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Observability and controllability are essential concepts to the design of predictive observer models and
feedback controllers of networked systems. For example, noncontrollable mathematical models of real
systems have subspaces that influence model behavior, but cannot be controlled by an input. Such
subspaces can be difficult to determine in complex nonlinear networks. Since almost all of the present
theory was developed for linear networks without symmetries, here we present a numerical and group
representational framework, to quantify the observability and controllability of nonlinear networks with
explicit symmetries that shows the connection between symmetries and nonlinear measures of observ-
ability and controllability. We numerically observe and theoretically predict that not all symmetries have
the same effect on network observation and control. Our analysis shows that the presence of symmetry in a
network may decrease observability and controllability, although networks containing only rotational
symmetries remain controllable and observable. These results alter our view of the nature of observability
and controllability in complex networks, change our understanding of structural controllability, and affect
the design of mathematical models to observe and control such networks.
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Nonlinear Dynamics

I. INTRODUCTION

An observer model of a natural system has many useful
applications in science and engineering, including under-
standing and predicting weather or controlling dynamics
from robotics to neuronal systems [1]. A fundamental
question that arises when utilizing filters to estimate the
future states of a system is how to choose a model and
measurement function that faithfully captures the system
dynamics and can predict future states [2,3]. An observer is
a model of a system or process that assimilates data from
the natural system being modeled [4] and reconstructs
unmeasured or inaccessible variables. In linear systems, the
key concept to employ a well-designed observer is

observability, which quantifies whether there is sufficient
information contained in the measurement to adequately
reconstruct the full system dynamics [5,6].
An important problem when studying networks is how

best to observe and control the entire network when only
limited observation and control input nodes are available.
In classic work, Lin [7] described the topologies of graph-
directed linear networks that were structurally controllable.
Incorporating Lin’s framework, Liu et al. [8] described an
efficient strategy to count the number of control points
required for a complex network, which have an interesting
dependence on time constant [9]. Structural observability
is dual to structural controllability [10]. In Ref. [11], the
requirements of structural observability incorporated explicit
use of transitive components of directed graphs—fully
connected subgraphs where paths lead from any node to
any other node—to identify the minimal number of sites
required to observe from a network.
All of these prior works depend critically on the

dynamics being linear and generic, in the sense that
network connections are essentially random. Joly [12]
showed that transitive generic networks with nonlinear
nodal dynamics are observable from any node.
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Nevertheless, symmetries are present in natural networks,
as evident from their known structures [13] as well as the
presence of synchrony. Recently, Golubitsky et al. [14]
proved the rigid phase conjecture—that the presence of
synchrony in networks implies the presence of symmetries
and vice versa. In particular, synchrony is an intrinsic
component of brain dynamics in normal and pathological
brain dynamics [15].
Our present work is motivated by the following question:

What role do the symmetries and network coupling
strengths play when reconstructing or controlling network
dynamics? The intuition here is straightforward: consider
three linear systems with identical dynamics [diagonal
terms of the system matrix A in _xðtÞ ¼ AxðtÞ]. If the
coupling terms are identical (off-diagonal terms of A), it is
easy to show that the resulting observability of individual
states becomes degenerate as the rows and columns of the
systemmatrix become linearly dependent under elementary
matrix operations. For example, consider the trivial case of
a 3 × 3 system matrix of ones:

_x ¼ Ax ¼

2

64
1 1 1

1 1 1

1 1 1

3

75

2

64
x1
x2
x3

3

75: ð1Þ

The system is degenerate in the sense that there is only one
dynamic, as the rows and columns of A are not indepen-
dent. This lack of independent rows and columns of the
system matrix has direct implications for the controllability
and observability of the system. For example, in this trivial
system, the difference between any two of the states is
constrained to a constant x1 − x2 ¼ c; thus, there is no
input coupled to the third state x3 that could control both x1
and x2 independently from each other. Taking a single
measurement in Eq. (1), y ¼ ½1; 0; 0%x, the system is not
observable; however, taking an additional measurement,

y ¼
!
1; 0; 0
0; 1; 0

"
x;

the system is fully observable. The details of this compu-
tation will be explained in detail in the following section.
In fact, for the more general case of linear time-varying

networks, group representation theory [16] has been
utilized to show that linear time-varying networks can be
noncontrollable or nonobservable due to the presence of
symmetry in the network [17]. Brought into context, in
networks with symmetry, Rubin and Meadows [17] defined
a coordinate transform that decomposes the network into
decoupled observable (controllable) and unobservable
(uncontrollable) subspaces, which can then be determined
by inspection like our previous trivial example. Recently,
Pecora et al. [18] utilized this same method to show
how separate subsets of complex networks could
synchronize and desynchronize according to these same

symmetry-defined subspaces. Interestingly, while Ref. [17]
has been a rather obscure work, it is based on Wigner’s
work in the 1930s applying group representation theory to
the mechanics of atomic spectra [19]. Thus, just as the
structural symmetry of the Hamiltonian can be used to
simplify the solution to the Schrödinger equation [20], the
topology of the coupling in a network can have a profound
impact on its observation and control.
In this article, we extend the exploration of observability

and controllability to network motifs with explicit non-
linearities and symmetries. We further explore the effect of
coupling strength within such networks, as well as spatial
and temporal effects on observability and controllability.
Lastly, we demonstrate the utility of the linear analysis of
group representation theory as a tool with which to gain
insights into the effects of symmetry in nonlinear networks.
Our findings apply to any complex network, including
power grids, the internet, genomic and metabolic networks,
food webs, electronic circuits, social organization, and
brains [8,11,18,21].

II. BACKGROUND

From the theories of differential embeddings [22] and
nonlinear reconstruction [23,24] we can create a nonlinear
measure of observability composed of a measurement
function and its higher Lie derivatives employing the
differential embedding map [25]. The differential embed-
ding map of an observer provides the information contained
in a given measurement function and model, which can be
quantified by an index [26–28]. Computed from the
Jacobian of the differential embedding map, the observ-
ability index is a matrix condition number that quantifies
the perturbation sensitivity (closeness to singularity) of the
mapping created by the measurement function used to
observe the system. There is a dual theory for control-
lability, where the differential embedding map is con-
structed from the control input function and its higher
Lie brackets with respect to the nonlinear model function
[29,30]. Singularities in the map cause information about
the system to be lost and observability to decrease.
Additionally, the presence of symmetries in the system’s
differential equations makes observation difficult from
variables around which the invariance of the symmetry
is manifested [31,32]. We extend this analysis to networks
of ordinary differential equations and investigate the effects
of symmetries on observability and controllability of such
networks as a function of connection topology, measure-
ment function, and connection strength.

A. Linear observability and controllability

In the early 1960s, Kalman introduced the notions of
state space decomposition, controllability, and observabil-
ity into the theory of linear systems [5]. From this work
comes the classic concept of observability for a linear
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time-invariant dynamic system, which defines a “yes” or
“no” answer to the question of whether a state can be
reconstructed from a measurement using a rank condi-
tion check.
A dynamic model for a linear (time-invariant) system can

be represented by

_xðtÞ ¼ AxðtÞ þ BuðtÞ;
yðtÞ ¼ CxðtÞ; ð2Þ

where x ∈ Rn represents the state variable, u ∈ Rm is the
external input to the system, and y ∈ Rp is the output
(measurement) function of the state variable. Typically,
there are less measurements than states, so p < n. The
intuition for observability comes from asking whether an
initial condition can be determined from a finite period of
measuring the system dynamics from one or more sensors.
That is, given the system in Eq. (2), with xðtÞ ¼ eAtx0 and
Bu ¼ 0, determine the initial condition x0 from measure-
ment yðtÞ; 0 ≤ t ≤ T. To evaluate this locally, we take the
higher derivatives of yðtÞ:

yðtÞ ¼ CxðtÞ
_y ¼ C _xðtÞ ¼ CAxðtÞ
ÿ ¼ CA _xðtÞ ¼ CA2xðtÞ

..

.

yðn−1Þ ¼ CAn−1xðtÞ: ð3Þ

Factoring the x terms and putting y and its higher
derivatives in matrix form, we have a mapping from outputs
to states

2

666666664

y

_y

ÿ

..

.

yðn−1Þ

3

777777775

¼

2

666666664

C

CA

CA2

..

.

CAn−1

3

777777775

x; ð4Þ

where the linear observability matrix [33] is defined as

O≡

2

66666664

C

CA

CA2

..

.

CAn−1

3

77777775

: ð5Þ

The finite limit of taking derivatives in Eq. (3) comes from the
Cayley-Hamilton theorem, which specifies that any square
matrixA satisfies its own characteristic equation, which is the

polynomial pðλÞ ¼ 0, where pðλÞ ¼ detðλIn − AÞ. In other
words, An is spanned by the lower powers of A, from A0 to
An−1,

yðtÞ ¼ CeAtx0; with eAt ≡
Xn−1

k¼0

αkðtÞAk;

yðtÞ ¼ ½α0ðtÞCþ α1ðtÞCAþ α2ðtÞCA2

þ ' ' ' þ αn−1ðtÞCAn−1%x0: ð6Þ

Thus, if the observability matrix spans n space
[rankðOÞ ¼ n], the initial condition x0 can be determined,
as the mapping x0 ¼ ðOTOÞ−1OTyðtÞ from output to states
exists and is unique. More formally, the system Eq. (2)
is locally observable (distinguishable at a point x0) if
there exists a neighborhood of x0 such that x0 ≠ x1 ⇒
yðx0Þ ≠ yðx1Þ.
In a similar fashion, the linear controllability matrix is

derived from asking whether an input uðtÞ can be found to
take any initial condition xð0Þ ¼ x0 to arbitrary position
xðTÞ ¼ xf in a finite period of time T. For the sake of
simplicity, we assume a single input uðtÞ and take the
higher derivatives of _xðtÞ ¼ AxðtÞ þ BuðtÞ up to the
ðn − 1Þth derivative of uðtÞ (again using the Cayley-
Hamilton theorem):

_xðtÞ ¼ AxðtÞ þ BuðtÞ
ẍðtÞ ¼ A2xðtÞ þ ABuðtÞ þ B _uðtÞ
x⃛ðtÞ ¼ A3xðtÞ þ A2BuðtÞ þ AB _uðtÞ þ BüðtÞ

..

