu-
lation suggests that the IOD is more important than ENSO over multidecadal and perhaps longer time scales22. 
Although ENSO effects interannual droughts22, it is less important for interdecadal rainfall patterns23, and our 
results are consistent with this. Nevertheless, our findings that ENSO and IOD effects on Ugandan rainfall have 
been more significant within the more recent half of the 34-year record remains unexplained.
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The weather patterns in East Africa are unusually complex and regionally disparate23,24. Uganda is at the west-
ern edge of the Greater Horn of Africa25 region, and has historically had more rainfall than neighboring Kenya 
and Tanzania26. One of the hazards in generalizing from regional models of the Greater Horn of Africa to more 
localized regions, or extrapolating using proxy data taken from highly localized lake or ocean sediment core 
analysis23,24, is that predictions do not equally apply to all countries within such regions. There is a well-known 

Figure 2. Spatially averaged rainfall demonstrates a decrease over the 34 year record. The nature of the data 
with and without spatial averaging is shown, and the origin of the average decrease in rainfall explained by the 
geographical distribution of decreases and increases in rainfall. (A) Histogram of daily rainfall for all days and 
locations, truncated below 40 mm rain per day. (B) Daily rainfall spatially averaged, and filtered with finite 
impulse response filter (order 100) for frequencies 0.05–6 cycles per year. Filter applied with zero phase filtering 
forwards and backwards. The twice-yearly rainy seasons in the East African Highlands are now plainly seen. 
Two drought anomalies from droughts in fall rainy season failures are indicated for 2010 and 2016 with black 
arrows. The averaged and filtered data set from B demonstrates a much less skewed distribution in (C). (D) 
Linear GLM fit, log(μ) = A + BT, shown by yellow line, and full model fitted with 0.25, 0.5, 1, 2, and 4 cycle per 
year frequencies shown by red line, superimposed on spatially averaged but unfiltered data in D. In E are shown 
the individual slopes of linear GLM regression to each grid point time series, with no averaging, on a scale 
illustrating the intensity of the negative (brown) or positive (green) slopes. Map created using ArcGIS 10.4.1, 
http://support.esri.com/Products/Desktop/ArcGIS-desktop/arcmap/10-4-1. (F) False Discovery Rate (FDR) 
plot for the GLM fit p-values from the slope plot in E, for a family of FDR values. The intersections of the sorted 
p-values (blue) with the Benjamini-Hochberg coefficients (red lines) form the FDR thresholds employed in 
Fig. 3.

http://support.esri.com/Products/Desktop/ArcGIS-desktop/arcmap/10-4-1
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discrepancy between coastal Horn of Africa rainfall and more interior Rift Valley sites23. In our present analysis, 
the multi-decadal influence on East African rainfall predicted from IOD dynamics is not well reflected in our 
34-year Ugandan dataset, where the effects appear sub-decadal.

Figure 3. The decrease in rainfall is a robust finding. We first performed an exploration of false discovery 
rates, and then independently tested with cumulative rainfall differences. (A) Histogram of the 3,721 GLM 
slopes from Fig. 2E. With progressively more conservative FDR rates, we see the progressive elimination of 
small magnitude slopes, culminating in the most conservative thresholding with Bonferroni (α/3721). In (B) 
we map these distributions of slopes back onto the satellite grid. Note that the most significant slopes retain the 
coherent regions of central and western Uganda where the rainfall decreases the most over the historical record. 
To independently test these findings, we examine the difference maps of cumulative rainfall from the raw 
ARC2 data in (C). Indeed, for the first and most recent 15, 10, and 5 year cumulative data, and the second and 
second-to-last 5 year periods, the difference maps retain the same rainfall pattern of decrease indicated from 
the GLM fits. Maps created using ArcGIS 10.4.1, http://support.esri.com/Products/Desktop/ArcGIS-desktop/
arcmap/10-4-1.

