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Generalized unscented transformation for forecasting non-Gaussian processes
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The observations of linear and nonlinear physical processes are subject to random errors, which can be
represented by a wide variety of probability distributions. In contrast, most estimation and inference techniques
rely on a Gaussian assumption, which may limit our ability to make model-based predictions. There is a need for
data assimilation methods that can capture and leverage the higher moments of these physical processes for state
estimation and forecasting. In this paper, we develop the generalized unscented transform (GenUT), which uses
a minimal number of sample points to accurately capture elements of the higher moments of most probability
distributions. Constraints can be analytically enforced on the sample points while guaranteeing at least second-
order accuracy. The GenUT is widely applicable to non-Gaussian distributions, which can substantially improve
the assimilation of observations of nonlinear physics, such as the modeling of infectious diseases.
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I. INTRODUCTION

The observations of physical processes are subject to ran-
dom errors, which can be represented by a wide variety of
probability distributions. We often rely on the central limit
theorem as a tool to handle these uncertainties in the form
of Gaussian statistics. However in practice, the noise distribu-
tions encountered in natural systems (as in biology, weather
forecasting, oceanography, etc. [1–4]) often violate this as-
sumption of Gaussianity. Additionally, the nonlinear nature of
most real-world physical systems limits the ability of Gaus-
sian statistics to accurately parameterize the uncertainties of
such systems.

For example, the need to effectively monitor, predict, and
control the spread of infectious diseases [5] such as measles,
influenza, neonatal sepsis, Ebola, and the novel coronavirus
(SARS-CoV-2) causing COVID-19 has led to the application
of numerous state estimation techniques [6–13]. Distributions
such as Poisson, negative-binomial, and binomial are typically
used for modeling infectious disease from count data. When
such models are highly nonlinear, the implementation of tech-
niques that can not account for the higher-order moments of
such distributions can lead to poor performance.

Standard data assimilation techniques, such as the Kalman
filter, provide the basis for most of the popular state estimation
techniques used for linear and nonlinear dynamic systems.
The linear Kalman filter works by propagating the means and
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covariance of the state of a dynamic system [14,15]. Origi-
nally developed under the assumption of finite second-order
moments for measurement and process noise, the Kalman
filter is the optimal estimator when this assumption is satisfied
[16,17]. Despite its origins, “the Kalman filter provides rigor-
ous and optimal performance guarantees that do not rely on
any distribution assumptions beyond mean and error covari-
ance information” [17]. Under non-Gaussian noise, Kalman
filter performance can sometimes deteriorate [14,18], espe-
cially when the underlying noise distributions have nonzero
finite higher-order moments. Although significant work has
been done on addressing nonlinearity, with applications to
filtering in weather prediction and other highly nonlinear
processes like chaotic systems, less work has been done in
addressing non-Gaussianity. While the models used in dis-
ease filtering are often nonlinear, the greater concern is often
the non-Gaussian nature of their evolution and observations
[13]. From the point of view of data assimilation for disease
modeling, the statistics of the observations may be highly
non-Gaussian. The goal of this paper is to address systems
that exhibit strong non-Gaussianity.

For many engineered dynamic systems in practice, lin-
earity is a reasonable assumption. For natural systems,
nonlinearities cause methods based on linear models to
perform poorly. Most nonlinear systems can behave approx-
imately linearly over small operation ranges. The extended
Kalman filter (EKF) is one of the most widely used Kalman
filter for nonlinear dynamic systems. The EKF employs a
linear approximation of the nonlinear system around a nomi-
nal state trajectory [14,15,19]. However, for highly nonlinear
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systems, linear approximations can introduce errors that can
lead to divergence of the state estimate.

To address the drawbacks of the EKF, several well-known
state estimators such as the ensemble Kalman filter (EnKF)
[20–23], the unscented Kalman filter (UKF) [24,25], and the
particle filter (PF) [14,26] have been developed. Although the
particle filter can give better performance than the UKF, this
comes at the cost of a higher computational effort. In some
applications, the improved performance might not be worth
the additional computational costs [14]. Although the EnKF
can easily account for modeling errors, undersampling the
ensembles can lead to filter divergence. This motivated the de-
velopment of deterministic EnKFs that reduce the number of
ensemble members to a strict minimum through deterministic
ensembles, without causing any degradation in performance
[27].

The UKF is a nonlinear filter that uses the unscented trans-
form (UT) to propagate the mean and covariance of random
variables [24,28]. The UT uses the intuition that “with a fixed
number of parameters it should be easier to approximate a
Gaussian distribution than it is to approximate an arbitrary
nonlinear function or transformation” [24]. Although the de-
sign of the UT was motivated by the Gaussian assumption,
it is often used in contexts outside of those assumptions. It
produces sets of vectors called sigma points that capture the
higher-order moments of the standard Gaussian distribution.
In comparison to the Monte Carlo methods used in the PF
and EnKF, the UT uses much fewer points, which makes it
computationally cost-effective. This is why the UT has been
used to improve the performance of the EnKF [29], as well
as to generate distributions to improve the performance of
the PF [30,31]. Despite the several types of UTs that exist
in the literature [32,33], a majority of them that were not
developed using the Gaussian assumption do not try to match
the skewness and kurtosis of non-Gaussian distributed ran-
dom variables, thereby ensuring only second-order accuracy
in propagating means and covariances.

The usage of the UT to assimilate data generated by
nonlinear transformation of random variables revealed a fun-
damental mismatch in the application of the UT—the accuracy
of the UT is reduced if the nonlinearities are high, especially
if the Gaussian assumption with its second-order moment
statistics is not satisfied. This led to the development of UTs
that can account for some higher-order moment information
such as the skewness and kurtosis [34–38]. The UTs can be
grouped into two categories: the ones that employ 2n + 1
sigma points [34–36] and the ones that use more than 2n + 1
sigma points [37,38].

First, we consider those that use 2n + 1 sigma points. In
Ref. [34], a UT was developed to match the average marginal
skewness and kurtosis. The method however did not match
the true skewness and true kurtosis for each element of the
random vector. In Ref. [35], a randomized UT was used in the
development of a filter for non-Gaussian systems. Although
the method uses a stochastic integration rule to solve state and
measurement statistics, the sigma points are generated under
the Gaussian assumption. In Ref. [36], a UT was developed
to capture the skewness of a random vector. However, the
method assumes a closed skew normal distribution in its de-
velopment. All preceding UTs that use 2n + 1 sigma points

were either developed for some special distribution or can
capture at most the average skewness and kurtosis.

Now we consider those that use more than 2n + 1 sigma
points. In Ref. [37], a UT was developed to match the first
four moments of Gaussian random variables. In Ref. [38],
a higher-order UT was developed to match the skewness
and kurtosis tensors with high accuracy. The method uses an
approximate CANDECOMP-PARAFAC (CP) tensor decom-
position to generate its sigma points. However, depending on
the dimension of the problem and the error tolerance level in
approximating the skewness and kurtosis tensors, this method
can incur significant computational costs. This is because the
sequence of vectors and constants used in the approximate
CP method can significantly increase when the error tolerance
level is made small. All preceding UTs that use more than
2n + 1 sigma points were either developed for some special
distribution or had significantly higher complexity and com-
putational cost.

For an n-dimensional random vector, 2n + 1 sigma points
generally employ 2n2 + 3n + 1 parameters (2n + 1 weights
and 2n2 + n constants that define the coordinates of the sigma
points). Trying to match the mean, covariance, skewness,
and kurtosis imposes n, O(n2), O(n3), and O(n4) constraints,
respectively. In principle, it is impossible to match all these
moments using only 2n + 1 sigma points. The zero skewness
nature of the Gaussian distribution made it possible to use
2n + 1 sigma points to accurately match up to the skew-
ness in Ref. [24]. The presence of the O(n3) skewness and
O(n4) kurtosis constraints are what prompted researchers to
look beyond 2n + 1 sigma points. However, we note that
matching the mean and covariance constraints of any random
vector using 2n + 1 sigma points still leaves n2 + 2n + 1 free
parameters—we consider the 2n + 1 weights to be part of the
free parameters (one of these free parameters will be lost by
constraining the weights to sum to 1). These residual parame-
ters have been underutilized in capturing as much information
as possible about the components of the skewness and kur-
tosis tensors when the random variable is not Gaussian. One
instance where the residual parameters were leveraged was in
the capturing of the average marginal skewness and kurtosis,
which only represents a total of two constraints [34].