.

xðnÞðtÞ ¼ AnxðtÞ þ An−1BuðtÞ þ An−2B _uðtÞ þ ' ' '

þ Buðn−1ÞðtÞ; ð7Þ

which gives us a mapping from input to states
2

666666664

_xðtÞ
ẍðtÞ

..

.

xðn−1ÞðtÞ
xðnÞðtÞ

3

777777775

−

2

666666664

A

A2

..

.

Aðn−1Þ

AðnÞ

3

777777775

xðtÞ ¼ Q

2

666666664

uðtÞ
_uðtÞ

..

.

uðn−2ÞðtÞ
uðn−1ÞðtÞ

3

777777775

; ð8Þ

where the linear controllability matrix is defined [33] as

Q≡ ½B;AB; A2B ' ' ' ; An−1B %: ð9Þ

B. Differential embeddings and nonlinear observability

From early work on the nonlinear extensions of observ-
ability in the 1970s [29,30], it was shown that the
observability matrix for nonlinear systems could be
expressed using the measurement function and its

OBSERVABILITY AND CONTROLLABILITY OF … PHYS. REV. X 5, 011005 (2015)

011005-3



higher-order Lie derivatives with respect to the nonlinear
system equations. The core idea is to evaluate a mapping ϕ
from the measurements to the states ϕ: Rp → Rn. In
particular, Hermann and Krener [30] showed that the space
of the measurement function is embedded in Rn when the
mapping from measurement to states is everywhere differ-
entiable and injective by the Whitney embedding theorem
[22,23]. An embedding is a map involving differential
structure that does not collapse points or tangent directions
[24]; thus, a map ϕ is an embedding when the determinant
of the map Jacobian detð∂ϕ=∂xj∀x∈RnÞ is nonvanishing and
one to one (injective). In a recent series of papers
[25,28,31], Letellier et al. computed the nonlinear observ-
ability matrices for the well-known Lorenz and Rössler
systems [34,35] and demonstrated that the order of the
singularities present in the observability matrix (and thus
the amount of intersection between the singularities and the
phase space trajectories) was related to the decrease in
observability. It is worth noting that the calculation of the
observability matrix and locally evaluating the conditioning
of the matrix over a state trajectory is a straightforward
process and much more tractable than analytically deter-
mining the singularities (and thus their order) of the
observability matrix of a system of arbitrary order. The
former is limited only by computational capacity and the
differentiability of the system equations to order n − 1,
where n is the order of the system.
For a nonlinear system, we replace AxðtÞ in Eq. (2) by a

nonlinear vector field ANLðxðtÞÞ and assume that the smooth
scalar measurement function is taken as yðtÞ ¼ CxðtÞ and
the system equations comprise the nonlinear vector field
fðxðtÞÞ ¼ ANLðxðtÞÞ (note that if there is no external input,
then BuðtÞ ¼ 0, which we assume here to simplify the
display of equations). (If Bu ≠ 0, then as long as the input is
known the mapping from output to states can be solved, and
the determination of observability still relies on the con-
ditioning of the matrixO.) As in the linear case, we evaluate
locally by taking the higher Lie derivatives of yðtÞ, and for
compactness of notation, dependence on t is implied:

L0
fðyðxÞÞ ¼ yðxÞ

L1
fðyðxÞÞ ¼ ∇yðxÞ · fðxÞ ¼ ∂yðxÞ

∂x · fðxÞ

L2
fðyðxÞÞ ¼

∂
∂x ½L

1
fðyðxÞÞ% · fðxÞ

..

.

Lk
fðyðxÞÞ ¼

∂
∂x ½L

k−1
f ðyðxÞÞ% · fðxÞ; ð10Þ

where LfðyðxÞÞ is the Lie derivative of yðxÞ along the vector
field fðxÞ. More explicitly, we have x ∈ Rn, so as a vector
example, the first Lie derivative will take the form

L1
fðyðxÞÞ ¼

h
∂yðxÞ
∂x1 ' ' ' ∂yðxÞ∂xn

i
·

2

6664

f1ðxÞ

..

.

fnðxÞ

3

7775: ð11Þ

With formal definitions of the measurement (output) func-
tion Eq. (2) and its higher Lie derivatives Eq. (10), the
differential embedding map ϕ is defined as the Lie deriv-
atives L0

fðyðxÞÞ…Ln−1
f ðyðxÞÞ, where the superscripts re-

present the order of the Lie derivative from 0 to n − 1, where
n is the order of the system ANLðxÞ:

ϕ ¼

2

6666664

L0
fðyðxÞÞ

L1
fðyðxÞÞ

..

.

Ln−1
f ðyðxÞÞ

3

7777775
: ð12Þ

Taking the Jacobian of the map ϕ, we arrive at the
observability matrix

O≡ ∂ϕ
∂x ¼

2

66664

∂L0
fðyðxÞÞ
∂x1 ' ' ' ∂L0

fðyðxÞÞ
∂xn

..

. . .
. ..

.

∂Ln−1
f ðyðxÞÞ
∂x1 ' ' ' ∂Ln−1

f ðyðxÞÞ
∂xn

3

77775
; ð13Þ

which reduces to Eq. (5) for linear system representations.
The key intuition here is that in the nonlinear case the
observability matrix becomes a function of the states, where
a linear system is always a constant matrix of parameters.

C. Lie brackets and Nonlinear controllability

The nonlinear controllability matrix is developed in
Ref. [29] from intuitive control problem examples and
given rigorous treatment in Ref. [30]; in a dual fashion to
observability, the controllability matrix is a mapping
constructed from the input function and its higher-order
Lie brackets. The Lie bracket is an algebraic operation on
two vector fields fðxÞ;gðxÞ ∈ Rn that creates a third vector
field FðxÞ, which when taken with g as the input control
vector u ∈ Rm defines an embedding in Rn that maps the
input to states [30].
For a nonlinear system, we replace AxðtÞ in Eq. (2) by a

nonlinear vector field ANLðxðtÞÞ, take the input function as
g ¼ BuðtÞ in system Eq. (2), and create Lie brackets with
respect to the nonlinear vector field fðxðtÞÞ ¼ ANLðxðtÞÞ.
The Lie bracket is defined as
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ðad1f ; gÞ ¼ ½f;g% ¼ ∂g
∂x f −

∂f
∂xg

ðad2f ; gÞ ¼ ½f; ½f;g%% ¼ ∂ðad1f ; gÞ
∂x f −

∂f
∂x ðad

1
f ; gÞ

..

.

ðadkf ; gÞ ¼ ½f; ðadk−1f ;gÞ%; ð14Þ

where ðadkf ; gÞ is the adjoint operator and the superscripts
represent the order of the Lie bracket. With formal
definitions of the input function Eq. (2) and its higher
Lie brackets Eq. (14) from 1 to n, where n is the order of the
system matrix ANLðxðtÞÞ, the nonlinear controllability
matrix is defined as

Q≡ #
g; ðad1f ; gÞ;…; ðadnf ; gÞ

$

¼
#
g; ½f;g%; ½f½f;g%%;…; ½f; ðadn−1f ;gÞ%

$
: ð15Þ

D. Observability and controllability indices

In systems with real numbers, calculation of the Kalman
rank condition may not yield an accurate measure of the
relative closeness to singularity (conditioning) of the
observability matrix. It was demonstrated in Ref. [26] that
the calculation of a matrix condition number [36] would
provide a more robust determination of the ill conditioning
inherent in a given observability matrix, since condition
number is independent of scaling and is a continuous
function of system parameters (and states in the generic
nonlinear case). We use the inverted form of the observ-
ability index δðxÞ given in Ref. [26] so that 0 ≤ δðxÞ ≤ 1,

δðxÞ ¼ jσmin½OTO%j
jσmax½OTO%j

; ð16Þ

where σmin and σmax are the minimum and maximum
singular values of OTO, respectively, and δðxÞ ¼ 1 indi-
cates full observability while δðxÞ ¼ 0 indicates no observ-
ability [37]. Similarly, the controllability index is just
Eq. (16) with the substitution of Q for O.

III. OBSERVABILITY AND CONTROLLABILTY
OF 3-NODE FITZHUGH-NAGUMO NETWORK

MOTIFS

A. Fitzhugh-Nagumo system dynamics

The Fitzhugh-Nagumo (FN) equations [38,39] comprise
a general representation of excitable neuronal membrane.
The model is a two-dimensional analog of the well-known
Hodgkin-Huxley model [40] of an axonal excitable mem-
brane. The nonlinear FN model can exhibit a variety of
dynamical modes, which include active transients, limit
cycles, relaxation oscillations with multiple time scales,

and chaos [38,41]. A nonlinear connection function will be
used to emulate properties of neuronal synapses.
The system dynamics at a node are given by the (local

second-order) state space

_vi ¼ c
%
vi −

v3i
3
− wi þ

X
fNLðvj; dijÞ þ I

&
;

_wi ¼ vi − bwi þ a; ð17Þ

where i ¼ 1; 2; 3 for the 3-node system, vi represents
membrane voltage of node i, wi is recovery, dij is the
internodal distance from node j to i, vj is the voltage of
neighbor nodes with j ¼ 1; 2; 3 and j ≠ i, input current I,
and the system parameters a ¼ 0.7; b ¼ 0.8; c ¼ 10. As
defined above in Eqs. (13) and (15), the observability and
controllability matrices are a function of the states, which
means a dependence on the particular trajectory taken in
phase space. In the following analysis, we are interested
in directed information flow between nodes as a function
of various topological connection motifs, connection
strengths, and input forcing functions (which provide
different trajectories through phase space). Each motif is
representative of a unique combination of directed con-
nections between the three nodes with and without latent
symmetries. The nonlinear connection function commonly
used in neuronal modeling [42] takes the form of the
sigmoidal activation function of neighboring activity
(a hyperbolic tangent) and an exponential decay with
internodal distance. We utilize various coupling strengths
to determine the effects on the observability (controllabil-
ity) of the network. Our coupling function takes the form

fNLðv; dÞ ¼
k
2

!
tanh

%
v − h
2m

&
þ 1

"
e−d: ð18Þ

The sigmoid parameters k ¼ 1; h ¼ 0; m ¼ 1=4 are set
such that fNLðv; dÞ has an output range [0,1] for the input
interval ½−2; 2%, which is the range of the typical FN
voltage variable. To introduce heterogeneity for symmetry
breaking a 10% variance noise term is added to each of the
dij terms (there are six total possible coupling terms
d12; d13;…, etc.).
In this configuration, inputs from neighboring nodes act

in an excitatory-only manner, while the driving input
current was a square wave I¼0.25½

