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Methods of data assimilation are established in physical sciences and engineering for the merging of
observed data with dynamical models. When the model is nonlinear, methods such as the ensemble Kalman
filter have been developed for this purpose. At the other end of the spectrum, when a model is not known,
the delay coordinate method introduced by Takens has been used to reconstruct nonlinear dynamics. In this
article, we merge these two important lines of research. A model-free filter is introduced based on the
filtering equations of Kalman and the data-driven modeling of Takens. This procedure replaces the model
with dynamics reconstructed from delay coordinates, while using the Kalman update formulation to
reconcile new observations. We find that this combination of approaches results in comparable efficiency to
parametricmethods in identifying underlying dynamics, andmay actually be superior in cases ofmodel error.
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I. INTRODUCTION

Data assimilation plays an increasingly important role in
nonlinear science, as ameans of inferring unobservedmodel
variables and constraining unknown parameters. Use of the
extended Kalman filter and ensemble Kalman filter (EnKF)
is now standard in a wide range of geophysical problems
[1–5] and several areas of physical and biological sciences
where spatiotemporal dynamics is involved [6–9].
When a physically motivated model is available, para-

metric forecasting methods can be used in a variety of
applications in noise filtering, prediction, and control of
systems. Nonlinear approaches to filtering [1,2,10,11]
allow forecasting models to use the model equations to
develop close to optimal predictions. Even if some vari-
ables are not observable, they may be reconstructed,
provided that their model equations are known.
In other cases, a model may not be available, or available

models may be poor. In geophysical processes, basic
principles may constrain a variable in terms of other driving
variables in a way that is well understood, but the driving
variables may be unmodeled or modeled with large error
[12–15]. In numerical weather prediction codes, physics on
the large scale is typically sparsely modeled [16,17]. Some
recent work has considered the case where only a partial
model is known [18,19].
When a physical model is completely unavailable,

Takens’s method of attractor reconstruction [20–23] has

become the foundation of nonparametric time series pre-
diction methods. Under suitable genericity hypotheses, the
dynamical attractor may be represented by delay coordinate
vectors built from the time series observations, and methods
of prediction, control, and other applications from chaotic
time series have been developed [24–26]. In particular, time
series prediction algorithms locate the current position in the
delay coordinate representation and use analogs from
previously recorded data to establish a predictive statistical
model, which can be accomplished in several ways [27–40].
In this article, we propose a “Kalman-Takens” method of

data analysis that is able to filter a noisy time series without
access to amodel.We replace themodel equations governing
the evolution of the system, which are assumed to be known
in standard data assimilation methods, with advancement of
the dynamics nonparametrically using delay-coordinate
vectors. We find that the Kalman-Takens algorithm as
proposed in this article is able in many cases to filter noisy
data at a rate comparable to parametric filtering methods that
have full access to the exact model. In one sense, this is no
surprise: The content of Takens’s theorem is that, in the large
data limit, the equations can be replaced by the data. But
particularly surprising is the fact that by implementing the
Kalman update, the nonparametric representation of the
dynamics is able to handle substantial noise in the observed
data.Moreover, in cases where the parametric filter is subject
tomodel error, we see that theKalman-Takens approachmay
exhibit superior results.
Throughout this paper we assume availability of a noisy

set of historical data for which there is no model. The goal
is to use this historical data set to predict future values using
one of the many established nonparametric prediction
methods. Our objective is to first filter these noisy obser-
vations using the Kalman-Takens algorithm and reconstruct

*tsauer@gmu.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW X 6, 011021 (2016)

2160-3308=16=6(1)=011021(12) 011021-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevX.6.011021
http://dx.doi.org/10.1103/PhysRevX.6.011021
http://dx.doi.org/10.1103/PhysRevX.6.011021
http://dx.doi.org/10.1103/PhysRevX.6.011021
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


the underlying signal, which will allow for increased
predictive capability. We compare this novel approach to
filtering, which does not use any model, to the ideal
scenario, which assumes that the perfect model is known,
as well as to scenarios that include model error.
Nonparametric forecasting has received renewed interest

recently [18,19,41,42]; however, all of these methods
have impractically large data requirements for intrinsically
high-dimensional dynamics. Indeed, the approaches of

Refs. [18,19] are based on combining a partially known
or imperfect model with nonparametric methods in order to
overcome the high dimensionality that is present in many
practical problems. While solving the forecasting problem
requires representing the entire dynamical system, the filter-
ing problem requires only the ability to perform a short-term
forecast (until the next observation becomes available).
We demonstrate this fact in Fig. 1 by filtering the