In this paper, we develop the generalized unscented trans-
form (GenUT) which is able to adapt to the unique statistics
of most probability distributions. We use the intuition that
employing sigma points more suitable to the inherent dis-
tributions of a random vector can lead to a more accurate
propagation of means and covariances. Our method uses 2n +
1 sigma points that not only accurately matches the mean and
covariance matrix but also takes advantage of the additional
free parameters to accurately match the diagonal components
of the skewness tensor and kurtosis tensor of most random
vectors. We employ n2 + 3n constraints in total; n for the
mean, n2 for the covariance (ignoring its symmetric property),
n for the diagonal components of the skewness tensor, and n
for the diagonal components of the kurtosis tensor. This total
falls within the 2n2 + 3n + 1 free parameters available. While
more parameters remain, the diagonal components of the
skewness and kurtosis tensors are the most significant. In com-
parison with Refs. [34–37], our method gives a general way
to accurately match the diagonal components of the skewness
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and kurtosis tensors of most random vectors. In comparison
with Ref. [38], our method uses fewer sigma points, which
is crucial for larger system dimensions. In comparison to the
standard unscented transform, we acquire the most significant
higher moment information of most probability distributions
with the same number of sigma points. Unlike most unscented
transforms, our method allows for constraints to be imposed
on the sigma points while guaranteeing at least a second-order
accuracy.

In Sec. II, we discuss the problems that arise when the
Gaussian assumption is employed in the unscented transform.
In Sec. III, we develop the GenUT sigma points that can cap-
ture certain properties of most probability distributions, such
as its mean, covariance, skewness, and kurtosis. In Sec. IV, we
show that our sigma points are accurate in approximating the
mean, covariance, and diagonal components of the skewness
and kurtosis tensors. In Sec. V, we address constraints and
show that imposing constraints can at least maintain second-
order accuracy. In Sec. VI, we evaluate the accuracy of the
GenUT sigma points in propagating means and covariances
of nonlinear transformations of arbitrarily distributed random
vectors and we give several examples that demonstrate its
effectiveness when compared against other unscented trans-
forms. We discuss the conclusions in Sec. VII.

Notation. Vectors are lowercase and bold, while matrices
and tensors are uppercase and bold. P[i] represents the ith
column of the matrix P, Pi j represents the ith entry in the
jth column of the matrix P, and xi represents the ith entry
of the vector x. We use x < y to denote the component-wise
inequality of the vectors x and y. |x| denotes the component-
wise absolute value of the vector x, while min |x| denotes the
smallest element of |x|.

II. LIMITATIONS OF THE UNSCENTED TRANSFORM

We analyze the performance of unscented transforms that
were motivated by Gaussian statistics [24,28]. We show how
linearization approximations, via Taylor series expansion of a
nonlinear transformation of a random vector x evaluated about
its mean x̄, introduces errors in the propagation of means
and covariances. Taylor series analysis is a standard method
of deriving and justifying the unscented transform and its
variants [24,28]. The basic assumption is that the distribution
is concentrated near the mean and has fast decay away from
the mean so that the higher-order terms in the Taylor series,
which involve higher moments, are small compared with the
leading-order terms. We consider alternative methods of anal-
ysis in the conclusion. We see that errors can be introduced in
the propagation of means and covariances beyond the second
order when used to approximate a nonlinear function λ(x) of
a possibly non-Gaussian distributed random vector x.

Definition 1. Let x ∈ Rn be a random vector. We define
the mean x̄ ∈ Rn, covariance P ∈ Rn×n, skewness tensor S ∈
Rn×n×n, and kurtosis tensor K ∈ Rn×n×n×n as

x̄ = E[x], (1)

P = E[(x − x̄)(x − x̄)T], (2)

Si jk = E[(x − x̄)i(x − x̄) j (x − x̄)k], (3)

K i jkl = E[(x − x̄)i(x − x̄) j (x − x̄)k (x − x̄)l ] (4)

for i, j, k, l ∈ {1, . . . , n}.

The sample mean and sample covariance of the nonlinear
transformation y ∈ Rn given by

y = λ(x) (5)

can be calculated as follows [24]:
(1) Calculate the 2n + 1 sigma points given by χ[0]=x̄,

χ[i]=x̄+(
√

(n+κ )P)[i], and χ[i+n]=x̄−(
√

(n+κ )P)[i]. Their corresponding
weights are w0 = κ

n+κ
, wi = 1

2(n+κ ) , wi+n = 1
2(n+κ ) for i ∈

{1, . . . , n}, where (
√

(n+κ )P)[i] is the ith column of √
(n+κ )P, wi

is the weight associated with the ith sigma point, and κ is a
free parameter. We typically set κ = 3 − n to minimize the
fourth-order moment mismatch.

(2) Pass the sigma points through the known nonlinear
function to get the transformed sigma points, then evaluate
their sample mean and sample covariance using Y [i]=λ(χ[i] ),
ȳ=∑2n

i=0 wiY [i], Py=
∑2n

i=0 wi (Y [i]−ȳ)(Y [i]−ȳ)T .

A. Accuracy in approximating the true mean

Applying a Taylor series expansion of λ(x) about its mean
x̄, we show in Appendix A 1 that the true mean of y = λ(x) is
given as

ȳ = λ(x̄)+
[

n∑
i, j=1

Pi j

2!

∂2λ

∂xi∂x j
+

n∑
i, j,k=1

Si jk

3!

∂3λ

∂xi∂x j∂xk

+
n∑

i, j,k,l=1

K i jkl

4!

∂4λ

∂xi∂x j∂xk∂xl

]
x=x̄

+ E

[
D5

x̃λ

5!
+ D6

x̃λ

6!
+ · · ·

]
. (6)

The analytical expression for the approximated mean from
Ref. [24] is given as

ȳu = λ(x̄) + 1

2

n∑
i, j=1

Pi j
∂λ

∂xi∂x j

∣∣∣∣
x=x̄

+ 1

2(n + κ )

2n∑
i=1

[
D4

σi
λ

4!
+ D6

σi
λ

6!
+ · · ·

]
. (7)

Comparing the above equation with the true mean of (6), we
notice the following problems about the sigma points devel-
oped using the Gaussian assumption:

(1) The odd-powered moments in the approximation of
the true mean are always zero due to their symmetry. This in-
troduces significant approximation errors in situations where
the odd-powered moments of the distribution of x are nonzero
and the transformation y = λ(x) is highly nonlinear.

(2) The fourth-order term fails to capture a part of the true
kurtosis even when the optimal value of κ = n − 3 is selected
because of the Gaussian assumption.

Errors in approximating the mean beyond the second order
occur not only for sets of 2n + 1 sigma points existing in the
literature, but also for sets of n + 1 sigma points [25,39]—this
is because they do not account for the skewness and kurtosis
of x when it is not Gaussian distributed.

Note that (6) also gives an insight into the sensitivity of
the outputs to perturbations in skewness and kurtosis. In this
paper, we assume that the true skewness and kurtosis are
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available as inputs. However, in practice, one may only have
noisy estimates. We can see from (6) that the sensitivity of the
output to perturbations of the skewness will be proportional
to the third derivatives of λ. Similarly, the sensitivity of the
output to perturbations of the kurtosis will be proportional to
the fourth derivatives of λ.

B. Accuracy in approximating the true covariance matrix

The true covariance matrix, which was evaluated in
Appendix A 2, is given as

Py = �P�T +
[

n∑
i, j,k=1

Si jk

2!

[
∂2λ

∂xi∂x j

∂λT

∂xk
+ ∂λ

∂xi

∂2λT

∂x j∂xk

]

+
n∑

i, j,k,l=1

K i jkl

[
1

3!

∂3λ

∂xi∂x j∂xk

∂λT

∂xl

+ 1

3!

∂λ

∂xi

∂3λT

∂x j∂xk∂xl
+ 1

4

∂2λ

∂xi∂x j

∂2λT

∂xk∂xl

]

+
[

n∑
i, j=1

Pi j

2

∂2λ

∂xi∂x j

]
[· · · ]T

]
x=x̄

+ · · · ,

(8)

where we have used the notation xxT = x[· · · ]T . The analyt-
ical expression for the approximated covariance matrix from
[24] is given as

Pu = �P�T + 1

2(n + κ )

2n∑
i

[
Dσiλ(D3

σi
λ)T

3!