P∞
n¼−∞⊓ðωt−nTÞþ1%

(where ⊓ is the rectangular function, ω ¼ 2π=5, and
T ¼ 16 2

3) applied to all three nodes to provide a limit-
cycle regime to the network; for the limit-cycle regime
generated in the original paper by Fitzhugh [38], the driving
current input was constant I ¼ −0.45 (with the system
parameters mentioned above), which we also explore.
Chaotic dynamics were generated with a slightly different
square wave input [41] I¼0.1225½

P∞
n¼−∞⊓ðωt−nTÞþ1%

(with ω ¼ 2π=1.23 and T ¼ 2.7891) also applied to all
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three nodes. These various driving input regimes allow a
wider exploration of the phase space of the system as
each driving input commands a different trajectory, which
will in turn influence the observability and controllability
matrices.

B. Network motifs and simulated data

As we are interested in the effect of connection topology
on observability and controllability, we study the simplest
nontrivial network: a 3-node network. Such small network
motifs are highly overrepresented in neuronal networks
[43,44]. For each network motif shown in Fig. 1, we
compute the observability (controllability) indices for
various measurement nodes, connection strengths, and driving inputs (dynamic regimes). Measurements of vi

for each motif are from each one of the nodes i ¼ 1, 2, or 3.
Simulated network data are used to compute the observ-
ability (controllability) index for two cases: (1) where the
system parameters for all three nodes and connections are

FIG. 1. The eight different 3-node network connection motifs
studied.

(a) (b)

(c) (d)

FIG. 2. Calculation of (a),(c) observability and (b),(d) control-
lability indices for motif 1 for a chaotic dynamical regime, as
measured from each node (green triangles, 1; blue crosses, 2; red
dots, 3). The thick lines and symbols mark the mean values of
each distribution of indices for each coupling strength, while the
smaller symbols and dotted lines represent the (1 standard
deviation confidence intervals. Plots in the top row represent the
results computed with symmetry-breaking heterogeneous cou-
plings while plots in the bottom row are those with identical
coupling strengths.

(a) (b)

(d)(c)

FIG. 3. Same as Fig. 2, except calculations are for motif 3. The
calculations show that the reflection symmetry in the network
topology causes zero observability and controllability for the
symmetric case of observing or controlling from node 2 with
identical coupling strengths (c),(d).

(a) (b)

(c) (d)

FIG. 4. Same as Fig. 2, except calculations are for motif 7. The
calculations show that the particular rotational symmetry in the
network topology has no ill effect on observability and control-
lability for the symmetric case of identical coupling strengths (c),
(d) as compared to the broken symmetry in panels (a) and (b).
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identical, and (2) where the nodes have a heterogeneous
(10% variance) symmetry-breaking set of coupling param-
eters. To create simulated data, the full six-dimensional FN
network equations are integrated from the same initial
conditions with the same driving inputs for each node via a
Runge-Kutta fourth-order method with time stepΔt ¼ 0.04
for 12 000 time steps (with the initial transient discarded) in
MATLAB for each test case: (1) limit-cycle and (2) chaotic
dynamical regimes, with (a) identical and (b) heterogeneous
coupling (the nodal parameters remain identical through-
out). Convergence of solutions is achieved when Δt is
decreased to 0.04. Data are then imported into
Mathematica and inserted into symbolic observability
and controllability matrices (computed for each node),
which are then numerically computed to obtain the observ-
ability (controllability) indices for each coupling strength.
The indices are then averaged over the integration paths
starting from random initial conditions. These calculations
are summarized in Figs. 2–6 for observability and control-
lability, in the chaotic, pulsed limit-cycle, and constant
input limit-cycle dynamical regimes. To facilitate others
replicating our work, we have archived extensive code
in MATLAB and Mathematica in the Supplemental
Material [45].

IV. RESULTS

A. Motifs with symmetry
For motif 1, the data show that a system with full S3

symmetry (due to the connection topology and identical
nodal and coupling parameters) generates zero observabil-
ity (controllability) over the entire range of coupling
strengths [Figs. 2(c) and 2(d)]. Similarly, no observability
(controllability) is seen from node 2 in motif 3, which has a
reflection S2 symmetry across the plane through node 2
[Figs. 3(c) and 3(d)]. Interestingly, the cyclic symmetry of
motif 7 does not cause loss of observability (controllability)
as shown in Fig. 4; motif 7 has rotational C3 symmetry and
valance 1 connectivity (1 input, 1 output). In motifs 1 and 3
the effect of the symmetry is partially broken by introduc-
ing a variation in the coupling terms, and the results show
nonzero observability (controllability) indices in the plots
for such heterogeneous coupling [plots (a) and (b) in Figs. 2
and 3] with a dependence on the coupling strength.
Of particular interest is the substantial loss of observ-

ability (controllability) as the coupling strengths increase to
critical levels for systems containing latent structural
symmetries in the presence of heterogeneity [motifs 1
and 3, plots (a) and (b) in Figs. 2 and 3]. That is, increasing
the coupling strengths when recording (stimulating) from

FIG. 5. Calculation of observability indices for each of the FN network motifs with no underlying group symmetries for a pulsed input
limit-cycle dynamical regime, as measured from each node (green squares, 1; blue crosses, 2; red dots, 3). The thick lines and symbols
mark the mean values while the smaller symbols and dotted lines represent the (1 standard deviation confidence intervals. Plots in the
top row are computed with heterogeneous couplings while identical coupling strengths are in the bottom row. The calculations show
the effect of network coupling strength on observability; motifs 5, 6, and 8 show no observability from node 3 in motif 5, and from
nodes 2 and 3 in motifs 6 and 8 due to structural isolation.
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any node in motif 1 or node 2 in motif 3 degrades
observability (controllability) as coupling strength
increases. A study of the 3D phase plots of the FN voltage
variable in motif 1 (as a function of coupling strength for
chaotic dynamics) reveals a blowout bifurcation [46] at
lower values of coupling strengths (Fig. 7), and at higher
levels, generalized synchrony [47] and increased observ-
ability (controllability), and finally the subsequent decrease
in observability (controllability) at the highest levels of
coupling strength [motif 1 as observed (controlled) from
any node in Fig. 2]. This is demonstrated in motif 1 (Fig. 7),
where a bifurcation in the dynamics causes the wandering
trajectories at weak coupling strengths to collapse onto the
limit-cycle attractor at stronger coupling strengths, and at
the strongest coupling the dynamics reveal a reverse Hopf
bifurcation from the limit cycle back into a stable
equilibrium.
Although motif 7 contains symmetry, the observability

and controllability measures appear unaffected by the
presence of this symmetry; further insight into why this
happens in such networks requires group representation
theory and is presented in Sec. V.

B. Motifs without symmetry

Local output symmetries occur in motifs 2 and 6 when
controlling from the first and second node, respectively
(green and blue traces in Fig. 6), which is remedied by the

disambiguating effect of parameter variation. Additionally,
as in the motifs with symmetry, the broken local sym-
metries lose controllability as coupling strength further
increases, evident in motifs 2 and 6 in Fig. 6. In the cases
where the indices are zero without symmetries (motifs 5, 6,
and 8 in Figs. 5 and 6), the motif must contain one or more
structurally isolated nodes and, hence, are not structurally
controllable or observable. From the viewpoint of observ-
ability, this means that information from the isolated node
(s) cannot reach the measured node as the two are not
connected in that direction [10,12]; for controllability, this
means that the isolated node(s) is not reached by the
controlled node due to the two not being connected in that
direction [7]. This structural nodal isolation is exemplified
in motif 8 (in Figs. 5 and 6), where the network is only
observable from node 1, and only controllable from node 3.
Additionally, the plots in Figs. 5 and 6 show counter-

intuitively that as coupling strength increases, the observ-
ability (controllability) indices can increase to an optimal
value, and then begin to decrease as coupling strength
increases past this critical coupling value.

V. SYMMETRIC NETWORK OBSERVABILITY
AND CONTROLLABILITY VIA GROUP

REPRESENTATION THEORY

For linear time-varying systems, Rubin and Meadows
[17] used the theory of group representations [16,19,20,48]

FIG. 6. Calculation of controllability indices for each of the FN network motifs with no underlying group symmetries for a limit-cycle
dynamical regime with constant input current I ¼ −0.45; all other details are the same as in Fig. 5. In particular, notice that local input-
output symmetries cause zero controllability when controlling motif 2 from node 1 or motif 6 from node 2.
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to show how a (circuit) network containing group sym-
metries would be noncontrollable or nonobservable due to
symmetries (termed NCS or NOS, respectively). The
analysis involves first determining the irreducible repre-
sentations of the symmetry group of the system equations,
then constructing an orthogonal basis (called a symmetry
basis) from the irreducible representations which trans-
forms the systemmatrix AðtÞ into block diagonal form (also
called modal form). Inspection of the fully transformed
system from Eq. (2) reveals if the NCS or NOS property is
present via zeros in a critical location of decoupled block-
diagonal decomposition ðÂ; B̂; ĈÞ, i.e., the form

d
dt

!
Z1

Z2

"
¼

!
A1 0

0 A2

"

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Â

!
Z1

Z2

"
þ
!
B1

0

"

|fflffl{zfflffl}
B̂

uðtÞ;

yðtÞ ¼
!
C1 0

"

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Ĉ

!
Z1

Z2

"
; ð19Þ

where the transformed system Eq. (19) in partitioned form
above is noncontrollable and nonobservable (not com-
pletely controllable or observable). This can be seen by
inspection, as the zeros present in the partitioned meas-
urement and control functions Ĉ and B̂ leave the

transformed system unable to measure or control the mode
associated with Z2 as neither uðtÞ or Z1 is present in the
equation for Z2, and Z2 does not appear in the output. In the
next section, we summarize the minimum background
components of groups and representations (without proofs)
in order to further gain insight into how symmetry effects
the controllability and observability of our networks.