Lorenz-96 spatiotemporal dynamical system without any

10
20
30
40

10
20
30
40

10
20
30
40

Time
05040302010

10
20
30
40

-5 0 5 10

10
20
30
40

10
20
30
40

Time
10 20 30 40 50

10
20
30
40

0198765

FIG. 1. Results of filtering the full 40-dimensional Lorenz-96 system. (a) Spatiotemporal plot of the system dynamics. The horizontal
axis represents time, and the vertical axis represents the spatial position. From top to bottom, (1) the true system trajectory,
(2) observations perturbed by 100% noise, (3) Kalman-Takens output, and (4) parametric filter output. (b) Spatiotemporal plot of the
resulting absolute errors. For readability, only absolute errors greater than 5 are shown. From top to bottom, error in (1) the observed
signals, (2) Kalman-Takens output, and (3) parametric filter output.
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knowledge of the underlying model. The Lorenz-96 system
represents a simplified weather system on a midlatitude and
is a common benchmark for spatiotemporal filtering
methods due to its chaotic dynamics and moderate dimen-
sionality. Notice that the Kalman-Takens filter does not
equal the performance of the parametric filter; however, this
should be expected since the parametric method is given
full knowledge of the true model whereas the Kalman-
Takens filter has only the short noisy training data set from
which to learn the dynamics.
One key application of the Kalman-Takens filter is to

data sets where one has no knowledge of the underlying
dynamics. However, we also show that the proposed
approach has significant advantages when the true model
is known, but imperfectly. In Secs. III and IV, we show that
the filter has only a small loss of performance compared to
parametric methods that have the perfect model. In
exchange for this small loss of performance compared to
perfect knowledge, the Kalman-Takens method offers
extreme robustness to model error. Since we make no
model assumption at all, the results are free from the biases
these strong assumptions introduce. In Sec. V, we demon-
strate the advantage of the new approach by showing that
introducing a small amount of model error (by simply
perturbing parameters) leads to the parametric filtering
methods being outperformed by the Kalman-Takens filter.
We return to the Lorenz-96 example at the end of Sec. IV.
As a precursor to this article, we note that Kalman

filtering was used in Ref. [43] to fit parameters of a global
radial basis function model based at unstable fixed points in
delay coordinates, which were in turn estimated by another
method. In contrast, our approach is in the spirit of fully
nonparametric statistics.

II. KALMAN-TAKENS FILTER

The standard Kalman filtering context assumes a
nonlinear system with n-dimensional state vector x and
m-dimensional observation vector y defined by

xkþ1 ¼ fðxk; tkÞ þ wk;

yk ¼ gðxk; tkÞ þ vk; ð1Þ

where f and g are known, and where wk and vk are white
noise processes with covariance matrices Q and R, respec-
tively. The ensemble Kalman filter approximates a non-
linear system by forming an ensemble, such as through the
unscented transformation (see, for example, Ref. [44]).
Here, we initialize the filter with state vector xþ0 ¼ 0n×1 and
covariance matrix Pþ

0 ¼ In×n. At the kth step of the filter
there is an estimate of the state xþk−1 and the covariance
matrix Pþ

k−1. In the unscented version of EnKF, the singular
value decomposition is used to find the symmetric positive
definite square root Sþk−1 of the matrix Pþ

k−1, allowing us to

form an ensemble of E state vectors where the ith ensemble
member is denoted xþi;k−1.
The model f is applied to the ensemble, advancing it one

time step, and then observed with function g. The mean of
the resulting state ensemble gives the prior state estimate
x−k , and the mean of the observed ensemble is the predicted
observation y−k . Denoting the covariance matrices P−

k and
Py
k of the resulting state and observed ensemble, and the

cross-covariance matrix Pxy
k between the state and observed

ensembles, we define

P−
k ¼

XE
i¼1

ðx−ik − x−k Þðx−ik − x−k ÞT þQ;

Py
k ¼

XE
i¼1

ðy−ik − y−k Þðy−ik − y−k ÞT þ R;

Pxy
k ¼

XE
i¼1

ðx−ik − x−k Þðy−ik − y−k ÞT; ð2Þ

and use the equations

Kk ¼ Pxy
k ðPy

kÞ−1;
Pþ
k ¼ P−

k − Pxy
k ðPy

kÞ−1Pyx
k ;

xþk ¼ x−k þ Kkðyk − y−k Þ ð3Þ

to update the state and covariance estimates with the
observation yk. We refer to this throughout as the para-
metric filter, since a full set of model equations is assumed
to be known. In some cases Q and R are not known; an
algorithm was developed in Ref. [9] for adaptive estimation
ofQ and R. A brief description of this algorithm is included
in the Appendix.
Contrary to Eq. (1), our assumption in this article is that

neither the model f nor observation function g is known,
making outright implementation of the EnKF impossible.
Instead, the filter we describe here requires no model while
still leveraging the Kalman update described in Eq. (3).
The idea is to replace the system evolution, traditionally
done through application of f, with advancement of dynam-
ics nonparametrically using delay-coordinate vectors. We
describe this method with the assumption that a single
variable is observable, say, y, but the algorithm can be easily
generalized to multiple system observables. In addition, we
assume in our examples that noise covariances Q and R are
unknown and are updated adaptively as in Ref. [9].
Given the observable yk, consider the delay-coordinate