http://support.esri.com/Products/Desktop/ArcGIS-desktop/arcmap/10-4-1
http://support.esri.com/Products/Desktop/ArcGIS-desktop/arcmap/10-4-1


www.nature.com/scientificreports/

6SCiENTiFiC REPORTS |  (2018) 8:3551  | DOI:10.1038/s41598-018-21427-5

The biannual rainy seasons in East Africa are driven by different dynamics, with the climate circulation and 
sea surface temperature affecting each type of rainy season differently22. Over the past 60 years, the Indian Ocean 
has warmed more than the tropical Pacific Ocean, which may account for a westward extension of the tropical 
Walker circulation, which is in contrast with models that predict a weakening of the Walker circulation27. Such 

Figure 4. The decrease in rainfall is also reflected within the Bwindi Impenetrable Forest region. This is one of 
the last remaining habitats of the Mountain Gorilla. (A) The Bwindi Impenetrable Forest in Uganda (yellow), 
covered by 16 of the satellite grids (map created using ArcGIS 10.4.1). The Democratic Republic of the Congo is 
in white. (B) Cumulative rainfall from 1983–2016 with interpolated shading over the Bwindi coordinates. (C) 
Spatially averaged filtered time series of the Bwindi rainfall, overlain with the GLM models as in Fig. 2. Note the 
substantial rainfall decrease over the record.



www.nature.com/scientificreports/

7SCiENTiFiC REPORTS |  (2018) 8:3551  | DOI:10.1038/s41598-018-21427-5

an effect would account for weakening of the long rains (March – June), and would potentially be independent 
of ENSO effects. Although the Horn of Africa region has become observationally drier during the 20th century, 
many climate models predict an increase in short rains (September – November) as global temperatures rise23,24. 
The current discrepancies between the proxy sediment record and 20th century observations, with model predic-
tions predicting an increase in rainfall over the eastern Horn of Africa with global warming24, are indications that 
more accurate model simulations and an improved understanding of the geophysical processes governing the 
rainfall over East Africa are needed given the fragile food security issues of this region.

How such changes in rainfall patterns impact infectious disease prevalence and risks will be determined by indi-
vidual disease characteristics, and will be important for specific locations. By fusing the satellite rainfall grid with 
the locations of all of the villages in Uganda, we have a finely granular way to track epidemic diseases given village 
case data for individuals who become ill. By helping to identify vulnerable locations, such fusion functions as a plat-
form for seeking optimization of treatment and prevention of many infectious diseases, of which we are particularly 
focused on neonatal sepsis28,29 and a critical sequela in survivors in Africa, postinfectious hydrocephalus10–12.

Although climate is global and regional, policy and preparation remains largely dependent upon individual 
countries, where the consequences of climate and remediative responses are complexly related to local conditions. 
Uganda is a country where 72% of geographical area is used for rain-fed farming and the population growth is one 
of the highest in the world4. An average rainfall decrease of the magnitude reported here, over the multiple dec-
ades of the climate record examined, is important for sustainable agricultural decisions in a country dependent 
on subsistence crop yields. Additionally, understanding the fine-scale spatial vulnerability of such rainfall declines 
can help generate more efficient decision-making and resource use allocation. There is a substantial need for more 
granular and accurate prediction modeling for both short-term drought anticipation and longer-term rainfall 
trends within the time-frame relevant for economic planning. Nevertheless, the present trend in rainfall decrease 
is gradual enough so that there remains an opportunity to build adaptive capacity1 through strategies25 to make 
the country more resilient: anticipatory land-use management, shifts towards more sustainable agricultural prac-
tices, wastewater reuse, and infrastructure development to increase the resiliency of the society with respect to 
short and long-term changes in rainfall.

Methods
Data. Rainfall data was obtained from the African Rainfall Climatology, version 2 (ARC2)3, the gridded daily 
34-year precipitation estimation dataset (http://www.cpc.noaa.gov/products/international/data.shtml) centered 
over Africa at 0.1° × 0.1° spatial resolution. These data are an estimation derived from a fusion of the geosta-
tionary infrared sensing from the European Organisation for the Exploitation of Meteorological Satellites, and 
24-hour rainfall measurements from Global Telecommunication System gauge observations. There are 341 miss-
ing days in these ARC2 data (out of 12,419 days) which were accounted for by linear interpolation.