A. Symmetric groups and representations

A symmetry operation on a network is a permutation
(in this case nodes) that results in exactly the same
configuration as before the transformation was applied.
The symmetric group Sn consists of all permutations on n
symbols, called the order of the group g ¼ n!. The short-
hand method of denoting a permutation operation R of
nodes in a network is written (123), where node 1 is
replaced by node 2 and node 2 by node 3. This is called a
cycle of the permutation [16], and with it we can define all
of the permutations of Sn. Three of the network motifs we
study here contain topological symmetries (Figs. 2–4);
motif 1 has S3 symmetry, motif 3 has S2 symmetry, and
motif 7 contains C3 symmetry (see Ref. [20] for a rigorous
classification of various forms of symmetry), and each of
these groups comprise the following sets of permutation
operations R:

FIG. 7. The three-dimensional phase space for v andw, showing trajectories inmotif 1 asmeasured fromnode 1 for a range of connection
strengths (weak to strong heterogeneous couplingK, from left to right, respectively). In the first row, blue triangles mark locations in phase
space where observability is higher than the mean for the trajectory, while the second row contains a phase space trajectory for w and red
triangles mark the higher than average controllability. The broken symmetry of the heterogeneous network has trajectories that visit
locations in the phase space that vary widely in observability and controllability with a log-normal distribution (see the Appendix).
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R∶ S3 ¼ fE; σ1; σ2; σ3; C3; C2
3g

¼ fE ¼ ð1Þð2Þð3Þ
σ1 ¼ ð23Þ; σ2 ¼ ð13Þ; σ3 ¼ ð12Þ
C3 ¼ ð132Þ; C2

3 ¼ ð123Þg; ð20Þ

where E is the identity operation, σn is a reflection across
the nth axis in Fig. 8, andC3 andC2

3 are two cyclic rotations
where Cn denotes a rotation of the system by 2π=n rad

where the system remains invariant after rotation [20]. S2
and C3 symmetry in motifs 3 and 7, respectively, are
subgroups of S3:

S2 ¼ fE; σ2g;
C3 ¼ fE;C3; C2

3g: ð21Þ

The permutation operations R in these symmetric groups
can also be represented by monomial matrices [49] DðRÞ:

2

64
1 0 0

0 1 0

0 0 1

3

75

E

2

64
1 0 0

0 0 1

0 1 0

3

75

σ1

2

64
0 0 1

0 1 0

1 0 0

3

75

σ2

2

64
0 1 0

1 0 0

0 0 1

3

75

σ3

2

64
0 1 0

0 0 1

1 0 0

3

75

C3

2

64
0 0 1

1 0 0

0 1 0

3

75

C2
3

; ð22Þ

where DðRÞ in Eq. (22) is a three-dimensional representa-
tion of S3 group symmetry (for our three node motifs); a
representationDðRÞ for S2 andC3 group symmetry are just
the matrices above in Eq. (22) corresponding to the sets of
group elements given in Eq. (21).
A group of matrices Dð·Þ is said to form a representation

of a group Sn if a correspondence (denoted ∼) exists
between the matrices and the group elements such that
products correspond to products; i.e., if R1 ∼DðR1Þ
and R2 ∼DðR2Þ, then the composition ðR1R2Þ ∼
DðR1ÞDðR2Þ ¼ DðR1R2Þ (Definition 12 in Ref. [17]); this
is known as a homomorphism of the group to be repre-
sented, and if the correspondence is one to one, the
representation is isomorphic and called a “faithful” repre-
sentation of the group.
Theorem 2 from Ref. [17] establishes the connection

between group theory and the linear network system
equations (2), by demonstrating that the monomial repre-
sentation DðRÞ of symmetry operations R is conjugate
(commutes) with the network system matrix A in Eq. (2):

D−1ðRÞAðtÞDðRÞ ¼ AðtÞ; ∀ R ∈ Sn; ð23Þ

where DðRÞ shows how the states of the system equations
transform under the symmetry operation R and form a

reducible representation [16,50] of the symmetric group
Sn. A representation is said to be reducible if it can be
transformed into a block-diagonal form via a similarity
transformation α, and irreducible if it is already in diagonal
form; a reducible representation DðRÞ that has been
reduced to block-diagonal form D̂ðRÞ will have k nonzero
submatrices along the diagonal that define the irreducible
representations DðpÞðRÞ; p ¼ 1;…; k of the group
Sn [17],

α†DðRÞα ¼ D̂ðRÞ; ∀ R ∈ Sn;

D̂ðRÞ ¼

2

6664

Dð1Þ
l1

0

. .
.

0 DðkÞ
lk

3

7775; ð24Þ

where † represents the complex conjugate transpose of α, lp
is the dimension of DðpÞðRÞ, and the number of irreducible
representations k equals the number of classes the group
elements R are partitioned into. This can be found by
computing the trace of each representation in DðRÞ, ∀R—
called the character of the representation—and collecting
those that have the same trace into separate classes Cp,
p ¼ 1;… ; k, which define sets of conjugate elements [20].
The character of DðRÞ is defined as

χðRÞ ¼ Tr½DðRÞ%; ∀ R ∈ Sn: ð25Þ

The key to forming irreducible representations in Eq. (24)
is that the transform α needs to reduce each representation
matrix DðRÞ to diagonal form for every group element R
in Sn.
In Eq. (24), the dimension of each irreducible repre-

sentation lp can be found from the fact that the irreducible
representations of the group form an orthogonal basis in the
g-dimensional space of the group, and since there can be no

FIG. 8. Graphic illustration of symmetry axes σn with n ¼
1; 2; 3 and the cyclic rotation symmetry C3 about an axis
perpendicular to the plane of the page.

WHALEN et al. PHYS. REV. X 5, 011005 (2015)

011005-10



more than g independent vectors in the orthogonal basis, it
can be shown [48] that

Xk

p¼1

l2p ¼ g; ð26Þ

where the sum is over the number of irreducible repre-
sentations (or classes of conjugate group elements) k. Some
of the irreducible representations DðpÞðRÞ will appear in
D̂ðRÞ more than once while others may not appear at all;
the character of the representation completely determines
this, and the number of times ap that DðpÞðRÞ appears in
D̂ðRÞ is defined in Ref. [20] as

ap ¼ 1

g

X

R

χðpÞðRÞ)χðRÞ; ð27Þ

where χðpÞðRÞ is the trace of DðpÞðRÞ, the asterisk denotes
complex conjugate, and χðRÞ is the trace of DðRÞ.

B. Construction of the similarity transform α

We examine motif 3 in Fig. 3, which has S2 symmetry
[51]. Determined from Eq. (25), there are two classes of
group elements C1 ¼ fEg and C2 ¼ fσ2g, and reduction of
DðRÞ yields the two, one-dimensional [l1 ¼ l2 ¼ 1 com-
puted from Eq. (26)] irreducible representations Dð1ÞðRÞ
and Dð2ÞðRÞ of S2:

R E σ2
Dð1ÞðRÞ 1 1

Dð2ÞðRÞ 1 −1
; ð28Þ

where each entry in DðpÞ corresponds to the elements of
DðRÞ above in Eq. (22), where R ¼ fE; σ2g as in Eq. (21),
and from Eq. (27), Dð1ÞðRÞ appears two times while
Dð2ÞðRÞ appears once in DðRÞ.
A procedure for transforming the reducible representa-

tion DðRÞ of a symmetry group Sn to block-diagonal form
is presented in Refs. [17,50]. A unitary transformation α is
constructed from the normalized linearly independent
columns of the n × n generating matrix GðpÞ

i ,

GðpÞ
i ¼

X

R

DðpÞðRÞ)iiDðRÞ; ð29Þ

where DðpÞðRÞii is the ði; iÞth diagonal entry of an lp-
dimensional irreducible representation p (hence,
i ¼ 1;…; lp) of the symmetry group Sn and the asterisk

denotes complex conjugate. Each matrix GðpÞ
i will con-

tribute ap linearly independent columns from Eq. (27) to
form the coordinate transformation matrix α. Using
Eqs. (28) and (29) and iterating through all lp rows of
each of the k irreducible representations in Eq. (24), we
construct α for motif 3:

Gð1Þ
1 ¼

X

R∈S2

Dð1ÞðRÞ)11DðRÞ

¼ 1

2

64
1 0 0

0 1 0

0 0 1

3

75þ 1

2

64
0 0 1

0 1 0

1 0 0

3

75 ¼

2

64
1 0 1

0 2 0

1 0 1

3

75;

ð30Þ

where each linearly independent column of G is a column
of α. After normalizing, we have

2

64
1

0

1

3

75;

2

64
0

2

0

3

75!
normalize

2

664

1ffiffi
2

p

0
1ffiffi
2

p

3

775;

2

64
0

1

0

3

75 ¼

2

64
α11 α21
α12 α22
α13 α23

3

75;

ð31Þ

which defines the first and second columns of α.
Continuing, we have

Gð2Þ
1 ¼

X

R∈S2

Dð2ÞðRÞ)11DðRÞ

¼ 1

2

64
1 0 0

0 1 0

0 0 1

3

75 − 1

2

64
0 0 1

0 1 0

1 0 0

3

75 ¼

2

64
1 0 −1
0 0 0

−1 0 1

3

75;

ð32Þ

which yields the final column of α (after normalization):