+ D3
σi
λ
(
Dσiλ

)T
3!

+ D2
σi
λ(D2

σi
λ)T

2! × 2!

]

+
⎡
⎣1

2

n∑
i, j=1

Pi j
∂2λ

∂xi∂x j

∣∣∣∣
x=x̄

⎤
⎦[· · · ]T + · · · . (9)

Comparing the above equation with the true covariance ma-
trix of (8), we notice similar issues that were pointed out in
approximating the mean—the approximation is only accurate
up to the second order when x is not Gaussian distributed. All
the odd-powered moments are zero because of the symmetric
nature of the sigma points, while the fourth-powered moment
is also inaccurate because of the Gaussian nature of the sigma
points. As with the mean approximation, errors in the covari-
ance matrix approximation are introduced beyond the second
order not only for sets of 2n + 1 sigma points existing in the
literature, but also for sets of n + 1 sigma points.

III. GENERALIZED UNSCENTED TRANSFORM

For a random vector x ∈ Rn, we develop sigma points that
can accurately capture the mean, covariance matrix, and the
diagonal components of both the skewness tensor and the
kurtosis tensor. This is done by selecting sigma point distri-
butions that have the flexibility to either be symmetric when
x is symmetrically distributed or be asymmetric when x is
asymmetrically distributed.

FIG. 1. Samples chosen for a one-dimensional distribution for
the GenUT. The locations and weights of the sigma points are de-
termined by the moments of the probability distribution.

Assumption 1. The random vector x follows a probability
distribution with finite moments.

We reduce the problem of approximating x to the problem
of approximating a user-specified arbitrarily distributed ran-
dom vector z ∈ Rn with zero mean and unit variance, whose
higher-order moments are functions of the higher-order mo-
ments of x. We write

x = x̄ + (
√

P)z, (10)

where
√

P is the matrix square root of P,
√

P
√

P
T = P.

Definition 2. Let x be a vector, P be a square matrix, and k
be some positive integer. We define the element-wise product
(Hadamard product) as �, such that

x�k = x � x � · · · � x︸ ︷︷ ︸
k times

,

(P�k )−1 = (P � P � · · · � P︸ ︷︷ ︸
k times

)−1.

We also define the element-wise division (Hadamard division)
as �.

A. One-dimensional distribution

We develop sigma points that match the first three moments
of z in a single dimension, and then constrain those points to
match the fourth moment of z. For a one-dimensional distri-
bution, we show how to select sigma points such that the first
four moments satisfy

E[zi] = 0, E[(z − z̄)2] = 1,

E[(z − z̄)3] = S
√

P
3 , E[(z − z̄)4] = K

P2 .

To capture the first three moments in a single dimension, three
points are used: the first point lies at the origin with a weight
of w0; the second point lies at a distance −u from the origin
with a weight of w1; the third point lies at a distance v from
the origin with a weight of w2. Therefore, in one-dimension,
we use the following three sigma points:

χ1 = 0,w1,

χ2 = −u,w2,

χ3 = v,w3,

where w1, w2, and w3 are the weights for the respective sigma
points. A visual representation of our sigma points in one
dimension is shown in Fig. 1. Obeying the moments of z and
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the fact that the sum of all weights should equal 1, we write

w1 + w2 + w3 = 1, (11)

−w2u + w3v = 0, (12)

w2u2 + w3v
2 = 1, (13)

−w2u3 + w3v
3 = S

√
P

−3
. (14)

From (12), we see that w2 = v
uw3. Rewriting (13) using (14)

gives

w3v(u + v) = 1, (15)

w3v(v2 − u2) = S
√

P
−3

. (16)

We designate u as the free parameter while assuming that
u > 0. Using the fact that v2 − u2 = (u + v)(v − u), substi-
tuting (15) into (16) gives

v = u + S
√

P
−3

. (17)

From (11) and (15), we see that the weights are given as

w3 = 1

v(u + v)
, w1 = 1 − w2 − w3. (18)

We note that the free parameter u can be selected to match
the fourth moment of z. We now attempt to satisfy the fourth
moment constraint given by

w2u4 + w3v
4 = KP−2. (19)

Eliminating w2 using w2 = v
uw3 gives

w3v(u3 + v3) = KP−2. (20)

Using the relationships w3v(u + v) = 1, u3 + v3 = (u + v)

(u2 + v2 − uv), and v = u + S
√

P
−3

, the above equation re-
duces to

u2 + S
√

P
−3

u + S2
√

P
−6 − KP−2 = 0.

The solution to the above quadratic equation is

u = 1
2

[
−S

√
P

−3 +
√

4KP−2 − 3S2
√

P
−6
]
, (21)

where v is given in (17). The equations for w1, w2, and w0

remain unchanged.
Remark 1. We note that the sigma points described above,

which accurately capture the kurtosis when constrained, were
designed for when the state has a dimension of 1. This implies
that z, P, S, K ∈ R1.

In the next section, we extend this to multiple dimensions.

B. Multidimensional distribution

For an n-dimensional vector z, we develop a set of sigma
points that accurately matches its mean and covariance ma-
trix, while accurately matching the diagonal components of
the skewness tensor. Furthermore, by constraining the sigma
points, we show that we can accurately match the diagonal
components of the kurtosis tensor. We note that for an in-
dependent random vector, accurately matching the diagonal
components of the skewness tensor implies an accurate match-
ing of the entire skewness tensor.

FIG. 2. Samples chosen for a two-dimensional distribution for
the GenUT. The locations and weights of the sigma points are deter-
mined by the moments of the probability distribution.

Remark 2. For a multi-dimensional random vector x, we
do not place any assumption of independence on the elements
of x; they are allowed to be correlated. This agrees with the
fact that, in practice, random vectors and their transformations
are not always guaranteed to be uncorrelated.

Definition 3. We define the vectors S̆ ∈ Rn and K̆ ∈ Rn

which contain the diagonal components of the skewness ten-
sor and kurtosis tensor, respectively, such that

S̆ = [S111, S222, . . . , Snnn]T ,

K̆ = [K1111, K2222, . . . , Knnnn]T .

For a multidimensional distribution, we show how to select
the 2n + 1 sigma points such that the first four moments
satisfy

E[z] = 0,

E[(z − z̄)(z − z̄)T ] = I,

E[(z − z̄)�3] = (
√

P
�3

)−1S̆,

E[(z − z̄)�4] = (
√

P
�4

)−1K̆,

where I ∈ Rn×n is the identity matrix.
Remark 3. Due to the positive definiteness of the covari-

ance matrix P ∈ Rn×n, it is always invertible.
A visual representation of our sigma points for a two-

dimensional distribution is shown in Fig. 2. Our first point
lies at (0,0) with a weight of w0. Our second point lies on the
coordinate axes a distance −u1 from the origin with a weight
of w1. Our third point lies on the coordinate axes a distance
−u2 from the origin with a weight of w2. Our fourth point
lies on the coordinate axes a distance v1 from the origin with
a weight of w3. Our fifth point lies on the coordinate axes a
distance v2 from the origin with a weight of w4. Therefore, our
unscented transform uses the following 2n + 1 sigma points

χ[1] = 0,w1,

χ[i+1] = −uiI[i],wi+1, i = 1, . . . , n,

χ[i+n+1] = −viI[i],wi+n+1, i = 1, . . . , n,
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where I[i] is the ith column of the identity matrix. 0 ∈ Rn is a
vector of zeros. We note that u = [u1, u2, . . . , un]T and v =
[v1, v2, . . . , vn]T .

Definition 4. We partition the weight vector as w =
[w1,w

′T ,w′′T ]T , where w′ = [w2,w3, . . . ,wn+1]T and w′′ =
[wn+2,wn+3, . . . ,w2n+1]T .

Obeying the moments of z, we write
2n+1∑
i=1

wi = 1, (22)

−w′ � u + w′′ � v = 0, (23)

w′ � u�2 + w′′ � v�2 = 1, (24)

−w′ � u�3 + w′′ � v�3 = (
√

P
�3

)−1S̆, (25)

where 1 ∈ Rn is a vector of ones. From (23), we see that w′ =
w′′ � v � u. Rewriting (24) and (25) gives

w′′ � v � (u + v) = 1, (26)

w′′ � v � (u + v) � (v − u) = (
√

P
�3

)−1S̆. (27)

Selecting u > 0 as the free parameters, we get

v = u + (
√

P
�3

)−1S̆. (28)

Therefore, from (22) and (26), we see that

w′′ = 1 � v � (u + v), w1 = 1 −
2n+1∑
i=2

wi. (29)

To match the diagonal components of the kurtosis tensor, we
need to satisfy

w′ � u�4 + w′′ � v�4 = (
√

P
�4

)−1K̆. (30)

Solving the above equation results in constrained values for u
such that

u = − 1
2 (

√
P

�3
)−1S̆ + 1

2

√
4(

√
P

�4
)−1K̆ − 3[(

√
P

�3
)−1S̆]�2.