Figure 5. El Nino Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) relationship to spatially 
averaged rainfall. With rigorous statistical confidence bounds, there is a coherency between these indices and 
the Ugandan rainfall, but only in recent years, and only for relatively short periods from 1–4 years. (A) Wavelet 
coherency between spatially averaged and filtered rainfall, with the ENSO index interpolated from monthly 
to daily values, and filtered identically as rainfall data. The second panel reflects the mean of 1000 surrogate 
coherency calculations, from which 95% (third panel) and 99% (fourth panel) confidence limits reveal only the 
regions that met these significance criteria. The cone of influence, delimiting where edge effects substantially 
confound the analysis, is indicated by the white dotted line. (B) Identical calculations for the IOD index. The 
most significant coherencies between ENSO and IOD occurs during the most recent 10 years, with periods from 
1–4 years.

http://www.cpc.noaa.gov/products/international/data.shtml
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It is important to note that the estimation of rainfall from satellite data suffers from uncertainty and bias, which 
varies with geographical topography. The ARC2 data accuracy has been compared with ground station data along 
the Albertine Rift in Western Uganda. It tends to overestimate rainfall days, biased within a range of −17% to 
−12% along northern sections of this region, but with minimal bias in the Bwindi region4. On the other hand, 
ARC2 has fewer false alarm rain days than the more recent products such as Rainfall Estimator (RFE) data (mean 
false alarm ratio 0.41 range 0.29–0.60, vs mean 0.44 range 0.33–0.61)4. In addition to the satellite infrared and 
ground based gauge data from ARC2, RFE adds microwave sensing, and 3B42v7 has finer temporal and spatial 
resolution along with a more advanced algorithm4. Nevertheless, in validating each of these data against ground 
station data along the Albertine Rift, there are biases and errors for specific sites that render each of them prob-
lematic if applied without ground based station data. ARC2 is the only method that extends earlier than the year 
2000, and appears a reasonable choice to apply to gauge-deficient regions of central Africa4 as we have here done.

El Nino Southern Oscillation data (ENSO) was obtained from the Multivariate ENSO Intex (MEI) from 
the Earth System Research Laboratory at NOAA at https://www.esrl.noaa.gov/psd/enso/mei/table.html. These 
monthly data from 1983 through 2016 were then uniformly expanded across the number of days in each month 
to obtain equivalent daily data.

The Indian Ocean Dipole (IOD) data was obtained from The Extended Reconstructed Sea Surface Temperature 
(ERSST) dataset derived from NOAA’s International Comprehensive Ocean-Atmosphere Dataset (ICOADS), accessed at  
https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/.version4/.IOD/.C1961-2015/.iod/datatables.html. 
Similar to the ENSO data, these monthly data from 1983 through 2015 were then uniformly expanded across the num-
ber of days in each month to obtain equivalent daily data.

Generating Maps and Grids. Creating Maps of Uganda at the Village Level. The geocoded data of 
Ugandan village boundaries was obtained through the Ugandan National Planning Authority, by compil-
ing a shapefile using census and election commission records, accessible at [https://scholarsphere.psu.edu/
concern/generic_works/k0p096889c]. The Uganda shapefile was entered in ArcGIS version 10.4.1 for desk-
tops (Environmental Systems Research Institute (ESRI), USA, http://support.esri.com/Products/Desktop/
ArcGIS-desktop/arcmap/10-4-1) and converted to points using the ArcGIS ‘feature to point’ tool. Then, the cen-
troid of each village was used to generate the XY coordinates with the ‘geometry’ tool.

Satellite Grid Registration. The ‘fishnet’ tool in the data management toolbox of ArcGIS was used to create the 
grid at 0.1° × 0.1° (Fig. 1A). The centroid of each grid square was used to generate the XY coordinates with a ‘cal-
culate geometry’ tool. Grid point (1, 1) was the latitude 1.9°S, longitude 29.5°E. The grids increment by 0.1° until 
the extent of Uganda is enclosed (1.9°S–4.2°N and 29.5°E to 35°E).