2

64
1

0

−1

3

75!
normalize

2

64

1ffiffi
2

p

0

− 1ffiffi
2

p

3

75 ¼

2

64
α31
α32
α33

3

75: ð33Þ

Now, the coordinate transformation matrix α is

α ¼

2

664

1ffiffi
2

p 0 1ffiffi
2

p

0 1 0
1ffiffi
2

p 0 − 1ffiffi
2

p

3

775: ð34Þ

Motif 3 in Fig. 3 has connection matrix A3:

A3 ¼

2

64
0 1 0

1 0 1

0 1 0

3

75: ð35Þ

To control from nodes 1, 2, and 3, respectively, the Bmatrix
takes the form
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B1;2;3 ¼

2

64
1

0

0

3

75;

2

64
0

1

0

3

75;

2

64
0

0

1

3

75; ð36Þ

and to observe from nodes 1, 2, and 3, respectively, the
C matrix takes the form

C1;2;3 ¼ ½ 1 0 0 %; ½ 0 1 0 %; ½ 0 0 1 %: ð37Þ

The block-diagonalized system ðÂ3; B̂; ĈÞ is formed with
the substitution Z ¼ α†x, and (A3; B; C) in Eqs. (35)–(37)
becomes

Â3∶ α†A3α ¼

2

64
0

ffiffiffi
2

p
0

ffiffiffi
2

p
0 0

0 0 0

3

75;

B̂∶ α†B1;2;3 ¼

2

664

1ffiffi
2

p

0
1ffiffi
2

p

3

775;

2

64
0

1

0

3

75;

2

664

1ffiffi
2

p

0
−1ffiffi
2

p

3

775;

Ĉ∶ C1;2;3α ¼
h

1ffiffi
2

p 0 1ffiffi
2

p
i
; ½ 0 1 0 %;

h
1ffiffi
2

p 0 −1ffiffi
2

p
i
.

ð38Þ

By inspection of the transformed system Eq. (38), it
becomes clear that motif 3 is noncontrollable and non-
observable from node 2 due to symmetry alone (NCS and
NOS); i.e. the transformed system in modal coordinates,

d
dt

2

64
Z1

Z2

Z3

3

75 ¼

2

64
0

ffiffiffi
2

p
0

ffiffiffi
2

p
0 0

0 0 0

3

75

2

64
Z1

Z2

Z3

3

75þ

2

64
0

1

0

3

75uðtÞ;

yðtÞ ¼ ½ 0 1 0 %

2

64
Z1

Z2

Z3

3

75; ð39Þ

is NCS and NOS as the mode associated with Z3 cannot be
reached by the input B̂2 nor can its measurement be inferred
from the output Ĉ2 as in Eq. (19).
The procedure to reduce motif 1 is accomplished in a

similar fashion (full computation of α is detailed in the
Appendix) and the connection matrix A1 and its reduced
form Â1 is

A1 ¼

2

64
0 1 1

1 0 1

1 1 0

3

75; Â1 ¼

2

64
2 0 0

0 −1 0

0 0 −1

3

75; ð40Þ

while the transformed B and C matrices in Eqs. (36) and
(37) are

B̂1;2;3 ¼

2

664

1ffiffi
3

p

ffiffi
2
3

q

0

3

775;

2

664

1ffiffi
3

p

−1ffiffi
6

p

1ffiffi
2

p

3

775;

2

664

1ffiffi
3

p

−1ffiffi
6

p

−1ffiffi
2

p

3

775; Ĉ123 ¼ B̂T
1;2;3: ð41Þ

At first glance, it appears that motif 1 is NCS and NOS for
measurement and control from node 1 only, and fully
controllable and observable from node 2 and 3; however,
there is a subtle nuance to the controllability and observ-
ability of the diagonal form used in Ref. [17] and
consolidated in Eq. (19) to show noncontrollability and
nonobservability by inspection.
It is well known that every nonsingular n × n matrix has

n eigenvalues λn, and that a matrix with repeated eigen-
values of algebraic multiplicity mi will have a degeneracy
1 ≤ qi ≤ mi associated with the number of linearly inde-
pendent eigenvectors for repeated eigenvalue λi. This
degeneracy qi is also called the geometric multiplicity of
λi, and is equal to the dimension of the null space of A − Iλi
[52]. When utilizing similarity transforms to reduce a
matrix to diagonal (modal) form, this degeneracy in the
eigenvectors (brought about by repeated eigenvalues)
results in a transformed matrix that is almost diagonal,
called the Jordan form matrix. The Jordan form is com-
posed of submatrices of dimension mi—called Jordan
blocks—that have ones on the superdiagonal of each
Jordan block Ji associated with the generalized eigenvec-
tors of a repeated eigenvalue λi. The diagonal form in
Eq. (19) is a special case of a Jordan form where the
matrices on the diagonal are Jordan blocks of dimension
one. This is known as the fully degenerate case with
qi ¼ mi, and the Jordan form will have mi separate 1×1
Jordan blocks associated with each eigenvalue λi.
The observability and controllability of systems in

Jordan form hinges on where the zeros appear in the
partitioned Ci and Bi matrices, where subscript i indicates a
partition associated with a particular Jordan block Ji. Given
in Refs. [52,53], the conditions for controllability and
observability of a system in Jordan form are: 1. The first
columns of Ci or the last rows of Bi must form a linearly
independent set of vectors fc11…c1qig or fb1e…bqieg
(subscript e indicates the last row) corresponding to the
qi Jordan blocks Jλi1 ' ' ' Jλiqi for repeated eigenvalue λi.
2. c1p ≠ 0 or bpe ≠ 0 when there is only one Jordan block
Jλip associated with eigenvalue λi. 3. For single output and
single input systems, the partitions of Ci and Bi are
scalars—which are never linearly independent—thus, each
repeated eigenvalue must have only one Jordan block Jλii
associated with it for observability or controllability,
respectively. From these criteria, we can now see that
the transformed system for motif 1 in Eq. (40) contains
three 1 × 1 Jordan blocks, two of which are associated with
the repeated eigenvalue λ2 ¼ −1, which violates condition
(3); thus, we conclude it is NCS and NOS.
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C. Motif 7 and networks containing
only rotation groups

In Ref. [17], it was shown how the rth component of α
vanishes according to the matrices DðpÞðRr

rÞ, where Rr
r

represents a subgroup of the group operations (R) that
transform the rth state variable into itself. Subsequently,
two theorems were proven that make use of this fact to
simplify the analysis of networks that have a single input or
output coupled only to the rth state variable, which is
precisely parallel to our analysis in Sec. IV. A paraphrasing
of Theorems 6 and 12 from Ref. [17] for controllability and
observability states that such a single input or output
network is NCS or NOS if and only if there is an irreducible
representation DðpÞðRÞ that appears in DðRÞ and

X

Rr
r

srrDðpÞðRr
rÞ)ii ¼ 0 ð42Þ

for some value of i, where srr is þ1 or −1 as Rr
r transforms

state variable xr into itself with a plus or minus sign [in our
motifs, DðRÞ is a permutation representation; thus,
srr ¼ þ1]. For this theorem to hold, the equality in
Eq. (42) must be checked for all possible p for DðpÞðRÞ
that appear in DðRÞ via Eq. (27).
Applying Eq. (42) to motif 7, the irreducible represen-

tations for C3 symmetry are

R E C3 C2
3

Dð1ÞðRÞ 1 1 1

Dð2ÞðRÞ 1 ω ω2

Dð3ÞðRÞ 1 ω2 ω

; ð43Þ

where ω ¼ e2πi=3. From the subset Eq. (21) of Eq. (22), we
find that the only operation Rr

r that leaves either node 1, 2,
or 3 (state variables x1, x2, or x3) invariant is just the
identity operation E, and it is straightforward to see that
Eq. (42) is not equal to 0 for all choices of p, i, and r since
there is only one group operation that leaves the rth state
variable invariant, Rr

r ¼ E, for r ¼ 1; 2; 3. Thus, motif 7
cannot be NCS or NOS and must be controllable and
observable from any node. Corollary 1 to Theorem 6 from
Ref. [17] contains and expands this result directly to any
network with only rotational symmetry (i.e., Cn groups),
with the caveat that a network with a state variable that is
invariant under all the group operations (motif 7 does not
have such a state variable) will be NCS and NOS if the
input and output are coupled to that variable.
These representation group theoretic results explain our

nonlinear results in Sec. IV, and clearly demonstrate that
different types of symmetry have different effects on the
controllability and observability of the networks containing
them. While we explicitly assume system matrices with
zeros on the diagonal (for simplicity of the calculations),
these results hold with generic entries on the diagonal as

long as those entries are chosen to preserve the symmetry
(e.g., the system matrix A for motif 1 and 7 has a11 ¼
a22 ¼ a33 and motif 3 has a11 ¼ a33, not shown).
Linearization of the system equations in Eq. (17) would
result in a system matrix A with a nonzero diagonal [9], and
is typically done in the analysis of nonlinear networks [18]
when utilizing such linear analysis techniques. Our com-
putational results demonstrate the utility of this approach in
providing insight into the controllability and observability
of complex nonlinear networks that have not been
linearized.