(31)

It can be shown from (10) that the algorithm for selecting
the 2n + 1 sigma points for any random vector x is given in
Algorithm 1.

We recall from (28) that the constraint u > 0 exists. Ap-
plying this constraint on (31), we see that

K̆ >
√

P
�4

[(
√

P
�3

)−1S̆]�2. (32)

The inequality in (32)—at least for a one-dimensional case—
agrees with the findings by Pearson in Ref. [40] that for
probability distributions, the standardized kurtosis always
exceeds the square of the standardized skewness. If the in-
equality in (32) were violated, then (31) becomes infeasible,
which in turn requires the free parameter u > 0 in (28) to
be selected such that v > 0—although this eliminates the
accuracy in matching the diagonal components of the kurtosis
tensor, the sigma points are still able to accurately match the
diagonal components of the skewness tensor.

There might be concerns that v in (28) might be negative

whenever the term (
√

P
�3

)−1S̆ is negative. If (32) is satisfied,

ALGORITHM 1. Sigma points for the generalized unscented
transform.

1 Prescribe the mean x̄, covariance P, diagonal component of
the skewness tensor
S̆ = [S111, S222, . . . , Snnn]T , and the diagonal components of
the kurtosis tensor
K̆ = [S1111, K2222, . . . , Knnnn]T ;

2 Choose the free parameter vector u > 0;
3 Calculate the parameter vector v,

v = u + (
√

P
�3

)−1S̆;
4 Calculate the 2n + 1 sigma points,

χ[1] = x̄,

χ[i+1] = x̄ − ui

√
P[i],

χ[i+n+1] = x̄ + vi

√
P[i],

for i ∈ {1, . . . , n}, where
√

P[i] is the ith column of the matrix
square root of P;

5 Calculate the weights,
w′′ = 1 � v � (u + v),
w′ = w′′ � v � u, w1 = 1 −∑2n+1

i=2 wi,

where w = [w1, w
′T , w′′T ]T .

Note: To match the diagonal components of the kurtosis
tensor, select u using (31) in step 2.

then selecting u using (31) leads to v > 0. Alternatively, ar-

bitrarily selecting u such that u > (
√

P
�3

)−1S̆ ensures that
v > 0.

Algorithm 1 can be used to create sigma points that can
match up to the kurtosis if (32) is satisfied. For example,
we want to prescribe some arbitrary mean, variance, skew-
ness, and kurtosis for a random variable x that is not from
any known probability distribution. Randomly selecting the
mean x̄, variance P, and skewness S as x̄ = 0.1, P = 0.2,
and S = −0.5, respectively, we can use Algorithm 1 to match
them exactly. However, we can not randomly select a kurto-
sis K and expect to match it. The selection of the kurtosis
K must satisfy (32), so for this example, we require K >

(−0.5)2/0.2 = 1.25. Prescribing a kurtosis value of K = 1.3
satisfies (32). Now using Algorithm 1, we see that w1 = 0.2,
w2 = 0.0286, w3 = 0.7714, u = 5.8055, and v = 0.2153.
The sample mean, sample covariance, sample skewness, and
sample kurtosis exactly match their true prescribed values. We
show how to calculate the sample statistics in Sec. IV.

C. Moments of a probability distribution

We use the moment generating function (MGF) M(t ) to
evaluate the mean and higher-order central moments of a
probability distribution. For any random variable x [41], its
MGF and nth moment are given by

M(t ) = E[etx], E[xn] = ∂nM

∂t n

∣∣∣∣
t=0

. (33)

We also use the gamma notation

�(k) =
∫ ∞

0
xk−1e−xdx. (34)

The first four moments of ten different probability distribu-
tions can be found in Table I.
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TABLE I. Probability distributions.

Probability density Mean Variance (P) Skewness (S) Kurtosis (K )
Random variable function E[x] E[(x − x̄)2] E[(x − x̄)3] E[(x − x̄)4]

Gaussian N (μ, σ 2)

1√
2πσ 2

e− 1
2 ( x−μ

σ )2
,

x ∈ (−∞, ∞)

μ σ 2 0 3σ 4

Exponential E (λ) λe−λx, x � 0, λ > 0 1
λ

1
λ2

2
λ3

9
λ4

Gamma G(a, b)

xa−1

�(a)ba
e

−x
b ,

x � 0, a > 0, b > 0

ab ab2 2ab3 3ab4(a + 2)

Weibull W (a, b)

b

a

(
x

a

)b−1

e−( x
a )b

,

x � 0, a > 0, b > 0,

�kb = �

(
k

b
+ 1

) a�1b a2
[
�2b − �2

1b

] a3
(
�3b + 2�3

1b

− 3�1b�2b

)
a4
(
�4b − 3�4

1b

− 4�1b�3b

+ 6�2
1b�2

)

Rayleigh R(σ )
x

σ 2
e− x2

2σ2 , x � 0 σ
√

π

2 σ 2
(
2 − π

2

)
σ 3(π − 3)

√
π

2 σ 4
(

32−3π2

4

)

Beta BE (a, b)

�(a + b)

�(a)�(b)
xa−1(1 − x)b−1,

x ∈ (0, 1), a > 0, b > 0

ζk = a + b + k

a

ζ0

ab

ζ 2
0 ζ1

2ab(b − a)

ζ 3
0 ζ1ζ2

3ab(2(b − a)2 + abζ2

ζ 4
0 ζ1ζ2ζ3

Binomial B(n, p)

(
n
k

)
pk (1 − p)n−k,

p ∈ [0, 1], k = 0, 1, 2, . . . , n

np np(1 − p) np(1 − p)(1 − 2p)
np(1 − p)[1+
p(1 − p)(3n − 6)]

Poisson P(λ)

λk

k!
e−λ, λ > 0,

k = 0, 1, 2, . . . , ∞
λ λ λ 3λ2 + λ

Geometric GE (p)
p(1 − p)k, p ∈ (0, 1],

k = 0, 1, 2, . . . ,∞
(1 − p)

p

(1 − p)

p2

(p − 1)(p − 2)

p3

(1 − p)(p2 − 9p + 9)

p4

Negative

binomial NB(r, p)

(
r + k − 1

k

)
pr (1 − p)r,

k = 0, 1, 2, . . . , ∞

r(1 − p)

p

r(1 − p)

p2

r(p − 1)(p − 2)

p3

r(1 − p)(p2 − 6p − 3pr
+3r + 6)

p4

IV. ACCURACY OF SIGMA-POINT SAMPLE STATISTICS

We demonstrate the accuracy of our sigma points in ap-
proximating any random vector x ∈ Rn.

Theorem 1. Let x ∈ Rn be any random vector with mean x̄,
covariance matrix P, skewness tensor S, and kurtosis tensor K.
The following statements are true for the 2n + 1 sigma points
defined in Algorithm 1.

(1) The sample mean ˆ̄x =∑2n+1
i=1 wiχ[i] equals x̄.

(2) The sample covariance matrix P̂ =∑2n+1
i=1 wi(χ[i]− ˆ̄x)

(χ[i] − ˆ̄x)T equals P.
(3) The sample skewness tensor Ŝ jkl=

∑2n+1
i=1 wi(χ[i]− ˆ̄x) j

(χ[i] − ˆ̄x)k (χ[i] − ˆ̄x)l equals S jkl if j = k = l .
(4) The sample kurtosis tensor K̂ jklm=∑2n+1

i=1 wi(χ[i]− ˆ̄x) j

(χ[i] − ˆ̄x)k (χ[i] − ˆ̄x)l (χ[i] − ˆ̄x)m, equals K jklm if j = k = l =
m whenever u of (31) is used.