vector xk ¼ ½yk; yk−1;…; yk−d�, where d is the number of
delays. This delay vector xk represents the state of the
system [20,22]. At each step of the filter an ensemble of
delay vectors is formed. However, the advancement of the
ensemble one time step forward requires a nonparametric
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technique to serve as a local proxy ~f for the unknown
model f.
The proxy is determined as follows. Given a delay co-

ordinate vector xk¼½yk;yk−1;…;yk−d�, we locate itsN nearest
neighbors ½yk0 ;yk0−1;…;yk0−d�, ½yk00 ;yk00−1;…;yk00−d�;…
;½ykN ;ykN−1;…;ykN−d� within the set of noisy training
data, with respect to Euclidean distance. Once the neigh-
bors are found, the known yk0þ1; yk00þ1;…; ykNþ1 values are
used with a local model to predict ykþ1. In this article, we
use a locally constant model that in its most basic form is an
average of the nearest neighbors; namely,

~fðxkÞ ¼
�
yk0þ1 þ yk00þ1þ;…;þykNþ1

N
; yk;…; yk−dþ1

�
:

This prediction can be further refined by considering a
weighted average of the nearest neighborswhere theweights
are assigned as a function of the neighbor’s distance to the
current delay-coordinate vector. Throughout the following
examples, unless otherwise specified, 20 neighbors are used.
This process is repeated for each member of the ensemble.
Once the full ensemble is advanced forward, the remaining
EnKF algorithm is then applied as previously described and
our delay-coordinate vector is updated according to Eq. (3).
We refer to this method as the Kalman-Takens filter.

III. IMPROVED FORECASTING

As an introductory example, we examine the Lorenz-63
system [45],

_x ¼ σðy − xÞ;
_y ¼ xðρ − zÞ − y;

_z ¼ xy − βz; ð4Þ

where σ ¼ 10, ρ ¼ 28, β ¼ 8=3. Assume we have a noisy
set of training data observed from the x variable. Using
these data, we want to develop a nonparametric forecasting
method to predict future x values of the system. However,
due to the presence of noise, outright application of a
prediction method leads to inaccurate forecasts. If knowl-
edge of Eq. (4) were available, the standard parametric filter
could be used to assimilate the noisy x observations to the
model, generate a denoised estimate of the x variable, and
simultaneously estimate the unobserved y and z variables.
Without knowledge of Eq. (4), we are limited to methods

of nonparametric filtering. Using the Kalman-Takens
method, we can effectively filter the noisy x observations,
reconstructing the underlying signal, without any knowl-
edge of the underlying system.
For this example, we assume that 6000 noisy training

points of the Lorenz-63 x variable are available, sampled at
the rate h ¼ 0.05. We build a delay coordinate vector
½xðtÞ; xðt − hÞ;…; xðt − dhÞ�, where d ¼ 4. Given that we
are filtering and searching for neighbors within the same

training set, we implement a 600-sample lockout centered
around the current delay-coordinate vector to prevent
overfitting (effectively reducing the set from which to
find neighbors to 5400 data points). The Kalman-Takens
method can then be implemented, iteratively filtering the
training data.
Figure 2 shows a comparison of the parametric and

Kalman-Takens filter in reconstructing the Lorenz-63 x
time series given noisy observations of the variable. The
observed time series is corrupted by 60% noise. The green
circles denote the noisy observations and the black solid line
denotes the true trajectory of the variable [signal root mean
square error ðRMSEÞ ¼ 4.76]. In Fig. 2(a), results of the
parametric filter (solid blue curve) reconstruction are shown.
The parametric filter, operating with full knowledge of the
underlying dynamical equations, is able to significantly
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FIG. 2. Given noisy observations of the Lorenz-63 x variable
(green circles) sampled at rate h ¼ 0.05, the goal is to reduce the
signal error (RMSE ¼ 4.76) using an ensemble Kalman filter
where the true x trajectory (solid black curve) is desired. (a) If we
have knowledge of the Lorenz-63 equations, the standard filtering
methodology can be used whereby the noisy x data are assimi-
lated to the model and using an EnKF a noise-reduced estimate
of the x variable as well as estimates of the unobserved y and z
variables are provided. We refer to this as the parametric filter
(solid blue curve, RMSE ¼ 2.87). (b) The Kalman-Takens filter
is able to significantly filter the noise in the observed signal
(solid red curve, RMSE ¼ 3.04) to a level comparable to the
parametric filter.

HAMILTON, BERRY, and SAUER PHYS. REV. X 6, 011021 (2016)