D. Application to structural controllability
and observability

It is interesting to note that the demonstration of our
results above and those in Ref. [17] complement and
expand Lin’s seminal theorems on structural controllability
[7]. Essentially, a network with system matrix A and input
function B [the pair ðA; BÞ] are assumed to have two types
of entries, nonzero generic entries and fixed entries which
are zero. The position of the zero entries leads to the notion
of the structure of the system, where different systems with
zeros in the same locations are considered structurally
equivalent. With this definition of structure, we arrive at the
definition for structural controllability, which states that a
pair ðA0; B0Þ is structurally controllable if and only if there
exists a controllable pair ðA00; B00Þwith the same structure as
ðA0; B0Þ. The major assumption of this work is that a system
deemed to be structurally controllable could indeed be
uncontrollable due to the specific entries in A and B, which
for a practical application are assumed to be uncertain
estimates of the system parameters and thus subject to
modification. While Lin’s theorems did not explicitly cover
symmetry, any network pair ðA;BÞ containing symmetry

FIG. 9. Histogram of the log-scaled controllability indices for
motif 1 with heterogeneous coupling and chaotic dynamics.
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implies constraints on the nonzero entries in ðA; BÞ, which
is necessary to guarantee that symmetry is present. Thus,
considering only Ref. [7], a network with symmetry could
be structurally controllable (observable [10]) as long as
the graph of the system contains no dilations (defined in the
Appendix) or isolated nodes, but NCS (NOS) due to the
symmetry. These two theorems together paint a more
complete picture of controllability (observability) than
either alone, as shown in Secs. IV and V, where both are
used in concert to explain and understand why certain
network motifs are not controllable or observable from
particular nodes. Structural controllability (observability) is
a more general result, as it does not depend on the explicit
nonzero entries of the system pair ðA; BÞ (necessary, but not
sufficient), while a network that has the NCS (NOS)
property is due to specific sets of the nonzero entries in
ðA;BÞ that define the symmetry contained by the system.
Additionally, Ref. [7] defined two structures called a

“stem” (our motif 8 controlled from node 3) and a “bud”
(our motif 7 controlled from any node), which are always
structurally controllable. While both are easily shown to be
structurally controllable [7], including Theorem 6 and its
Corollary 1 from Ref. [17], we can take this a step further
and declare that any “bud” network (of arbitrary size)
containing only rotations is not only structurally control-
lable, but also fully controllable (or never NCS). The dual
of these structures for observability is also defined
in Ref. [10], and Theorem 12 and its Corollary 1 from
Ref. [17] completes the statement in a similar fashion for
observability. Since networks containing only rotation
groups or “buds” in Lin’s terminology are always control-
lable, we see that in some cases symmetries alone will not
destroy the controllability of structurally controllable
networks.

VI. DISCUSSION

Despite the growing importance of exploring observ-
ability and controllability in complex graph-directed net-
works, there has been little exploration of nonlinear
networks with explicit symmetries. We here report, to
our knowledge, the first exploration of symmetries in
nonlinear networks, and show that observability and
controllability are a function of the specific type of
symmetry, the spatial location of nodes sampled or con-
trolled, the strength of the coupling, and the time evolution
of the system.
In networks with structural symmetries, group represen-

tation theory provides deep insights into how the specific
set of symmetry operations possessed by a network will
influence its observability and controllability and can aid in
controller or observer design by obtaining a modal decom-
position of the network equations into decoupled control-
lable and uncontrollable (observable and unobservable)
subspaces. This knowledge will permit the intelligent
placement of the minimum number of sensors and actuators

that render a system containing symmetry fully controllable
and observable. Additionally, breaking symmetry through
randomly altering the coupling strengths establishes sub-
stantial observability or controllability that was absent in
the fully symmetric case. In cases where increasing the
overall level of coupling strength decreases the observ-
ability (controllability), such strong coupling eventually
pushes the system towards or through a reverse Hopf
bifurcation from limit cycle to a stable equilibrium point,
where the lack of dynamic movement of the system then
severely decreases the observability (controllability).
Intuitively, this results from the Lie derivatives (brackets)
becoming small as the rate of change of the system
trajectories goes to zero. The sensitivity of observability
and controllability to the trajectories taken through phase
space implies that the choice of control input to a system
has to be selected carefully, as a poor choice could drive the
system into a region that has little to no controllability or
observability, thereby thwarting further control effort and/
or causing observation of the full system to be lost or
limited. Furthermore, when using an observer model for
observation or control, the regions of local high observ-
ability could be utilized to optimize the coupling of the
model to a real system by only estimating the full system
state when the system transverses observable regions of
phase space.
Observation (control) in motifs 2, 3, 4, 5, and 6 suggests

a relationship between the degree of connections into and
out of a node and its effective observability (controllabil-
ity). In general, the more direct connections into an
observed node, the higher the observability from that node,
and the duality suggests that the more direct number of
outgoing connections from a controlled node leads to
higher controllability than from other less connected nodes.
The high degree “hub” nodes were not the most effective
driver nodes in complex networks using linear theory [8],
and extending nonlinear results to more complex networks
with symmetries is a challenge for future work, which may
benefit from linear analysis of the connection topology
utilizing group representation theory.
When observing kinematics and dynamics of rigid body

mechanics obeying Newton’s laws with SEð3Þ group
symmetry, such symmetries must be preserved in con-
structing an observer (controller) [54]. In the observation of
graph-directed networks containing transitive networks,
one can observe from any point equivalently within such
transitive components [11]. In the control of graph-directed
networks, the minimum number of control points is related
to the maximal matching nodes [8]. In Ref. [55], contrac-
tion theory was used to determine symmetric synchronous
subspaces—these spaces actually correspond to our regions
without observability or controllability. In fact, the proof of
observability is that initial conditions and trajectories do
not contract [12]. Furthermore, it is clear that the groupoid
input equivalence classes (such as our motifs 6 and 7, see
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Fig. 21 in Ref. [56]) are not equivalently observable or
controllable—note that only one node can serve as an
observer node in motif 6 regardless of coupling strength
(see Fig. 5). Indeed, whether virtual networks [55] with
particular groupoid equivalent symmetries serve as detec-
tors of observability and controllability remains unresolved
at this time.
Our deep knowledge of symmetries and observers in

classical mechanics [54] does not readily translate to
graph-directed networks. No real-world network has exact
symmetries. Our topologically symmetric systems with
identical components are extreme cases, yet their study
reveals important differences in which types of sym-
metries are or are not observable and controllable.
Furthermore, in nonlinear systems, the quality of the
mappings from system to observer is the key to estimating
the degree of observability or controllability, and our
methods can give us insight for any network. Further
development of a theory of observability and control-
lability for nonlinear networks with symmetries is a vital
open problem for future work.
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APPENDIX

1. Construction of differential embedding map
and Lie brackets

As an example case, we begin constructing the observ-
ability matrix for motif 1 (shown in Fig. 2), where the
Fitzhugh-Nagmuo (FN) network equations form the non-
linear vector field f:

f

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

f1 ¼ c
!
v1 −

v3
1

3 − w1 þ
P
j¼2;3

fNLðvj; d1jÞ
"

f2 ¼ v1 − bw1 þ a

f3 ¼ c
!
v2 −

v32
3 − w2 þ

P
j¼1;3

fNLðvj; d2jÞ
"

f4 ¼ v2 − bw2 þ a

f5 ¼ c
!
v3 −

v33
3 − w3 þ

P
j¼1;2

fNLðvj; d3jÞ
"

f6 ¼ v3 − bw3 þ a;

ðA1Þ

and the measurement function for node 1 in motif 1 is
y ¼ CxðtÞ ¼ ½1; 0; 0; 0; 0; 0%xðtÞ ¼ v1. We construct the

differential embedding map by taking the Lie derivatives
Eq. (10) from L0

fðyÞ to L5
fðyÞ as

ϕ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ϕ1 ¼ y ¼ v1
ϕ2 ¼ ∂y

∂v1 · f1 ¼ f1

ϕ3 ¼ ∂ϕ2

∂v1 f1 þ
∂ϕ2

∂w1
f2 þ ∂ϕ2

∂v2 f3 þ ' ' ' þ ∂ϕ2

∂w3
f6

ϕ4 ¼ ∂ϕ3

∂v1 f1 þ
∂ϕ3

∂w1
f2 þ ∂ϕ3

∂v2 f3 þ ' ' ' þ ∂ϕ3

∂w3
f6

ϕ5 ¼ ∂ϕ4

∂v1 f1 þ
∂ϕ4

∂w1
f2 þ ∂ϕ4

∂v2 f3 þ ' ' ' þ ∂ϕ4

∂w3
f6

ϕ6 ¼ ∂ϕ5

∂v1 f1 þ
∂ϕ5

∂w1
f2 þ ∂ϕ5

∂v2 f3 þ ' ' ' þ ∂ϕ5

∂w3
f6;

ðA2Þ

where ∂ϕi=∂xj is the partial derivative of the ith row of the
embedding map ϕ, with respect to the jth state variable.
We obtain the observability matrix by taking the Jacobian
of Eq. (A2). In this FN network, the observability matrix
is dependent on the state variables and is thus a function of
the location in phase space as the system evolves in time.
Letellier et al. [28] used averages of the observability
index over the state trajectories in phase space as a
qualitative measure of observability. We adopt this con-
vention when computing observability of various network
motifs. The indices are computed for each time point in
the trajectory, and then the average is taken over all of the
trajectories.
Constructing the nonlinear controllability matrix for

motif 1 from node 1 begins with the control input function
g ¼ BuðtÞ ¼ ½1; 0; 0; 0; 0; 0%T and its Lie bracket with
respect to the nonlinear vector field f in Eq. (A1). We
exclude the internal driving square wave function here
since it is connected to all three nodes, would provide no
contribution in the Lie bracket mapping, and we are
interested in the mapping from the control input g to
the states in order to determine if the system can be
controlled:

½f;g% ¼ ∂g
∂x f|{z}

0

−
∂f
∂xg ¼

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

− ∂f1
∂v1 g1 − ' ' ' − ∂f1

∂w3
g6

− ∂f2
∂v1 g1 − ' ' ' − ∂f2

∂w3
g6

− ∂f3
∂v1 g1 − ' ' ' − ∂f3

∂w3
g6

− ∂f4
∂v1 g1 − ' ' ' − ∂f4

∂w3
g6

− ∂f5
∂v1 g1 − ' ' ' − ∂f5

∂w3
g6

− ∂f6
∂v1 g1 − ' ' ' − ∂f6

∂w3
g6;

ðA3Þ

where ∂g=∂x ¼ 0 since g is the same at each node,
∂fi=∂xj is the partial derivative of the ith row of the
nonlinear vector field fðxÞ with respect to the jth state
variable, and gi is the ith component of the input vector g.
We construct the controllability matrix from the defini-
tions in Eqs. (14) and (15), as the control input function g
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and its higher Lie brackets from ðad1f ;gÞ to ðad5f ;gÞ with
respect to the nonlinear vector field system equations:

Q ¼ ½g; ½f;g%; ½f; ½f;g%%; ðad3f ;gÞ; ðad4f ;gÞ; ðad5f ;gÞ %:
ðA4Þ

2. Observability and controllability index distribution

Log-scaled histograms (Fig. 9) of the index distribu-
tions reveal that the local observability (controllability)
along the trajectories in phase space are close to a log-
normal distribution. After removing zeros from the data,
these log-normal distribution fits are computed and
verified with the χ2 test metric for all of the observability
and controllability computation cases that contain an
adequate number of data points to accurately compute
the fit (over 90% of the data). The χ2 test for goodness of
fit confirms that the data come from a log-normal
distribution with 95% confidence level. This type of
zeros-censored log-normal distribution is known as a
delta distribution [57], and the estimated mean κ and
variance ρ2 are adjusted to account for the proportion of
data points that are zero, δ, as follows:

δ ¼ #fi∶xi ¼ 0g
n

;

κ ¼ ð1 − δÞeμþ0.5σ2 ;

ρ2 ¼ ð1 − δÞe2μþσ2 ½eσ2 − ð1 − δÞ%; ðA5Þ

where μ and σ are the mean and variance associated with
the log-normal distribution computed from the nonzero
data. We use these equations to compute the statistics in
the plots in Sec. IV (Figs. 2–7).