Proof. For our proof, we introduce diagonal matrices
U ,V ∈ Rn×n such that U = diag(u) and V = diag(v). In

matrix form, we evaluate the sample mean as

ˆ̄x = [x̄, x̄ − √
PU , x̄ + √

PV ][w1, w′T , w′′T ]T

= x̄
2n+1∑
i=1

wi +
√

P(Vw′′ − Uw′)

= x̄ +
√

P(w′′ � v − w′ � u) = x̄ (35)

because
∑2n+1

i=1 wi = 1 and w′′ � v = w′ � u. We see that the
sample mean equals the actual mean. Evaluating the sample
covariance matrix, we get

P̂ =
√

P[U , V ]

[
diag(w′), 0

0, diag(w′′)

][
U

√
P

V
√

P

]
=

√
P[diag(w′)U2 + diag(w′′)V 2]

√
P

=
√

PI
√

P = P (36)
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because w′ � u�2 + w′′ � v�2 = 1 is the diagonal of
diag(w′)U2 + diag(w′′)V 2. We see that the sample covariance
matrix equals the actual covariance matrix. Defining ˆ̆S ∈ Rn

as a vector containing the diagonal components of the sample
skewness tensor such that

ˆ̆S = [Ŝ111, Ŝ222, . . . , Ŝnnn]T ,

we can evaluate the diagonal components of the sample skew-
ness tensor as

ˆ̆S = ([−√
PU ,

√
PV ])�3[w′T , w′′T ]T (37)

= [−√
P

�3
U�3,

√
P

�3
V �3][w′T , w′′T ]T (38)

=
√

P
�3

[−w′ � u�3 + w′′ � v�3]

=
√

P
�3

(
√

P
�3

)−1S̆ = S̆. (39)

We see that our sigma points accurately match the diagonal
components of the skewness tensor. Finally, defining ˆ̆K ∈ Rn

as a vector containing the diagonal components of the sample
kurtosis tensor such that

ˆ̆K = [K̂1111, K̂2222, . . . , K̂nnnn]T ,

we can evaluate the diagonal components of the sample kur-
tosis tensor as

ˆ̆K = ([−√
PU ,

√
PV ])�4[w′T w′′T ]T (40)

=
√

P
�4

[w′ � u�4 + w′′ � v�4]

=
√

P
�4

(
√

P
�4

)−1K̆ = K̆. (41)

We see that our sigma points accurately match the diagonal
components of the kurtosis tensor. �

Theorem 1 shows that our sigma points in Algorithm 1
can accurately approximate the mean and covariance of any
random vector, as well as the diagonal components of the
skewness and kurtosis tensors—this makes it applicable to a
wide variety of applications.

V. CONSTRAINED SIGMA POINTS

Noting that several physical systems require some con-
straints on their states or parameters, we show how our sigma
points can be constrained while at least maintaining second-
order accuracy.

We require the sigma points to be constrained such that

a < χ[i] < b for i ∈ {1, . . . , 2n + 1},
where a ∈ Rn and b ∈ Rn are the lower bounds and upper
bounds, respectively.

Assumption 2. The mean x̄ is within the bounds, such that
a < x̄ < b.

We note that our sigma points of Algorithm 1 can violate
some state constraints despite being able to accurately capture
the mean and covariance of a random vector, as well as the di-
agonal components of its skewness and kurtosis tensors. This
might make them inapplicable in situations or models that
only permit constrained values. For example, in applications
that assume a Poisson distribution for the states, such as count
data, the states are usually positive by default and can never be

negative. When our sigma point of Algorithm 1 is applied, the
positive constraint can be violated. We demonstrate this using
the following example:

Example 1. We generate sigma points for an independent
Poisson random vector x such that

x̄ =
[

1.5
1

]
, P =

[
1.5 0
0 1

]
, S̆ =

[
1.5
1

]
, K̆ =

[
8.25

4

]
,

where x̄ is the mean, P is the covariance matrix, and S̆
and K̆ are vectors containing the diagonal components of
the skewness tensor and kurtosis tensor, respectively. Using
Algorithm 1, we see that w1 = 0.3333, w2 = 0.2049, w3 =
0.2129, w4 = 0.1284, w5 = 0.1204, u1 = 1.3713, u2 =
1.3028, v1 = 2.1878, and v2 = 2.3028. The 2n + 1 sigma
points in matrix form is

χ =
[

1.5, −0.1794 1.5 4.1794 1.5
1 1 −0.3028 1 3.3028

]
.

The sample statistics are

ˆ̄x =
[

1.5
1

]
, P̂ =

[
1.5 0
0 1

]
, ˆ̆S =

[
1.5
1

]
, ˆ̆K =

[
8.25

4

]
.

We see from Example 1 that despite the accuracy of the
sample statistics, the sigma points χ[2] and χ[3] both had
a negative value which do not satisfy the non-negativity of
Poisson draws.

Corollary 1. Enforcing the constraint a < χ[i] < b for i ∈
{2, . . . , 2n + 1} yields

(1) accurate capture of the mean, covariance matrix, and
the diagonal components of the skewness tensor when i ∈
{2, . . . , n + 1}.

(2) accurate capture of the mean and covariance matrix
when i ∈ {n + 2, . . . , 2n + 1}.

Proof. Constraining χ[i] will require redefining u when i ∈
{2, . . . , n + 1} and v when i ∈ {n + 2, . . . , 2n + 1}. Theorem
1 establishes that violating (31) ensures inaccurate approx-
imation of the diagonal components of the kurtosis tensor.
Theorem 1 also establishes that violating (28) ensures in-
accurate approximation of the diagonal components of the
skewness and kurtosis tensors. �

To enforce constraints on the sigma points, we introduce
a slack parameter θ ∈ (0, . . . , 1), which is a user selected
constant. Using θ , we now redefine the free parameters ui and
vi for i ∈ {1, . . . , n} as

ui = θ
[

min
∣∣(x̄ − a) �

√
P[i]

∣∣] if χ[i+1] < a,

vi = θ
[

min
∣∣(b − x̄) �

√
P[i]

∣∣] if χ[i+n+1] > b,

where the sigma points get closer to their constraints as θ → 1.
We note that the equations for w′ and w′′ are unchanged.

We note that enforcing constrains on the sigma points
results in a loss of accuracy in capturing the diagonal com-
ponents of at least the kurtosis tensor. The constrained sigma
point algorithm is given in Algorithm 2. We now show a
benefit of Algorithm 2 in the following example:

Example 2. Using Algorithm 2 to generate positively con-
strained sigma points for the Poisson random vector, we select
θ = 0.9. We see that w1 = −0.0576, w2 = 0.3003, w3 =
0.3968, w4 = 0.1725, w5 = 0.188, u1 = 1.1023, u2 = 0.9,
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ALGORITHM 2. Constrained sigma points for the generalized
unscented transform.

1 Implement Algorithm 1
2 if χ[i+1] < a for i ∈ {1, . . . , 2n} then
3 if i � n then
4 ui = θ [min |(x̄ − a) � √

P[i]|]
5 end
6 if i > n then
7 vi−n = θ [min |(a − x̄) � √

P[i−n]|]
8 end
9 end

10 Repeat steps 3 and 4 of Algorithm 1 if v was not redefined,
otherwise repeat only step 4 of Algorithm 1;

11 Ifχ[i+1] > b for i ∈ {1, . . . , 2n} then
12 if i � n then
13 ui = θ [min |(x̄ − b) � √

P[i]|]
14 end
15 if i > n then
16 vi−n = θ [min |(b − x̄) � √

P[i−n]|]
17 end
18 end
19 Repeat steps 3, 4, and 5 of Algorithm 1 if v was not redefined,

otherwise repeat only steps 4 and 5 of Algorithm 1;
Note: θ ∈ (0, . . . , 1) is a user-defined constant. The sigma
points get closer to their constraints as θ → 1.

v1 = 1.9188, and v2 = 1.9. The 2n + 1 positive sigma points
in matrix form are

χ =
[

1.5 0.15 1.5 3.85 1.5
1 1 0.1 1 2.9

]
,

while the corresponding sample statistics are

ˆ̄x =
[

1.5
1

]
, P̂ =

[
1.5 0
0 1

]
, ˆ̆S =

[
1.5
1

]
, ˆ̆K =

[
6.2587
2.7100

]
.

We see from Example 2 that using Algorithm 2 ensures that
the sigma points are always positive while ensuring accuracy
in approximating the true mean and covariance of a random
vector, as well as capturing the diagonal components of the
skewness tensor. However, the ability to exactly capture the
diagonal components of the kurtosis tensor is lost. A graphical
representation of Examples 1 and 2 is shown in Fig. 3 where
we plot the sigma points and the covariance.