011021-4



reduce the signal error (RMSE ¼ 2.87). Figure 2(b) shows
the result of the Kalman-Takens filter reconstruction (solid
red curve). Without knowledge of any model equations, the
Kalman-Takens method is able to significantly reduce the
signal error to a level comparable with the parametric
filter (RMSE ¼ 3.04).
The results of reconstructing the observed Lorenz-63 x

variable over a range of noise levels are shown in Fig. 3.
Error bars denote standard error over 10 realizations.
Estimation of the noise covariances Q and R for both
filter algorithms is done using the methodology of Ref. [9].
The Kalman-Takens filter (solid red curve) is able to
substantially reduce the signal error (dotted black curve)
to a level comparable to the parametric filter (solid blue
curve). In some instances, the Kalman-Takens filter can be

used to reprocess the filtered data, which can lead to a
reduction in error (dotted red curve).
Next, we show how Kalman-Takens filtering of the

noisy data set can enhance forecasting. We utilize a simple
nonparametric prediction method similar to the local
reconstruction of ~f above. More sophisticated methods
exist, but we want to avoid complicating the comparison
of the filtering methods. Assume the current time is k, and
wewant to forecast the variable y ahead j time units into the
future. Using the delay coordinate vector xk ¼ ½yk; yk−1;…;
yk−d�, the vector’s N nearest neighbors ½yk0 ; yk0−1;…; yk0−d�,
½yk00 ; yk00−1;…; yk00−d�;…; ½ykN ; ykN−1;…; ykN−d� within the
set of noisy training data are located. Then, the known
yk0þj; yk00þj;…; ykNþj are averaged to predict ykþj.
Figure 4 shows the error in predicting two time units of

the Lorenz-63 x variable when the training set is influenced
by 30% noise. Results are averaged over 3000 realizations.
The prediction error is calculated with respect to the

FIG. 3. Filter performance of both the parametric (solid blue
curve) and nonparametric (solid red curves) filters when denois-
ing the observed Lorenz-63 x variable at increasing levels of
(a) large and (b) low observation noise (signal error, dotted black
curve). Time series sampled at rate h ¼ 0.05 and error bars
denote standard error over 10 realizations. Q and R noise
covariances are estimated adaptively. The nonparametric filter
is able to significantly reduce the signal error to a level
comparable to the parametric filter which has full use of the
model. In some instances, the performance of the nonparametric
filter improves by reprocessing the data (dotted red curve). At
higher noise levels, the discrepancy between the parametric and
nonparametric filter becomes negligible.

Forecast Horizon
0 0.5 1 1.5 2

R
M

S
E

0

1

2

3

4

5

6

7

8

9

10

Forecast Horizon
0 0.5 1 1.5 2

R
M

S
E

0

1

2

3

4

5

6

7

8

9

10

FIG. 4. Results of forecasting the Lorenz-63 x variable when
the training data are perturbed by 30% noise. Results averaged
over 3000 realizations. Forecast error calculated with respect to
(a) the non-noisy truth and (b) the noisy truth. When the training
data are filtered by the Kalman-Takens filter (solid red curve) we
gain improved forecasting capability as compared to use of the
unfiltered training data (dotted black curve). The forecasting
results (using identical forecast algorithms) when the training
data are filtered by the parametric filter (solid blue curve) are
included for a point of reference.
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non-noisy truth in Fig. 4(a) and the noisy truth in
Fig. 4(b). When using the noisy training data without
any filtering (dotted black curve) for the nonparametric
forecast, the prediction error is highest, as would be
expected. We observe a significant improvement in pre-
diction error when the training data are filtered first by the
Kalman-Takens method (solid red curve). This improve-
ment in predictive capabilities when using the Kalman-
Takens method compares favorably to the improvement
gained when filtering with the full set of model equations
(solid blue curve).
We emphasize that our purpose is to demonstrate the

utility of the Kalman-Takens filter, not to compare different
methods of forecasting. As such, all the forecast methods in
this paper are model-free methods, even when the true
model is used to filter the historical data, in order to focus
on the filtering comparison between the Kalman-Takens
and parametric approaches. In practice, if the correct model
were available, the noisy initial conditions could be filtered
and the model advanced in time to calculate the forecasted
values.

IV. SPATIOTEMPORAL DYNAMICS

Given the success of the Kalman-Takens method in
filtering noisy observations in the low-dimensional Lorenz-
63 system, allowing for improved forecasting ability,
we now examine the filter-forecast problem in a higher-
dimensional system. Consider a coupled ring of N Lorenz-
96 nodes [46],

_xi ¼ ðaxiþ1 − xi−2Þxi−1 − xi þ F; ð5Þ
where a ¼ 1 and F ¼ 8. The Lorenz-96 system is a
convenient demonstrative example since it allows for a
range of higher-dimensional complex behavior by adjust-
ing the number of nodes in the system. We first consider a
40-dimensional Lorenz-96 system in which three nodes are
observable, namely, x1, x2, and x40. We increase the
number of observables in this example since filtering a
40-dimensional Lorenz-96 with one observation, and the
full set of model equations, is itself a difficult task.
Therefore, we introduce the assumption that in this
higher-dimensional system we are afforded additional
observations. Even though we have additional observa-
tions, our goal is only to filter and predict the x1 variable.
We assume that 10 000 noisy training data points from

each of the three nodes, sampled at rate h ¼ 0.05, are
available. Since three nodes are observable in this example,
our delay-coordinate vector takes the form ½x1ðtÞ;…;
x1ðt−dhÞ;x2ðtÞ;…;x2ðt−dhÞ;x40ðtÞ;…;x40ðt−dhÞ�, where
we set d ¼ 3. Figure 5 shows the results of filtering the
x1 node in this system when the observations are
perturbed by 60% noise (green circles). With knowledge
of the full 40-dimensional system, a parametric filter
can be implemented, solid blue curve in Fig. 5(a), to reduce