Bwindi Impenetrable Forest Map. Bwindi impenetrable forest (Fig. 4A) was selected from the Ugandan map 
using the ‘select by attribute’ tool in ArcGIS. The selected features were then saved as a shapefile using the 
ArcGIS ‘create a layer from selected feature’ tool.

Signal Processing. Spectra were calculated, following removal of the mean from each of the 3,721 time 
series, using Hamming data windows 3-years in length (3*365 days), with 95% overlap of these windows, and 
1-sided spectral estimations performed using Welch’s method as implemented in Matlab function pwelch30. The 
power spectral density (PSD) from each of the 3,721 time series from the different locations were then averaged, 
and plotted on a decibel scale (10*log(PSD)) in Fig. 1E for frequencies greater than zero and less than 12 cycles 
per year. The spectra from each windowed time period were then assembled into the spectrogram in Fig. 1F. 
When filtering was applied, such as in Fig. 2B, we employed a bandwidth of 1/20 to 6 cycles per year, an order 
of 100, frequency of 365 days per year, Nyquist frequency of 365/2, and a finite impulse response (FIR) filter 
(Matlab function fir1) applied in a zero-phase distortion manner using Matlab function filtfilt. The spatial mean 
of all 3,721 filtered time series were plotted in Fig. 2C. When employed in wavelet coherency, both the spatially 
averaged rainfall time series (through 2015), and ENSO time series were equivalently filtered within the same 
1/20 – 6 cycle per year bandwidth.

Statistical Analysis. Generalized Linear Modeling. We implemented generalized linear modeling (GLM) 
using the methods developed by Nelder and Wedderburn14,31. Using the implementation of the Matlab function 
glmfit, we employed gamma distributions and log link functions.

False Discovery Rate. The false discovery rate (FDR) was controlled using the method of Benjamini and 
Hochberg15. A family of FDR rates was developed, assuming that the false positive (Type I) error rate was α 
(nominally 0.05), the number of comparisons tested was m, as the largest p(i), where:

α≤ ∗ ≤ ≤ .p i i
m

i m( ) , 0

These p(i) thresholds, for a family of FDR rates, are shown as intersections between the blue and red lines in 
Fig. 2F.

Wavelet coherence. We employed the method of Torrence and Webster19, as implemented in the Matlab 
function wcoherence, except we replace their white noise surrogate with surrogates based upon randomly par-
titioned surrogates21 using each one of the time series. We chose the boundaries of the partitioned sections 
randomly, swapping the partition order. This has proven a robust method to break up short-term correlations 

https://www.esrl.noaa.gov/psd/enso/mei/table.html
https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NCDC/.ERSST/.version4/.IOD/.C1961-2015/.iod/datatables.html
https://scholarsphere.psu.edu/concern/generic_works/k0p096889c
https://scholarsphere.psu.edu/concern/generic_works/k0p096889c
http://support.esri.com/Products/Desktop/ArcGIS-desktop/arcmap/10-4-1
http://support.esri.com/Products/Desktop/ArcGIS-desktop/arcmap/10-4-1
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between two time series, while preserving the statistical properties other than losing the slowest of frequencies 
due to the partitioning. Unlike preserving spectra by randomizing the phases of frequencies in a Fourier trans-
form, and then inverting the transform, this method also preserves the original data values and distribution21, 
and is much more computationally efficient than simulated annealing alternatives32. We created an ensemble of 
1000 such surrogate wavelet coherencies, chose the largest 95% or 99% surrogate coherencies at each point in the 
time-frequency plot, and used these thresholds to build our bootstrapped confidence limits setting all values to 
zero which did not exceed these thresholds. We plot the remaining significant wavelet magnitude-squared coher-
encies in the significance plots of Fig. 5.

Code availability. The data sets, and Matlab code required to replicate the findings of this papers, are openly 
available at [https://scholarsphere.psu.edu/concern/generic_works/k0p096889c].
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