VI. PROPAGATION OF MEANS AND COVARIANCES
OF NONLINEAR TRANSFORMATIONS

We analyze the performance of our new sigma point algo-
rithm when they undergo nonlinear transformations. We show
how linearization approximations, via Taylor series expansion
of a nonlinear transformation of a random vector x evaluated
about its mean x̄, introduce errors in the propagation of means
and covariances. In Appendix A, we evaluated the true mean
and true covariance of a random vector. In Appendix A, we
evaluated the approximated mean and approximated covari-
ance. We see that, although errors are introduced beyond the
second order when approximating a nonlinear transformation
of a random vector, these errors are minimized because of our
ability to match the diagonal components of the skewness and
kurtosis tensors. We also see that errors are introduced beyond
the third order when the random vector is independent. We
note that the nonlinear transformation y ∈ Rn is given by

y = λ(x), (42)

where E[x] = x̄. Given x̄, P, S̆, and K̆, we evaluate the sample
mean and covariance of the nonlinear transformation of (42)
using Algorithm 1.

For our comparison, we use the scaled unscented transform
of Ref. [42], which is denoted as UT for the remainder of this
paper, and the higher order sigma point unscented transform
(HOSPUT) of [34]. The scaling of the UT was selected to

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x
1

-0.5

0

0.5

1
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1.4
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FIG. 3. (a) Locations of sigma points for the unconstrained (Algorithm 1), truncated, and constrained (Algorithm 2) sigma points. (b) Mean
and covariance of the unconstrained (Algorithm 1), truncated, and constrained (Algorithm 2) sigma points.
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TABLE II. Percentage error in propagating y = 3x + 2x2.

x GenUT UT MC HOSPUT

Mean N (1, 4) 0 0 0.015 0
E (2) 0 0 0.069 0
G(1, 2) 0 0 0.452 0
W (1, 2) 0 0 0.005 0
R(1) 0 0 0.097 0
BE (3, 4) 0 0 0.063 0
B(3, 0.3) 0 0 0.457 0
P(2) 0 0 0.270 0
GE (0.5) 0 0 1.251 0
NB(4, 0.67) 0 0 0.668 0

Covariance N (1, 4) 0 0 0.029 0
E (2) 0 49.057 0.249 0
G(1, 2) 0 64 1.889 0
W (1, 2) 0 15.003 0.310 0
R(1) 0 16.815 0.381 0
BE (3, 4) 0 2.307 0.613 0
B(3, 0.3) 0 16.380 0.359 0
P(2) 0 25.946 1.061 0
GE (0.5) 0 67.662 1.036 0
NB(4, 0.67) 0 43.224 2.356 0

match a Gaussian distribution. We do not compare against
the sigma points in Refs. [35–38] because they either use a
Gaussian assumption, a closed skew normal distribution, or
more than 2n + 1 sigma points.

A. Case study 1: Transformation of random variables

Defining x as a random variable that can follow any of
the probability distributions given in the Table I, we evaluate
the sample mean and covariance of two nonlinear transfor-
mations: a quadratic function of the random variable y =
3x + 2x2, and a trigonometric function of the random variable
y = sin(x). We also use 105 Monte Carlo draws from the
different probability distributions. The true mean and covari-
ance of the quadratic function can be easily evaluated using
the raw moments of x up to its fourth order. The true mean
and covariance of the trigonometric function can be evaluated
using their characteristic functions. A comparison between
the accuracy of the GenUT, UT, 105 Monte Carlo draws, and
HOSPUT in approximating the true mean and true covariance
of the nonlinear transformations for the different probability
distributions is shown in Tables II and III (the abbreviations
are defined in Table I).

For the quadratic function, we see that both the GenUT
and HOSPUT gave an exact approximation of the true mean
and true covariance for all the probability distributions. This
is because the GenUT and HOSPUT are accurate up to the
fourth-order moments when the random variable x has a di-
mension of 1. Although the 105 Monte Carlo draws gave
relatively good approximations, they were not as accurate as
the GenUT.

For the trigonometric function, we see that the GenUT,
HOSPUT, and UT were unable to give exact approximations
of the true mean and true covariance in most cases because
the Taylor series expansion of λ(x) has terms beyond the

TABLE III. Percentage error in propagating y = sin(x).

x GenUT UT MC HOSPUT

Mean N (1.57, 0.1) 0.001 0.001 0.012 0.001
E (2) 0.219 5.788 0.110 0.219
G(0.5, 0.5) 0.312 6.964 0.050 0.312
W (1, 2) 0.017 0.831 0.029 0.017
R(1) 0.049 0.912 0.007 0.049
BE (3, 4) 0 0.038 0.037 0
B(3, 0.3) 0.158 4.814 0.046 0.158
P(0.1) 0.275 18.305 0.531 0.275
GE (0.7) 2.416 32.906 0.138 2.416
NB(0.4, 0.67) 0.176 44.172 0.383 0.176

Covariance N (1.57, 0.1) 5.026 5.026 0.444 5.026
E (2) 23.499 72.557 0.213 23.499
G(0.5, 0.5) 20.749 61.391 0.372 20.749
W (1, 2) 4.862 31.760 0.043 4.862
R(1) 12.158 50.678 0.531 12.158
BE (3, 4) 0.031 0.940 0.225 0.031
B(3, 0.3) 11.033 24.806 0.060 11.033
P(0.1) 6.646 45.895 0.461 6.646
GE (0.7) 12.074 87.637 0.070 12.074
NB(0.4, 0.67) 39.068 135.783 0.366 39.068

fourth order. The GenUT and HOSPUT were more accurate
than the UT for all the non-Gaussian probability distributions
because they are both accurate up to the fourth order while
the UT is accurate up to the second order. The 105 Monte
Carlo draws sometimes gave better accuracy than the GenUT
because of the random nature of its draws. A box plot of the
accuracy of the GenUT, UT, and several Monte Carlo draws
of different sizes is shown in Fig. 4 for the trigonometric
function. We do not include the HOSPUT because it gives
the same performance as the GenUT when a single random
variable is transformed. We see that a significant number of
Monte Carlo draws is needed to achieve the accuracy of the
GenUT when approximating the mean. A significant number
of Monte Carlo draws gives better accuracy in approximating
the variance.

B. Case study 2: Transformation of a correlated random vector

We consider the nonlinear transformation of a correlated
random vector from a bivariate Gamma distribution such that

y =
[

sin(x1)
cos(x2)

]
,

[
λ1

λ2

]
=
[

Gamma(0.1, 0.3)
Gamma(2, 0.3)

]
, (43)

where x1 = λ1 and x2 = λ1 + λ2 have a Pearson’s correlation
coefficient of ρ = 0.22 and cross covariance of E[(x1 − x̄1)
(x2 − x̄2)] = 0.009. We examine the performance of the
GenUT, HOSPUT, and UT in approximating the true mean
and covariance of y. We calculate the true mean using their
characteristic function, while we approximate the true co-
variance, skewness, and kurtosis of y using 107 Monte Carlo
draws. The percentage approximation errors are[

0.1
0.11

]
︸ ︷︷ ︸

GenUT
% mean error

,

[
2.86
1.67

]
︸ ︷︷ ︸

UT
% mean error

,

[
2.19
1.18

]
︸ ︷︷ ︸
HOSPUT

% mean error

,
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FIG. 4. (a) Moments of y = sin(x) when x is a Poisson random variable. (b) Moments of y = sin(x) when x is a Weibull random variable.

[
2.65 10.1
10.1 8.19

]
︸ ︷︷ ︸

GenUT
% covariance error

,

[
18.66 11.46
11.46 31.08

]
︸ ︷︷ ︸

UT
% covariance error

,

[
17.2 10.84

10.84 9.42

]
︸ ︷︷ ︸

HOSPUT
% covariance error

,

[
3.4

37.33

]
︸ ︷︷ ︸

GenUT
% skewness error

,

[
100.2
37.33

]
︸ ︷︷ ︸

UT
% skewness error

,

[
66.55
41.03

]
︸ ︷︷ ︸
HOSPUT

% skewness error

,

[
47.63
19.58

]
︸ ︷︷ ︸

GenUT
% kurtosis error

,

[
88.92
79.6

]
︸ ︷︷ ︸

UT
% kurtosis error

,

[
78.59
24.29

]
︸ ︷︷ ︸
HOSPUT

% kurtosis error

,

where the lowest approximation errors are given in bold font.
We see that the GenUT gave the least approximation error for
the mean, covariance, skewness, and kutrosis. The UT gave
the worst performance because it was unable to account for the
non-Gaussian distributed nature of the random vector x. The
HOSPUT performed worse than the GenUT because, when
the problem dimension exceeds 1, it is only able to match the
average values of the diagonal elements of the skewness and
kurtosis tensors.