the signal error (RMSE ¼ 1.17). With no model available,
the Kalman-Takens method can be utilized, solid red curve
in Fig. 5(b), and even in this high-dimensional example is
able to reduce signal error to a level comparable to the
parametric filter (RMSE ¼ 1.36).
Figure 6 shows the results of filtering the x1 node at

various noise levels. Figure 6(a) shows the results in a five-
dimensional Lorenz-96 network, where only x1 is observ-
able, and Fig. 6(b) shows the results in a 40-dimensional
network, where x1, x2, and x40 are observable. In this
example, Q and R noise covariances are tuned off-line for
each filter to ensure optimal performance. In both network
sizes, the Kalman-Takens method (solid red curve) is able
to significantly reduce the signal error (dotted black curve)
to a level comparable with the parametric filter (solid blue
curve), which operates with knowledge of the full system
equations.
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FIG. 5. The filtering problem in a 40-dimensional Lorenz-96
system where noisy observations from 3 of the network nodes are
available. Observations are perturbed by 60% noise. The goal is
to filter the noisy observations of the x1 node (black circles) and
reduce the signal error (RMSE ¼ 2.16). Black solid curve
denotes true trajectory of variable. (a) The parametric filter (solid
blue curve) with full knowledge of the system is able to filter the
signal to RMSE ¼ 1.17. This requires full estimation of the 40-
dimensional state. (b) The nonparametric Kalman-Takens filter
(solid red curve), with no knowledge of the underlying physical
system and utilizing only delay coordinates of the observables, is
able to filter the signal to RMSE ¼ 1.36.
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Figure 7 shows the results of forecasting x1 in a five-
dimensional Lorenz-96 network, when the training data are
corrupted by 60% noise, with respect to the non-noisy truth
in Fig. 7(a) and the noisy truth in Fig. 7(b). Prediction with
the unfiltered training data (dotted black curve) results in
large errors. Once again, application of the Kalman-Takens
method results in predictions with smaller error (solid red
curve) and is comparable if a parametric filter is used
(solid blue curve). The success of the Kalman-Takens filter
in these higher-dimensional systems is encouraging for its
use in real-world physical systems where the system is
complex, high dimensional, and a model is most likely
unknown.

We emphasize that we do not expect to obtain long-
term forecasts of intrinsically high-dimensional dynamics
from a nonparametric technique (due to the curse of
dimensionality). However, we now return to the example
in Fig. 1, which shows that filtering such systems without a
model is sometimes possible. Indeed, having shown that we
can filter a single spatial location, we can easily filter the
entire spatiotemporal system one location at a time. At each
spatial node, xi, of the 40-dimensional Lorenz-96 network,
we build the short-term forecast model used by the
Kalman-Takens filter from xi along with its two spatial
neighbors xiþ1 and xi−1.
The full spatiotemporal filtering results are shown in

Fig. 1. The Kalman-Takens filter is applied to the full
40-dimensional Lorenz-96 system when the observations
are corrupted by 100% noise, i.e., additive Gaussian noise
with mean zero and variance equal to the variance of the
signal. Figure 1(a) shows the spatiotemporal plot of the

FIG. 6. Filter performance of the parametric (solid blue curve)
and Kalman-Takens filter (solid red curve) when denoising the
observed Lorenz-96 x1 variable at increasing levels of observa-
tion noise (signal error, dotted black curve). The variable is
sampled at rate h ¼ 0.05 and the error bars denote standard
error over 10 realizations. Q and R noise covariances are tuned
off-line for optimal performance of the filters. Results presented
for both a (a) five-dimensional Lorenz-96 system with only x1
observable and a (b) 40-dimensional Lorenz-96 system where
x1, x2, and x40 are observable. We assume additional nodes
are observable in the 40-dimensional case due to the high
dimensionality of the system, which inhibits both the parametric
and Kalman-Takens filter. In both systems, the Kalman-
Takens filter is able to significantly reduce the signal error to
a level comparable to the parametric filter that has full knowledge
of the system.
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FIG. 7. Results of forecasting the x1 node in a five-dimensional
Lorenz-96 system when the training data are affected by 60%
noise. Results averaged over 2500 realizations. Forecast error
calculated with respect to (a) the non-noisy truth and (b) the noisy
truth. Even in this higher-dimensional system, we see that use of
the Kalman-Takens filter to filter the training data results in
improved forecasting capability (solid red curve) as compared to
forecasting without filtering (dotted black curve). The forecast
based on Kalman-Takens initial conditions compares well to the
same Takens-based forecast method using initial conditions from
the parametric filter (solid blue curve).
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system dynamics along with the noisy signal and the filter
outputs. Note that the Kalman-Takens filter output (third
panel from the top) is able to filter a significant amount of
noise and reconstruct the underlying system dynamics at a
level comparable to the parametric filter (fourth panel from
the top). Figure 1(b) shows the spatiotemporal plot of
absolute errors that are greater than 5 for the (top) noisy
signal, (middle) Kalman-Takens output, and (bottom) para-
metric filter output.
The key to this application of the Kalman-Takens filter is

that the dynamical system is spatially localized on short
time scales. This allows us to learn short-term forecasting
models for each spatial location using only its two spatial
neighbors. These short-term forecasting models appear to
be low dimensional enough that they can be learned from
small training data sets with Takens-based methods. Of
course, not all dynamical systems will have this localization
property; in particular, systems with an infinite speed of
propagation of information may be problematic.