3. Group representation analysis of symmetries
in motif 1

We examine motif 1 in Fig. 8, which has S3 symmetry.
Determined from Eq. (25), there are three classes of group
elements C1 ¼ fEg, C2 ¼ fσ1; σ2; σ3g, and C3 ¼ fC3; C2

3g.
Reduction of DðRÞ yields the two, one-dimensional and
one two-dimensional (l1 ¼ l2 ¼ 1; l3 ¼ 2) irreducible rep-
resentations [computed from Eq. (26)] Dð1ÞðRÞ, Dð2ÞðRÞ,
and Dð3ÞðRÞ of S3, which are found in Table I and from
Eq. (27) appear 1, 0, and 2 times in DðRÞ, respectively.
Forming the generating matrix in Eq. (29), we construct α
for motif 1 as follows:

Gð1Þ
1 ¼

X

R∈S3

Dð1ÞðRÞ)11DðRÞI

¼ 1

2

64
1 0 0

0 1 0

0 0 1

3

75þ 1

2

64
1 0 0

0 0 1

0 1 0

3

75þ 1

2

64
0 0 1

0 1 0

1 0 0

3

75þ ' ' '

1

2

64
0 1 0

1 0 0

0 0 1

3

75þ 1

2

64
0 1 0

0 0 1

1 0 0

3

75þ 1

2

64
0 0 1

1 0 0

0 1 0

3

75

¼

2

64
2 2 2

2 2 2

2 2 2

3

75; ðA6Þ

where each linearly independent row of G is a column of α,
and thus,

2

64
2

2

2

3

75!
normalize

2

664

1ffiffi
3

p

1ffiffi
3

p

1ffiffi
3

p

3

775 ¼

2

64
α11
α12
α13

3

75 ðA7Þ

defines the first column of α. We know from Eq. (27) that
Dð2ÞðRÞ appears zero times in DðRÞ and thus yields no
contribution to α. Continuing, we have the last two
computations from the two-dimensional irreducible repre-
sentation Dð3Þ (one for each row),

Gð3Þ
1 ¼

X

R∈S3

Dð3ÞðRÞ)11DðRÞI

¼ 1

2

64
1 0 0

0 1 0

0 0 1

3

75− 1

2

64
1 0 0

0 0 1

0 1 0

3

75þ 1

2

2

64
0 0 1

0 1 0

1 0 0

3

75þ ' ' '

¼

2

64
0 0 0

0 3
2 − 3

2

0 − 3
2

3
2

3

75; ðA8Þ

which after normalization yields

TABLE I. Irreducible representations for S3 symmetry.

R E σ1 σ2 σ3 C3 C2
3

Dð1ÞðRÞ 1 1 1 1 1 1
Dð2ÞðRÞ 1 −1 −1 −1 1 1

Dð3ÞðRÞ
h
1 0
0 1

i h−1 0
0 1

i "
1
2 −

ffiffi
3

p

2

−
ffiffi
3

p

2 − 1
2

# "
1
2

ffiffi
3

p

2ffiffi
3

p

2 − 1
2

# "
− 1

2 −
ffiffi
3

p

2ffiffi
3

p

2 − 1
2

# "
− 1

2

ffiffi
3

p

2

−
ffiffi
3

p

2 − 1
2

#

WHALEN et al. PHYS. REV. X 5, 011005 (2015)

011005-16



2

664

0
3
2

− 3
2

3

775!normalize

2

664

0
1ffiffi
2

p

− 1ffiffi
2

p

3

775 ¼

2

64
α21
α22
α23

3

75; ðA9Þ

and

Gð3Þ
2 ¼

X

R∈S3

Dð3ÞðRÞ)22DðRÞI

¼ 1

2

64
1 0 0

0 1 0

0 0 1

3

75þ 1

2

64
1 0 0

0 0 1

0 1 0

3

75−
1

2

2

64
0 0 1

0 1 0

1 0 0

3

75þ ' ' '

¼

2

64
2 −1 −1
−1 1

2
1
2

−1 1
2

1
2

3

75 ðA10Þ

yields the last column of α (after normalization),

2

64
2

−1
−1

3

75!
normalize

2

664

2

− 1ffiffi
6

p

− 1ffiffi
6

p

3

775 ¼

2

64
α31
α32
α33

3

75: ðA11Þ

Finally, the coordinate transformation matrix α is

α ¼

2

6664

1ffiffi
3

p 2ffiffi
6

p 0

1ffiffi
3

p − 1ffiffi
6

p 1ffiffi
2

p

1ffiffi
3

p − 1ffiffi
6

p − 1ffiffi
2

p

3

7775; ðA12Þ

and the computation is concluded in Sec. V B.

4. Dilations of the graph of ðA;BÞ
In Ref. [7], the graph G of the pair ðA;BÞ is defined as a

graph of nþ 1 nodes e1; e2;… ; enþ1, where n is the
dimension of A and enþ1 is called the “origin” (the input).
The vertex set S ¼ fe1; e2;… ; eng is defined as the set of
all nodes in G excluding the origin (enþ1). A dilation is
present in G if and only if jTðSÞj < jSj, where TðSÞ is
defined as the set of all nodes that have a directed edge
pointing to a node in the set S.

[1] S. J. Schiff, Neural Control Engineering (MIT Press,
Cambridge, MA, 2012).

[2] H. U. Voss, J. Timmer, and J. Kurths, Nonlinear Dynamical
System Identification from Uncertain and Indirect Mea-
surements, Int. J. Bifurcation Chaos Appl. Sci. Eng. 14,
1905 (2004).

[3] T. D. Sauer and S. J. Schiff, Data Assimilation for Hetero-
geneous Networks: The Consensus Set, Phys. Rev. E 79,
051909 (2009).

[4] E. Kalnay, Atmospheric Modeling, Data Assimilation and
Predictability (Cambridge University Press, Cambridge,
England, 2003).

[5] R. E. Kalman,Mathematical Description of Linear Dynami-
cal Systems, SIAM J. Control 1, 152 (1963).

[6] D. G. Luenberger, An Introduction to Observers, IEEE
Trans. Autom. Control 16, 596 (1971).

[7] C.-T. Lin, Structural Controllability, IEEE Trans. Autom.
Control 19, 201 (1974).

[8] Y. Y. Liu, J. J. Slotine, and A. L. Barabási, Controllability
of Complex Networks, Nature (London) 473, 167 (2011).

[9] N. J. Cowan, E. J. Chastain, D. A. Vilhena, J. S. Freudenberg,
and C. T. Bergstrom, Nodal Dynamics, Not Degree Distri-
butions, Determine the Structural Controllability of Complex
Networks, PLoS One 7, e38398 (2012).

[10] C. Rech and R. Perret, Structural Observability of Inter-
connected Systems, Int. J. Syst. Sci. 21, 1881 (1990).

[11] Y. Y. Liu, J. J. Slotine, and A. L. Barabási, Observability of
Complex Systems, Proc. Natl. Acad. Sci. U.S.A. 110, 2460
(2013).

[12] R. Joly, Observation and Inverse Problems in Coupled Cell
Networks, Nonlinearity 25, 657 (2012).

[13] H. Weyl, Symmetry (Princeton University Press, Princeton,
NJ, 1952).

[14] M. Golubitsky, D. Romano, and Y. Wang, Network Periodic
Solutions: Patterns of Phase-Shift Synchrony, Nonlinearity
25, 1045 (2012).

[15] P. J. Uhlhaas and W. Singer, Neural Synchrony in Brain
Disorders: Relevance for Cognitive Dysfunctions and
Pathophysiology, Neuron 52, 155 (2006).

[16] W. Burnside, Theory of Groups of Finite Order (Dover,
New York, 1955).

[17] H. Rubin and H. E. Meadows, Controllability and Observ-
ability in Linear Time-Variable Networks With Arbitrary
Symmetry Groups, Bell Syst. Tech. J. 51, 507 (1972).

[18] L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E.
Murphy, and R. Roy, Cluster Synchronization and Isolated
Desynchronization in Complex Networks with Symmetries
Nat. Commun. 5, 4079 (2014).

[19] E. P. Wigner, Group Theory and its Application to the
Quantum Mechanics of Atomic Spectra (Academic,
New York, 1959), pp. 58–124.

[20] M. Tinkham, Group Theory and Quantum Mechanics
(McGraw-Hill, San Francisco, 1964), pp. 50–61.

[21] S. P. Cornelius, W. L. Kath, and A. E. Motter, Realistic Con-
trol of Network Dynamics, Nat. Commun., 4, 1942 (2013).

[22] H. Whitney, Differentiable Manifolds, Ann. Math. 37, 645
(1936).