C. Case study 3: Infectious disease models

We consider an SIR (susceptible-infectious-recovered) in-
fectious disease model given by the difference equation [1]

Sk+1 = Sk − βSkIk

N
,

Ik+1 = Ik + βSkIk

N
− γ Ik, (44)

Rk+1 = Rk + γ Ik,

where β is the infection rate, γ is the recovery rate, and N =
Sk + Ik + Rk . Using the conservation principle S + I + R = N ,
we reduce the model of (44) to

Ik+1 = Ik + β(N − Ik − Rk )
Ik

N
− γ Ik,

Rk+1 = Rk + γ Ik .

We note that by defining a correlated random vector
x = Poisson[Ik Rk]T from a bivariate Poisson distribution
with Pearson’s correlation coefficient ρ = 0.045 and cross
covariance E[(x1 − x̄1)(x2 − x̄2)] = 0.2, we can rewrite the
above equation as[

Ik+1

Rk+1

]
=
[

Ik

Rk

]
+
[
β(N − x1 − x2) x1

N
γ x1

]
, (45)

where xi is the ith element of the vector x.
We examine the performance of the GenUT, HOSPUT, and

UT in approximating the true mean, covariance, skewness,
and kurtosis of (45). We use the parameters Ik = 10, Rk = 2,
β = 1.5, γ = 0.3, and N = 100. The percentage approxima-
tion errors are[

0
0

]
︸︷︷︸
GenUT

% mean error

,

[
0
0

]
︸︷︷︸

UT
% mean error

,

[
0
0

]
︸︷︷︸

HOSPUT
% mean error

,

[
0 0.03

0.03 0.02

]
︸ ︷︷ ︸

GenUT
% covariance error

,

[
2.64 1.36
1.36 0.02

]
︸ ︷︷ ︸

UT
% covariance error

,

[
0.27 0.10
0.1 0.02

]
︸ ︷︷ ︸

HOSPUT
% covariance error

,

[
13.39
0.01

]
︸ ︷︷ ︸

GenUT
% skewness error

,

[
432.40

100

]
︸ ︷︷ ︸

UT
% skewness error

,

[
28.35
10.15

]
︸ ︷︷ ︸
HOSPUT

% skewness error

,

[
4.42
0.07

]
︸ ︷︷ ︸

GenUT
% kurtosis error

,

[
10.15
3.19

]
︸ ︷︷ ︸

UT
% kurtosis error

,

[
4.03
0.57

]
︸ ︷︷ ︸
HOSPUT

% kurtosis error

,

where the lowest approximation errors are given in bold font.
We see that the GenUT gave the least approximation error
for the mean, covariance, and skewness. The HOSPUT gave
the lowest approximation error for the first component of the
kurtosis. This can be explained by the fact that the skewness
and kurtosis tensors depend on higher-order moments that
are not accurately captured by the GenUT, UT, or HOSPUT.
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A study on the accuracy of approximating the kurtosis of a
nonlinear transformation of a random vector is beyond the
scope of this paper.

VII. CONCLUSION

In this paper, we have developed the generalized unscented
transform (GenUT) that is capable of adapting to the unique
statistics of an arbitrarily distributed random variable. The
GenUT forms a critical step towards realization of more ac-
curate estimation and tracking of natural systems found in
ecology, biology, weather, and physics, where nonlinearities
tend to be omni-present and measurements of natural phenom-
ena reveal non-Gaussian statistics.

As the scale of measured systems to track, predict, and
control increases, the ability of methods based on lineariza-
tion and simplified Gaussian statistics deteriorates, eventually
becoming impractical to implement as the estimation error
grows. Here we demonstrated the ability of GenUT to match
the diagonal elements of the skewness and kurtosis tensors of
most random vectors using 2n + 1 sigma points. This allows
it to be more accurate than unscented transforms that were
constrained to a specific probability distribution—especially
where the physics are nonlinear. For example, in our case
study in Sec. VI C we demonstrate that the GenUT extends
the accuracy of a nonlinear infectious disease model of case
count data utilizing minimal 2n + 1 sample points drawn
from a multivariate distribution when compared to other trans-
forms. However, we note that the presented tests are far from
representing a realistic application of the GenUT’s ability
to properly propagate higher moments. Such applications,
particularly for filtering problems, will necessitate the devel-
opment of more advanced prediction and update equations,
which is a direction for future research.

The error of the various transforms were analyzed using a
Taylor series of the nonlinear function, a standard approach
in the literature [24,28]. This analysis requires the assumption
that the probability distribution is concentrated near its mean
so that the higher-order moments have a negligible contri-
bution to the Taylor series than the leading order moments.
Of course, each additional moment of the input distribu-
tion that can be matched will improve this approximation.
However, empirically we observe that matching additional
moments improves performance even when the distribution
is not concentrated near its mean. This case can be analyzed
by considering the unscented transform (or GenUT) as a
quadrature rule, and the error can be bounded in terms of
polynomial approximation error bounds [38]. While such an
approach is promising, it is particularly challenging in the
case of the GenUT since matching the diagonal entries of
the skewness and kurtosis tensors is equivalent to fitting a
restricted class quartic polynomial. Error bounds for these
restricted classes of polynomials are not readily available, so
deriving these forms of error bounds is a direction for future
research.

Although the GenUT gave better accuracy because it can
capture the diagonal components of the skewness and kurtosis
tensors with 2n + 1 sigma points, its inability to match the

off-diagonal components implies that it is unable to match
more terms in the Taylor series expansion, which can limit its
accuracy. Trying to match the entire off-diagonal components
of the skewness and kurtosis tensors will require looking
beyond 2n + 1 sigma points, which is beyond the scope of
this paper.

In terms of ease of implementation, we demonstrated that
the GenUT uses 2n + 1 sigma points, like the unscented
transform originally developed in Ref. [28]. When compared
against unscented transforms that employ more than 2n + 1
sigma points, such as the one in Ref. [38], the GenUT is
characterized by a lower computational cost (due to its lower
number of sigma points) that scales linearly with the prob-
lem dimension. In scenarios where the problem dimension is
relatively small and/or where the computational capacity is
high, methods such as the one in Ref. [38] that uses more than
2n + 1 sigma points might be preferable due to its increased
accuracy in approximating the entire skewness and kurtosis
tensors.

In terms of performance, the GenUT and unscented trans-
forms that use 2n + 1 sigma points developed under the
Gaussian assumption give the same performance when the
random variable is Gaussian distributed. However, when
the random variable or random vector is not Gaussian dis-
tributed, the GenUT gives better accuracy in the propagation
of means and covariances. Additionally, we also showed that
the GenUT formulation makes it easy to analytically enforce
constraints on the sigma points while still guaranteeing at least
a second-order accuracy, which makes it appealing in models
that permit only constrained values for random variables or
parameters.

For uncertainty quantification, estimation, or prediction
applications, when compared with existing unscented trans-
forms, the GenUT gives the most accuracy that can be
achieved by employing 2n + 1 sigma points. This accuracy
will have increased significant consequences if the nonlin-
earities are strong and the problem dimension is large. The
GenUT can be applied to any filter that uses linear or nonlinear
transformations of random variables.
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APPENDIX A: TRUE MEAN AND COVARIANCE
OF NONLINEAR TRANSFORMATIONS

We derive analytical expressions for the true mean and
covariance when we take the Taylor series expansion of the
nonlinear function y = λ(x), where x is a random vector.
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1. True mean of the nonlinear transformation

Applying a Taylor series expansion around x̄, where
x̃ = x − x̄, we write the true mean of y as

ȳ = E[λ(x)]

= λ(x̄) + E

[
Dx̃λ + D2

x̃λ

2!
+ D3

x̃λ

3!
+ D4

x̃λ

4!
+ · · ·

]
, (A1)

where Dx̃λ is the total differential of λ(x) when perturbed
around a nominal value x̄ by x̃. We note that

Dk
x̃λ =

(
n∑

i=1

x̃i
∂

∂xi

)k

λ(x)

∣∣∣∣∣
x=x̄

. (A2)

Using (A2), we can evaluate the true mean of (A1) as

ȳ = λ(x̄) +
⎡
⎣ n∑

i, j=1

Pi j

2!