V. MODEL ERROR

Thus far, we have been working under the assumption
that while a set of noisy data exists from a system, we have
no knowledge of the dynamical equations. To that extent,
we have shown the power of the Kalman-Takens method in
filtering the noisy observations allowing for better predic-
tions. Next, we ask an even more provocative question: Are
there circumstances in which a system with noisy obser-
vations can be predicted better without a model than with
a model?
This may not be possible if a perfect model is available.

However, in any typical filtering problem, the question of
model error becomes relevant: How accurately do the
dynamics of the model describe those of the observed
system? Moreover, if the model is slightly imperfect, how
is the filtering affected? Of course, model error is not
relevant to the Kalman-Takens method, as it relies solely
on the observed data to nonparametrically advance the
dynamics.
We examine this question of model error when filtering

the x variable from Lorenz-63 and the x1 node from a 40-
dimensional Lorenz-96 system, each corrupted by 60%
noise. A mild form of model error is simulated in the
corresponding parametric filters by perturbing the model
parameters. Specifically, σ, ρ, β in the Lorenz-63 filter and
the a parameter in the Lorenz-96 filter are perturbed from
their correct values.
Figure 8 shows the filtering results at increasing levels

of model error in Lorenz-63 in Fig. 8(a) and Lorenz-96 in
Fig. 8(b). As the model error increases, the performance
of the parametric filter (solid blue curve) breaks down
and is unable to reduce the signal error (dotted black
curve). Of note, in Fig. 8(b) there are only three data
points plotted for the parametric filter due to filter
divergence at higher levels of model error. The

Kalman-Takens filter (solid red curve) is robust to model
error, and at higher levels of model error outperforms the
parametric filter.
Of course, in a situation of incorrect parameters, param-

eter-fitting methods could be used to correct the parameters
and reduce the error. For example, state-augmentation
methods based on Kalman filtering [47] could be used.
However, realistic model error often manifests itself as
missing variables in the model, a mismatch between the
governing physics of the system and those described by the
model or a completely unknown model. The consideration

FIG. 8. Under situations of model error, the performance of the
parametric filter can degrade rapidly. In our examples, this model
error is simulated by perturbing the system parameters. Even
under this relatively mild form of model error, it is evident that the
parametric filter can have difficulty in filtering a noisy observa-
tion. Error bars denote standard error over 10 realizations.
(a) Results for filtering the Lorenz-63 x variable when the
observations are perturbed by 60% noise (dotted black curve
indicates signal error). The performance of the parametric filter
(solid blue curve) under slight model error becomes much worse
than the Kalman-Takens filter (solid red curve), which is
completely robust to any form of model error. (b) Results for
filtering the x1 node in a 40-dimensional Lorenz-96 system when
observations are perturbed by 60% noise. Only three data points
are shown for the parametric filter because starting at 30%
parameter perturbation the filter diverges, once again showing the
crippling effect of model error on the performance of the
parametric filter.
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of incorrect parameter values is an extremely mild form of
model error since the underlying equations used to generate
the data match those of the model used by the parametric
filter. Our purpose in this example is to compare the
performance of the two filtering approaches in the mildest
of model error situations—a more realistic comparison
would cause the parametric approach to fail even more
substantially.
In many complex modeling problems, empirical obser-

vation leads to ad hoc identification of model error
phenomena. One example of this is the El Niño phenome-
non, an irregular variation in sea surface temperatures
(SST) in the eastern Pacific ocean. The El Niño phenome-
non is commonly described by various univariate indices
[48], which are time series that describe the SST field in a
particular region. El Niño was shown in Ref. [49] to be
more accurately forecast by a data-driven model than by
reduced models used in operational forecasts at the time.
While the method of Ref. [49] forecasts the entire SST
field, a comparable forecast skill for the El Niño index was
obtained in Ref. [41] using only the historical time series of
the one-dimensional index.
The diffusion forecast of Ref. [41] uses training data to

represent an unknown stochastic dynamical system on a
custom basis of orthogonal functions, φjðxiÞ, which are
defined on the attractor M of the dynamical system
described by the data fxig ⊂ M ⊂ Rn. By representing
an initial probability density in this basis as
pðx; 0Þ ¼ P

jcjð0ÞφjðxiÞ, the diffusion forecast evolves
the density using a Markov process on the coefficients
cjðtþ τÞ ¼ P

kAjkckðτÞ. The key result of Ref. [41] is that
Ajk ¼ ð1=NÞPiφkðxiÞφjðxiþ1Þ is an unbiased estimate of
the forward operator eτL for the unknown dynamical
system, where τ is the time step from xi to xiþ1 and L
is the generator of the stochastic dynamical system. We can
then obtain the initial probability density from the noisy
observations using an iterative Bayesian filter introduced in
Refs. [19,42]. These initial densities are projected into the
basis fφjg, the coefficients are evolved forward in time,
and the diffusion forecast is the mean of the reconstructed
forecast density.
The difficulty in applying data-driven methods such as