[23] F. Takens,Detecting Strange Attractors in Turbulence, Lect.
Notes Math. 898, 366 (1981).

[24] T. Sauer, J. A. Yorke, and M. Casdagli, Embedology, J. Stat.
Phys. 65, 579 (1991).

[25] C. Letellier, L. Aguirre, and J. Maquet, Relation between
Observability and Differential Embeddings for Nonlinear
Dynamics, Phys. Rev. E 71, 066213 (2005).

[26] B. Friedland, Controllability Index Based on Conditioning
Issue, J. Dyn. Syst., Meas., Control 97, 444 (1975).

[27] J. F. Gibson, J. D. Farmer, M. Casdagli, and S. Eubank, An
Analytic Approach to Practical State Space Reconstruction,
Physica (Amsterdam) 57D, 1 (1992).

OBSERVABILITY AND CONTROLLABILITY OF … PHYS. REV. X 5, 011005 (2015)

011005-17

http://dx.doi.org/10.1142/S0218127404010345
http://dx.doi.org/10.1142/S0218127404010345
http://dx.doi.org/10.1103/PhysRevE.79.051909
http://dx.doi.org/10.1103/PhysRevE.79.051909
http://dx.doi.org/10.1137/0301010
http://dx.doi.org/10.1109/TAC.1971.1099826
http://dx.doi.org/10.1109/TAC.1971.1099826
http://dx.doi.org/10.1109/TAC.1974.1100557
http://dx.doi.org/10.1109/TAC.1974.1100557
http://dx.doi.org/10.1038/nature10011
http://dx.doi.org/10.1371/journal.pone.0038398
http://dx.doi.org/10.1080/00207729008910506
http://dx.doi.org/10.1073/pnas.1215508110
http://dx.doi.org/10.1073/pnas.1215508110
http://dx.doi.org/10.1088/0951-7715/25/3/657
http://dx.doi.org/10.1088/0951-7715/25/4/1045
http://dx.doi.org/10.1088/0951-7715/25/4/1045
http://dx.doi.org/10.1016/j.neuron.2006.09.020
http://dx.doi.org/10.1002/j.1538-7305.1972.tb01933.x
http://dx.doi.org/10.1038/ncomms5079
http://dx.doi.org/10.1038/ncomms2939
http://dx.doi.org/10.2307/1968482
http://dx.doi.org/10.2307/1968482
http://dx.doi.org/10.1007/BFb0091903
http://dx.doi.org/10.1007/BFb0091903
http://dx.doi.org/10.1007/BF01053745
http://dx.doi.org/10.1007/BF01053745
http://dx.doi.org/10.1103/PhysRevE.71.066213
http://dx.doi.org/10.1115/1.3426963


[28] C. Letellier, J. Maquet, L. L. Sceller, G. Gouesbet, and L. A.
Aguirre, On the Non-Equivalence of Observables in Phase-
Space Reconstructions from Recorded Time Series, J. Phys.
A 31, 7913 (1998).

[29] G.W. Haynes and H. Hermes, Nonlinear Controllability via
Lie Theory, SIAM J. Control 8, 450 (1970).

[30] R. Hermann and A. Krener, Nonlinear Controllability and
Observability, IEEE Trans. Autom. Control 22, 728 (1977).

[31] C. Letellier and L. A. Aguirre, Investigating Nonlinear
Dynamics from Time Series: The Influence of Symmetries
and the Choice of Observables, Chaos 12, 549 (2002).

[32] L. M. Pecora and T. L. Carroll, Synchronization in Chaotic
Systems, Phys. Rev. Lett. 64, 821 (1990).

[33] T. Kailath, Linear Systems (Prentice-Hall, Upper Saddle
River, NJ, 1980).

[34] E. N. Lorenz, Deterministic Nonperiodic Flow, J. Atmos.
Sci. 20, 130 (1963).

[35] O. E. Rössler, An Equation for Continuous Chaos, Phys.
Lett. A 57, 397 (1976).

[36] G. Strang, Linear Algebra and Its Applications, 4th ed.
(Brooks-Cole, St. Paul, MN, 2005).

[37] L. A. Aguirre, Controllability and Observability of Linear
Systems: Some Noninvariant Aspects, IEEE Trans. Ed. 38,
33 (1995).

[38] R Fitzhugh, Impulses and Physiological States in Theoreti-
cal Models of Nerve Membrane, Biophys. J. 1, 445 (1961).

[39] J. Nagumo, S. Arimoto, and S. Yoshizawa, An Active Pulse
Transmission Line Simulating Nerve Axon, Proc. IRE 50,
2061 (1962).

[40] A. L. Hodgkin and A. F. Huxley, A Quantitative Description
of Membrane Current and Its Application to Conduction
and Excitation in Nerve, J. Physiol. 117, 500 (1952).

[41] S. Doi and S. Sato, The Global Bifurcation Structure of the
BVP Neuronal Model Driven by Periodic Pulse Trains,
Math. Biosci. 125, 229 (1995).

[42] C. Koch and I. Segev, Methods in Neuronal Modeling: From
Ions to Networks, 2nd ed. (MIT Press, Cambridge, MA, 2003).

[43] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D.
Chklovskii, and U. Alon, Network Motifs: Simple Building
Blocks of Complex Networks, Science 298, 824 (2002).

[44] S. Song, P. J. Sjöström, M. Reigl, S. Nelson, and D. B.
Chklovskii, Highly Nonrandom Features of Synaptic

Connectivity in Local Cortical Circuits, PLoS Biol. 3,
0507 (2005).

[45] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevX.5.011005 for code
archive to facilitate replication of our results.

[46] E. Ott and J. C. Sommerer, Blowout Bifurcations: The
Occurrence of Riddled Basins and On-Off Intermittency,
Phys. Lett. A 188, 39 (1994).

[47] S. J. Schiff, P. So, T. Chang, R. E. Burke, and T Sauer,
Detecting Dynamical Interdependence and Generalized Syn-
chrony through Mutual Prediction in a Neural Ensemble,
Phys. Rev. E 54, 6708 (1996).

[48] M. Hamermesh, Group Theory (Addison-Wesley, Reading,
MA, 1962), pp. 1–127.

[49] A monomial matrix has only one nonzero entry per row and
column. In this case, permutation operations limit those
values to either þ1 or −1.

[50] D. M. Kerns, Analysis of Symmetrical Waveguide Junctions,
J. Res. Natl. Bur. Stand. 46, 267 (1951).

[51] For purposes of clarity, we simplify the presentation of the
computation of α for our motifs where there is only one set
of network nodes that can be permuted among themselves.
For the more general case where the group operations R are
separated into subgroups corresponding to different sets of
permutable network nodes (e.g., RLC networks or different
neuron types), see Ref. [17].

[52] W. L. Brogan, Modern Control Theory (Prentice-Hall,
Englewood Cliffs, NJ, 1974), pp. 321–326.

[53] J. S. Bay, Fundamentals of Linear State Space Systems
(McGraw-Hill, San Francisco, 1999), pp. 321–326.

[54] S. Bonnabel, P. Martin, and P. Rouchon, Symmetry-
Preserving Observers, IEEE Trans. Autom. Control 53,
2514 (2008).

[55] G. Russo and J.-J. E. Slotine, Symmetries, Stability, and
Control in Nonlinear Systems and Networks, Phys. Rev. E
84, 041929 (2011).

[56] M. Golubitsky and I. Stewart, Nonlinear Dynamics of
Networks: The Groupoid Formalism, Bull. Am. Math.
Soc. 43, 305 (2006).

[57] J. Aitchison and J. A. C. Brown, The Lognormal Distribu-
tion (Cambridge University Press, Cambridge, England,
1957), pp. 94–97.

WHALEN et al. PHYS. REV. X 5, 011005 (2015)

011005-18

http://dx.doi.org/10.1088/0305-4470/31/39/008
http://dx.doi.org/10.1088/0305-4470/31/39/008
http://dx.doi.org/10.1137/0308033
http://dx.doi.org/10.1109/TAC.1977.1101601
http://dx.doi.org/10.1063/1.1487570
http://dx.doi.org/10.1103/PhysRevLett.64.821
http://dx.doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
http://dx.doi.org/10.1016/0375-9601(76)90101-8
http://dx.doi.org/10.1016/0375-9601(76)90101-8
http://dx.doi.org/10.1109/13.350218
http://dx.doi.org/10.1109/13.350218
http://dx.doi.org/10.1016/S0006-3495(61)86902-6
http://dx.doi.org/10.1109/JRPROC.1962.288235
http://dx.doi.org/10.1109/JRPROC.1962.288235
http://dx.doi.org/10.1113/jphysiol.1952.sp004764
http://dx.doi.org/10.1016/0025-5564(94)00035-X
http://dx.doi.org/10.1126/science.298.5594.824
http://dx.doi.org/10.1371/journal.pbio.0030068
http://dx.doi.org/10.1371/journal.pbio.0030068
http://link.aps.org/supplemental/10.1103/PhysRevX.5.011005
http://link.aps.org/supplemental/10.1103/PhysRevX.5.011005
http://link.aps.org/supplemental/10.1103/PhysRevX.5.011005
http://link.aps.org/supplemental/10.1103/PhysRevX.5.011005
http://link.aps.org/supplemental/10.1103/PhysRevX.5.011005
http://link.aps.org/supplemental/10.1103/PhysRevX.5.011005
http://link.aps.org/supplemental/10.1103/PhysRevX.5.011005
http://dx.doi.org/10.1016/0375-9601(94)90114-7
http://dx.doi.org/10.1103/PhysRevE.54.6708
http://dx.doi.org/10.6028/jres.046.029
http://dx.doi.org/10.1109/TAC.2008.2006929
http://dx.doi.org/10.1109/TAC.2008.2006929
http://dx.doi.org/10.1103/PhysRevE.84.041929
http://dx.doi.org/10.1103/PhysRevE.84.041929
http://dx.doi.org/10.1090/S0273-0979-06-01108-6
http://dx.doi.org/10.1090/S0273-0979-06-01108-6