∂2λ

∂xi∂x j
+

n∑
i, j,k=1

Si jk

3!

∂3λ

∂xi∂x j∂xk

+
n∑

i, j,k,l=1

K i jkl

4!

∂4λ

∂xi∂x j∂xk∂xl

⎤
⎦

x=x̄

+ · · · , (A3)

where Pi j = E[x̃ix̃ j], Si jk = E[x̃ix̃ j x̃k], and K i jkl =
E[x̃ix̃ j x̃k x̃l ].

2. True covariance of the nonlinear transformation

The true covariance of y is

Py = E[(y − ȳ)(y − ȳ)T ]. (A4)

Evaluating the expression y − ȳ, we write

y − ȳ = Dx̃λ + D2
x̃λ

2!
+ D3

x̃λ

3!
− E

[
D2

x̃λ

2!
+ D3

x̃λ

3!

]
+ · · · .

(A5)

Substituting (A5) into (A4) gives

Py = E

[
Dx̃λ

(
Dx̃λ

)T + D2
x̃λ
(
Dx̃λ

)T
2!

+ Dx̃λ
(
D2

x̃λ
)T

2!

+ D3
x̃λ
(
Dx̃λ

)T
3!

+ Dx̃λ
(
D3

x̃λ
)T

3!
+ D2

x̃λ
(
D2

x̃λ
)T

2! × 2!

]

+E

[
D2

x̃λ

2!

]
E

[
D2

x̃λ

2!

]T

+ · · · . (A6)

We note that we can write the first term in the above equa-
tion as

E[Dx̃λ(Dx̃λ)T ] = ∂λ

∂x

∣∣∣∣
x=x̄

E[x̃x̃T ]
∂λT

∂x

∣∣∣∣∣
x=x̄

= �P�T . (A7)

Using (A2) and (A7), we can rewrite the true covariance
matrix of (A6) as

Py = �P�T +
[

n∑
i, j,k=1

Si jk

2!

[
∂2λ

∂xi∂x j

∂λT

∂xk
+ ∂λ

∂xi

∂2λT

∂x j∂xk

]

+
n∑

i, j,k,l=1

K i jkl

[
1

3!

∂3λ

∂xi∂x j∂xk

∂λT

∂xl

+ 1

3!

∂λ

∂xi

∂3λT

∂x j∂xk∂xl
+ 1

4

∂2λ

∂xi∂x j

∂2λT

∂xk∂xl

]

+
[

n∑
i, j=1

Pi j

2

∂2λ

∂xi∂x j

]
[· · · ]T

]
x=x̄

+ · · · , (A8)

where we have used the notation xxT = x[· · · ]T .

APPENDIX B: APPROXIMATION OF MEANS
AND COVARIANCE USING THE GENERALIZED

UNSCENTED TRANSFORM

We analytically show the accuracy in capturing the true
mean and true covariance of y = λ(x) when using our 2n + 1
sigma points. We also show that our sigma point transfor-
mations give improved accuracy by capturing the diagonal
components of the skewness and kurtosis tensors. Recalling
that χ[i] is the ith column of χ, we define χ̃[i] = χ[i] − x̄. We
also define the jth entry in the ith column of χ̃ as χ̃ ji =
(χ[i] − x̄) j . We note that

2n+1∑
i=1

wiD
k
x̃λ =

2n+1∑
i=1

wi

⎛
⎝ n∑

j=1

x̃ j
∂

∂x j

⎞
⎠k

λ(x)

∣∣∣∣∣∣∣
x=x̄

. (B1)

1. Approximation of the mean

The approximated mean is given as

ˆ̄y =
2n+1∑
i=1

wiλ
(
χ[i]

)

=
2n+1∑
i=1

wi

[
λ(x̄) + Dχ̃[i]

λ +
D2

χ̃[i]
λ

2!
+

D3
χ̃[i]

λ

3!
+ · · ·

]

= λ(x̄) +
2n+1∑
i=1

wi

[
Dχ̃[i]

λ +
D2

χ̃[i]
λ

2!
+

D3
χ̃[i]

λ

3!
+ · · ·

]
.

Using (B1), we can evaluate the above equation as

ˆ̄y = λ(x̄) +
[

n∑
i, j=1

Pi j

2

∂λ

∂xi∂x j
+

n∑
i, j,k=1

Ŝi jk

3!

∂3λ

∂xi∂x j∂xk

+
n∑

i, j,k,l=1

K̂ i jkl

4!

∂4λ

∂xi∂x j∂xk∂xl

]
x=x̄

+ · · · , (B2)

where
∑2n+1

i=1 wiχ̃ jiχ̃ki = P jk ,
∑2n+1

i=1 wiχ̃ jiχ̃kiχ̃li = Ŝ jkl , and∑2n+1
i=1 wiχ̃ jiχ̃kiχ̃liχ̃mi = K̂ jklm.
In the Sec. IV, we already showed that we can accu-

rately capture the diagonal components of the skewness and
kurtosis tensors because Ŝ jkl = S jkl whenever j = k = l and
K̂ jklm = K jklm whenever j = k = l = m. Therefore, by com-
paring (B2) with the true mean of (A3), we can see that our
sigma points improves on the accuracy of propagating the
mean of a nonlinear transformation.
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2. Approximation of the covariance

The approximated covariance can be evaluated using the expression

Pu =
2n+1∑
i=1

wi[Y [i] − ˆ̄y][Y [i] − ˆ̄y]T . (B3)

Evaluating the expression Y [i] − ˆ̄y, we write

Y [i] − ˆ̄y = Dχ̃[i]
λ +

D2
χ̃[i]

λ

2!
+

D3
χ̃[i]

λ

3!
−

2n+1∑
j=1

w j

[
D2

χ[ j]
λ

2!
+

D3
χ[ j]

λ

3!

]
+ · · · . (B4)

We can write
2n+1∑
i=1

wiDχ̃[i]
λ(Dχ̃[i]

λ)T =
n∑

j,k=1

2n+1∑
i=1

wiχ̃ jiχ̃ki
∂λ

∂x j

∂λT

∂xk

∣∣∣∣∣
x=x̄

=
n∑

j,k=1

∂λ

∂x j

∣∣∣∣
x=x̄

P jk
∂λT

∂xk

∣∣∣∣∣
x=x̄

= �P�T . (B5)

Substituting (B4) into (B3) and multiplying out gives

Pu =
2n+1∑
i=1

wi

[
Dχ̃[i]

λ
(
Dχ̃[i]

λ
)T +

D2
χ̃[i]

λ
(
Dχ̃[i]

λ
)T

2!
+

Dχ̃[i]
λ
(
D2

χ̃[i]
λ
)T

2!
+

D3
χ̃[i]

λ
(
Dχ̃[i]

λ
)T

3!

+
Dχ̃[i]

λ
(
D3

χ̃[i]
λ
)T

3!
+

D2
χ̃[i]

λ
(
D2

χ̃[i]
λ
)T

2! × 2!

]
+
[

2n+1∑
j=1

w j

D2
χ[ j]

λ

2!

]
[· · · ]T + · · · . (B6)

Using (B1) and (B5), we can rewrite the approximated covariance matrix of (B6) as

Pu = �P�T +
[

n∑
i, j,k=1

Ŝi jk

2!

[
∂2λ

∂xi∂x j

∂λT

∂xk
+ ∂λ

∂xi

∂2λT

∂x jxk

]
+

n∑
i, j,k,l=1

K̂ i jkl

[
1

3!

∂3λ

∂xi∂x j∂xk

∂λT

∂xl

+ 1

3!

∂λ

∂xi

∂3λT

∂x j∂xk∂xl
+ 1

4

∂2λ

∂xi∂x j

∂2λT

∂xk∂xl

]
+
[

n∑
i, j=1

Pi j

2

∂2λ

∂xi∂x j

]
[· · · ]T

]
x=x̄

+ · · · . (B7)

Comparing (B7) with the true covariance of (A8), we can see that our sigma points improve on the accuracy of propagating the
covariance of a nonlinear transformation because we are able to accurately capture the diagonal components of the skewness
and kurtosis tensors.
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