Refs. [41,49] to empirically identified model error phenom-
ena such as El Niño is that it is extremely difficult for the
modeler to completely isolate themodel error phenomena.A
trivial example that illustrates this difficulty is that the El
Niño indices contain seasonal variations that are not part of
the model error (these are empirically removed by comput-
ing the monthly anomalies). Of course, even if the season-
ality could be perfectly removed, many other aspects of the
observed El Niño index are likely to be artifacts of the
projection from a high-dimensional chaotic dynamical
system to a one-dimensional time series [15]. As a result,
we expect that the observed data contain a dominant
dynamical component that is possible to probabilistically

forecast, and this dominant component is the target that the
modeler is hoping to explain. However, the observed data
also contain unpredictable “noise” components that result
from the projection of the high-dimensional dynamics, and
are nonlinearly intertwined with the dominant dynamical
component that we are interested in. This common scenario
is the perfect context for application of the Kalman-Takens
filter to remove the unpredictable noise component of the
time series. This will allow a method such as the diffusion
forecast to be trained on a cleaner time series that is more
focused on the desired feature.
To demonstrate this, we examine the filter-forecast

problem in the context of the El Niño 3.4 index which
was also used in Ref. [41]. We use historical data from
January 1950 to December 1999 to build our nonparametric
forecast. Prior to building the diffusion forecast model, we
first filter the data using the Kalman-Takens method with
d ¼ 9, five neighbors, and Q and R noise covariance
matrices tuned for optimal performance. Figure 9 compares
the 14-month diffusion forecast using the filtered training
data (solid red curve) to the true value of the El Niño index
at the corresponding time (solid black curve). We note that
our predictions follow the same general pattern of the true
trajectory. However, our real interest is in determining
if use of the Kalman-Takens filter results in any improve-
ment in forecasting capability. In Fig. 10(a), we show the
resulting forecast error and in Fig. 10(b) the forecast
correlation of the diffusion forecast when the historical
data are unfiltered (solid black curve) and filtered using the
Kalman-Takens filter (solid red curve). We observe that
denoising the time series using the Kalman-Takens
filter improves the isolation of the predictable component
of the El Niño 3.4 index as shown by the improved forecast
skill of the diffusion forecast when trained on the
denoised data.
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FIG. 9. The Kalman-Takens method is used to filter a set of
historical data from the El Niño 3.4 index. The resulting
14-month lead nonparametric diffusion forecast using the filtered
historical data is shown (solid red curve). The forecasted
trajectory captures the general pattern of the true trajectory (solid
black curve).
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VI. DISCUSSION

The blending of the Takens embedding method with
Kalman filtering is designed to exploit the complementary
strengths of the two methodologies. Under favorable
conditions, delay coordinate embedding can replace the
underlying evolution equations with no loss in accuracy,
and the Kalman update provides a maximum likelihood
estimate of the reconstructed state in the presence of
observational noise. While the Kalman update equations
were proposed with the assumption that a known set of
dynamical evolution equations were available, we show
here that they can be used to effectively reduce observa-
tional noise and increase predictability when using non-
parametric representations, such as those derived from
delay coordinates.
Perhaps more surprisingly, our results show that the

Kalman-Takens filter may outperform the standard, para-
metric Kalman filter when model error is present. The
sensitivity of filter output to model error is difficult to
quantify; we show that in certain cases, even when the

model error is relatively small, the nonparametric approach
may be a welcome alternative.
The Kalman-Takens filter shares the limitations of all

Kalman filtering to the extent that it is limited to Gaussian
noise assumptions. For more general, multimodal noise, a
more complex type of data assimilation may be necessary.
In this article, we restrict the computational examples to the
EnKF form, but the fundamental strategy is not restricted to
any particular version of Kalman filtering.
We expect this idea to be applicable to a wide range of

nonlinear systems that are measured with observational
noise. For forecasting, the data requirements are similar to
other applications of Takens’s theorem, in that enough
observations must be available to reconstruct the under-
lying dynamical attractor to a sufficient extent. However,
even if the system exhibits high-dimensional dynamics, we
show that filtering may still be possible if some spatial
localization can be done. Intuitively, this means that on
short time scales, local information is sufficient to deter-
mine short-term dynamics. This may be used productively
in geophysical applications where considerable preprocess-
ing is needed, as a kind of nonparametric reanalysis. Such a
reanalysis may reduce bias from incorrect priors such as
insufficient models or poorly constrained parameters.
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APPENDIX: ADAPTIVE UPDATING OF
COVARIANCE MATRICES

Since we cannot assume that the noise covariance
matrices Q and R in Eq. (1) are known, we use a recently
developed method for the adaptive fitting of these matrices
[9] as part of the filtering algorithm. The method uses the
innovations ϵk ≡ yk − y−k in observation space from Eq. (2)
to update the estimates Qk and Rk of the covariancesQ and
R, respectively, at step k of the filter.
First, we construct linearizations of the dynamics and the

observation function that are reconstructed from the
ensembles used by the EnKF. Let xþi;k−1 ∼N ðxþk−1; Pþ

k−1Þ
be the analysis ensemble at step k − 1, where the index
1 ≤ i ≤ E indicates the ensemble member, and let x−i;k ¼
F ðxþi;k−1Þ be the forecast ensemble that results frommoving
from tk−1 to tk using the Takens embedding with initial
condition xþi;k−1. Define x−k ¼ 1

E

P
E
i¼1 x

−
ik, the matrix of

analysis perturbations,

Xþ
k−1 ¼ ½ðxþ1;k−1 − xþk−1ÞT;…; ðxþE;k−1 − xþk−1ÞT �;

and the matrix of forecast perturbations,
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FIG. 10. Results of the diffusion forecast when trained on the
unfiltered historical data (solid black curve) and Kalman-Takens
filtered data (solid red curve). (a) Both forecasts compare
favorably to the climatological error (dotted gray curve). How-
ever, processing the historical data with the Kalman-Takens filter
results in improved forecast error. (b) Similarly, forecast corre-
lation is improved by filtering the data.
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X−
k ¼ ½ðx−1k − x−k ÞT;…; ðx−Ek − x−k ÞT �:

Then an approximation for the one-step dynamics is
given by the matrix Fk ¼ X−

k ðXþ
k−1Þ†, where † denotes the

matrix pseudoinverse. Similarly, let ~x−i;k ∼N ðx−k ; P−
k þQÞ

be the inflated forecast ensemble and let z−i:k ¼ hð~x−i;kÞ be
the projection of this ensemble into the observation space.
Then we can defineHk ¼ Z−

k ð ~X−
k Þ†, which we think of as a

local linearization of the observation function h, where

~X−
k ¼ ½ð~x−1k − x−k ÞT;…; ð~x−Ek − x−k ÞT �;

Z−
k ¼ ½ðz−1k − z−k ÞT;…; ðz−Ek − z−k ÞT �

are the matrix of inflated forecast perturbations and the
matrix of observed forecast perturbations, respectively, and
where z−k ¼ 1

E

P
E
i¼1 z

−
ik.

After computing Fk and Hk, we use them to update
covariances Q and R as follows. We produce empirical
estimates Qe

k−1 and Re
k−1 of Q and R based on the

innovations at time k and k − 1 using the formulas

Pe
k−1 ¼ F−1

k−1H−1
k ϵkϵ

T
k−1H−T

k−1 þ Kk−1ϵk−1ϵTk−1H−T
k−1;

Qe
k−1 ¼ Pe

k−1 − Fk−2Pa
k−2FT

k−2;

Re
k−1 ¼ ϵk−1ϵTk−1 −Hk−1Pf

k−1HT
k−1: ðA1Þ

It was shown in Ref. [9] that Pe
k−1 is an empirical estimate

of the background covariance at time index k − 1. Notice
that this procedure requires us to save the linearizations
Fk−2, Fk−1,Hk−1,Hk, innovations ϵk−1, ϵk, and the analysis
Pa
k−2 and Kalman gain matrix Kk−1 from the k − 1 and

k − 2 steps of the EnKF.
The estimates Qe

k−1 and Re
k−1 are low-rank, noisy

estimates of the covariance matrices Q and R that will
make the posterior estimate statistics from the filter con-
sistent with the empirical statistics in the sense of Eq. (A1).
In order to form stable full-rank estimates of Q and R, we
assimilate these estimates using an exponential moving
average with window τ:

Qk ¼ Qk−1 þ ðQe
k−1 −Qk−1Þ=τ;

Rk ¼ Rk−1 þ ðRe
k−1 − Rk−1Þ=τ: ðA2Þ

We interpret the moving average in Eq. (A2) as a moving
average filter that stabilizes the noisy empirical estimates
Qk and Rk. The stochastic nature of the estimate of Qk can
lead to excursions that fail to be symmetric and/or positive
definite, leading to instability in the EnKF. While the
matrix Qk is not changed, the matrix used in the kth step of
the filter is a modified version of Qk, which is forced
to be symmetric and positive definite by taking ~Qk ¼
ðQk þQT

k Þ=2 and then taking the max of the eigenvalues of
~Qk with zero. Again, we emphasize that ~Qk is only used in

the kth filter step and no ad hoc corrections are made to the
matrix Qk, which eventually stabilizes at a symmetric and
positive definite matrix naturally via the moving average in
Eq. (A2). These ad hoc corrections are only needed during
the transient period of the estimation of Q, in particular,
when the trivial initialization Q1 ¼ 0 is used.
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